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Abstract

To meet the future global energy demand - an estimated additional 10 terawatts (TWs)

per year in 2050 - a diversification of energy sources and fuels is needed. Solar energy

represents a prominent alternative energy source whose applications range from

photocatalytic water-splitting (PWS) to photovoltaics. PWS is used to produce hy-

drogen, an interesting candidate for future fuels, whereas photovoltaics harvest light

to produce electricity. An important material for these solar-based applications is

titanium dioxide (TiO2), thanks to its stability, band alignment and abundance. TiO2

is either used as a scaffold or to create photogenerated electrons and holes to perform

catalytic reactions. However, the large bandgap of TiO2 yields device efficiencies that

are too low to be economically sound. To make TiO2-based devices competitive, the

electronic and chemical properties of TiO2 need to be clearly understood.

In this work, using scanning tunneling microscopy (STM) together with spectroscopy

techniques (scanning tunneling spectroscopy (STS) and inelastic tunneling spec-

troscopy (IETS)), we study the electronic and structural properties of pristine TiO2

anatase (101), the most technologically relevant polymorph of TiO2. In particular,

STM-IETS was applied for the first time to obtain chemical identification of adsorbed

species on the semiconducting TiO2 surface. For each step, density functional the-

ory (DFT)-based calculations were performed to support our findings.

As a prerequisite to study TiO2 anatase (101), we investigated the pristine surface us-

ing high-resolution STM to determine the individual Ti and O atom positions, which

have been ambiguous in the past. Moreover, we showed that the high reactivity of

step edges along the [-111] direction stems from oxygen vacancies (VOs). As studied

with STS, this non-stoichiometric step edge exhibits a bandgap reduced by 2 eV. Fur-

thermore, a higher amount of adsorbates are present on this step edge, suggesting a

higher chemical reactivity. Going one step further, we created a novel surface phase

consisting of undercoordinated Ti atoms, increasing the amount of VOs over the whole

surface phase. This so-called titanium-terminated surface phase only modifies the

surface layer, leaving the rest of the anatase (101) crystal untouched. This new surface

phase exerts the same behavior as the step edges, reducing bandgap and enhancing

reactivity. On the other hand, by exposing the anatase surface to excess oxygen at

elevated temperatures, we reduced the overall surface reactivity. This reduction was
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Abstract

achieved by formation of an oxygen network, acting as a passivating layer on top of the

TiO2 anatase (101) surface. The network shows no additional features in the electronic

structure and does not influence the characteristically large bandgap of the bulk ma-

terial. Additionally, the excess oxygen fills vacant positions at the highly-reactive step

edges along the [-111] direction, reducing the overall surface reactivity even further.

It is important to note that the preparation procedures of both surface phases with

enhanced and reduced surface reactivity are cheap and reversible, only modifying

standard ultra-high vacuum (UHV) cleaning methods without any additional materi-

als.

Improved characterisation of the interaction between water and the TiO2 anatase

(101) surface represents another important aspect of this work. Although PWS on TiO2

has been used for over 40 years, fundamental insights of the reaction mechanisms

are still missing. In this thesis work, we labeled individual H2O and OH molecules

on the semiconducting surface by detecting their vibrational modes with STM-IETS.

Through clear identification of adsorbed species, we demonstrated that water can

thermally dissociate on the TiO2 anatase (101) substrate without an additional light

source. Furthermore, for the first time, we could structurally identify formation of a

well-ordered water monolayer on TiO2 anatase (101).

The work presented here opens new paths towards fundamental understanding of

surface reactions on metal oxides, especially water on TiO2 anatase (101), to improve

future solar energy conversion devices.

Key words: Scanning Tunneling Microscopy and Spectroscopy, Inelastic Tunneling

Spectroscopy, TiO2, Surface Engineering, Water Dissociation, Catalysis.
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Zusammenfassung

Um den zukünftigen weltweiten Energiebedarf - zusätzliche 10 Terawatt pro Jahr

in 2050 - zu decken, wird eine Diversifikation der Energiequellen und Treibstoffen

benötigt. Solare Energie ist eine interessante alternative Energiequelle, welche in

vielen Bereichen benutzt wird: von photokatalytischer Wasserspaltung (PWS) um

Wasserstoff, ein möglicher Kandidat für zukünftigen Treibstoff, zu produzieren hinzu

Photovoltaik, welche Licht in Elektrizität umwandelt. Ein wichtiges Material für diese

solarbasierenden Anwendungen ist aus Gründen der Stabilität, der Bandausrichtung

und der Häufigkeit, Titandioxid (TiO2). TiO2 wird entweder benutzt um Photonen

zu absorbieren, welche Elektronen und Löcher anregen um katalytische Reaktionen

durchzuführen, oder als Gerüst. Jedoch haben Bauelemente basierend auf TiO2 wegen

der großen Bandlücke zu niedrige Effizienzen. Um dennoch Bauelemente aus TiO2

wettbewerbsfähig zu gestalten, müssen die elektronischen und chemischen Eigen-

schaften von TiO2 klar verstanden werden.

In dieser Arbeit, durch die Benutzung von Rastertunnelektronenmikroskopie (STM)

im Verbund mit Spektroskopietechniken (elastische und inelastische Tunnelspektro-

skopie (STS und IETS)) können wir die elektronischen und strukturellen Eigenschaften

von reinem TiO2 Anatas (101), dem wichtigsten technischen Polymorph, erhalten. Ins-

besondere die Ausführung von STM-IETS ermöglicht zum ersten Mal die chemische

Identifikation von adsorbierten Molekülen auf dem TiO2 Halbleiter. Für jeden Schritt

wurden Modelle basierend auf der Dichtefunktionaltheorie (DFT) erstellt, welche

unsere Resultate unterstützen.

Als Vorraussetzung um TiO2 Anatas (101) zu studieren, eruierten wir die reine Oberflä-

che mit Hilfe von hochauflösendem STM um die individuellen Positionen der Titan-

und Sauerstoffatome zu bestimmen, was in der Vegangenheit unklar war. Darüber-

hinaus konnten wir zeigen, dass die hohe Reaktivität der Stufenkanten in der [-111]

Richtung von Sauerstofffehlstellen (VOs) stammt. Diese nicht stöchiometrischen Stu-

fenkanten zeigen eine um 2 eV reduzierte Bandlücke und eine größere Häufigkeit an

Adsorbaten was auf eine höhere chemische Reaktivität hindeutet. Dies einen Schritt

weiter gedacht, erschaffen wir eine neue Oberflächenphase, welche aus unterkoordi-

nierten Titanatomen besteht, die die Anzahl an VOs über die ganze Oberflächenphase

spannt. Diese sogenannte titanterminierte Oberflächenphase modifiziert lediglich
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die Oberfläche währen der Rest des Anataskristalls unberührt bleibt. Die neue Phase

verhält sich ähnlich zu den Stufenkanten, da sie auch eine reduzierte Bandlücke und

erhöhte Reaktivität aufweist. Andererseits durch das Aussetzen des Kristalls an eine

gesättigte Sauerstoffatmosphäre bei erhöhter Temperatur konnte auf der Anatasober-

fläche eine Passivierungsschicht durch die Entstehung eines Sauerstoffnetzwerkes

erschaffen werden. Dieses Netzwerk besitzt keine zusätzlichen Zustände in der elektro-

nische Struktur und besitzt deswegen die gleiche große Bandlücke. Hinzukommend

füllen die zusätzlichen Sauerstoffe die Fehlstellen an den hochreaktiven Stufenkanten

entlang der [-111] Richtung auf, was wiederum die gesamte Oberflächenreaktivität

verringert. Dabei sind die Preparationsmethoden der beiden Oberflächenphasen mit

erhöhter und verringerter Reaktivität günstig und reversibel, da nur herkömmliche

ultrahochvakuum (UHV) Reinigungsmethoden ohne zusätzliche Materialien benutzt

wurden.

Ein weiterer wichtiger Aspekt dieser Arbeit ist das verbesserte Verständnis der Wech-

selwirkung zwischen Wasser und der TiO2 (101) Anatasoberfläche. Obwohl PWS auf

TiO2 seit mehr als 40 Jahren benutzt wird, fehlen weiterhin fundamentalle Erkennt-

nisse über den Reaktionsmechanismus. In dieser Arbeit benutzen wir STM-IETS um

individuelle H2O und OH Moleküle auf der Halbleiteroberfläche durch die Festestel-

lung ihrer Vibrationsmoden zu markieren. Durch diese eindeutige Identifizierung der

adsorbierten Moleküle können wir zeigen, dass Wasser thermisch auf TiO2 Anatas

(101) ohne den Einfluss von Licht dissoziieren kann. Darüberhinaus konnten wir zum

ersten Mal strukturell und chemisch die Formung einer gut geordneten Wassermono-

lage, welche nur aus H2O Molekülen besteht, auf der Anatasoberfläche identifizieren.

Die Arbeit hier presentiert neue Wege für eine besseres fundamentales Verständnis von

Oberflächenreaktionen auf Metalloxiden, insbesondere für Wasser auf TiO2 Anatas

(101), welche möglicherweise zukünftige auf Solarenergie-basierende Bauelemente

verbessern kann.

Stichwörter: Rastertunnelelektronenmikroskopie und -spektroskopie, Inelastische

Tunnelspektroskopie, TiO2, Oberflächenmodifizierung, Wasserspaltung, Katalyse.
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Résumé

Pour répondre à une demande énergétique mondiale – anticipée à atteigner 10 té-

rawatts (TWS) supplémentaires par an en 2050 - une diversification des sources

d’énergie et de combustibles est nécessaire. L’énergie solaire représente une impor-

tante source d’énergie alternative, dont les applications impliquent la décomposition

photocatalytique de l’eau et la photovoltaïque. La décomposition photocatalytique

de l’eau est une méthode de production d’hydrogène, un candidat intéressant de

futurs combustibles, alors que les appareils photovoltaïques produisent de l’électri-

cité en récoltant la lumière. Une substance de valeur pour ces applications solaires

est titanium dioxide (TiO2), grâce à sa stabilité, à l’alignement de la bande, et à son

abondance. TiO2 est utilisée soit comme échafaudage, soit pour créer des électrons

et des trous photogénérés, afin d’effectuer des réactions catalytiques. Cependant,

la grande largeur de bande interdite de TiO2 mène aux efficacités d’appareil trop

faibles pour une viabilité économique. Une compréhension optimisée des propriétés

électroniques et chimiques de TiO2 rendra concurrentiels les appareils fabriqués à la

base de cette substance. En utilisant un microscope à effet tunnel (STM) ainsi que des

techniques de spectroscopie [la spectroscopie à effet tunnel (STS) et la spectroscopie

inélastique à effet tunnel (IETS)], nous avons étudié les caractéristiques électroniques

et structurales des échantillons de TiO2 anatase (101) dites « vierges » ; ce polymorphe

est considéré le plus pertinent aux applications technologiques. En particulier, et

pour la première fois, nous avons utilisé STM-IETS pour l’identification chimique des

espèces adsorbées à la surface du semi-conducteur TiO2. À chaque étape, les calculs à

la base de la théorie de la densité fonctionnelle (DFT) ont été effectués pour confirmer

nos conclusions.

Comme condition préalable à l’étude de TiO2 anatase (101), nous avons étudié sa

surface vierge en utilisant STM à haute résolution pour identifier les positions indi-

viduelles des atomes de Ti et d’O, qui ont été ambiguës dans le passé. En surcroît,

nous avons démontré que la réactivité de l’étape des bords le long de la direction

[-111] provient des lacunes d’oxygène. Selon une étude STS, cette étape de bords

non-stoichiométrique présente une bande interdite réduite par 2 eV. En outre, plus

d’espèces adsorbées sont présentes sur cette étape des bords, ce qui suggère une

réactivité chimique plus élevée. Allant plus loin, nous avons créé une nouvelle phase
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de surface constituée d’atomes de Ti sous-coordonnés, augmentant donc la quantité

des lacunes d’oxygène sur toute la phase de surface. Cette phase de surface, terminée

par titane, ne modifie que la couche de surface, laissant intact le reste du cristal de

l’anatase (101). Cette nouvelle phase de surface exerce le même comportement que

les bords de l’étape, réduisant la bande interdite et améliorant la réactivité. D’autre

part, aux températures élevées, une exposition de la surface à un excès d’oxygène

a réduit la réactivité globale dudit surface. Cette réduction résultait de la formation

d’un réseau d’oxygène, agissant en tant que couche de passivation sur le dessus de la

surface TiO2 anatase (101). Le réseau ne présente pas de traits supplémentaires auprès

de la structure électronique et n’influence point la grande largeur de bande interdite si

caractéristique du matériau en vrac. En outre, l’excès d’oxygène remplit les positions

vacantes au niveau des étapes des bords hautement réactives le long de la direction

[-111], ce qui réduit encore plus la réactivité de surface. Il est important de noter que la

préparation des deux phases de surface – avec une réactivité de surface soit améliorée,

soit réduite – est abordable et réversible, ne modifiant que les méthodes de nettoyage

standards de l’ultravide (UHV), et ceci sans matériel supplémentaire.

Une caractérisation améliorée de l’interaction de l’eau avec la surface de TiO2 anatase

(101) représente un autre concept clé de ce travail. Malgré l’application – depuis plus

de quarante ans – de la décomposition photocatalytique médiée par TiO2, notre com-

préhension fondamentale du mécanisme reste incomplète. Au cours de ce travail de

thèse, sur la surface semi-conductrice, nous avons caractérisé H2O et OH en tant que

molécules individuelles en détectant leurs modes vibratoires par STM-IETS. Suite à

une identification sans ambiguïté de ces espèces adsorbées, nous avons démontré

que l’eau peut dissocier thermiquement sur un substrat composé de TiO2 anatase

(101), et ceci sans source de lumière supplémentaire. Pour la première fois, grâce à

ses caractéristiques structurels et chimiques, nous avons identifié la formation d’une

monocouche d’eau bien ordonnée sur la surface de TiO2 anatase (101), qui ne se

compose que de molécules d’eau (H2O).

Ce œuvre ouvre de nouveaux chemins vers la compréhension fondamentale des ré-

actions sur la surface des oxydes de métaux, en particulier la réaction de l’eau sur la

surface de TiO2 anatase (101), afin d’améliorer de futurs appareils visant la conversion

de l’énergie solaire.

Merci à Carrie Brubaker pour ses contributions à la traduction de cet abstrait.

Mots clés : Microscopie et Spectroscopie à Effet Tunnel, TiO2, Ingénierie de Surface,

Dissociation de l’Eau, Catalyse.
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1 Introduction

The increase in the global energy demand drives researchers to find new or more

efficient energy sources and fuels every day. This is due to the fact that conventional

energy sources like fossil fuels, which so far met this demand, will soon become

increasingly expensive due to their limited availability. Looking back over the last

century it becomes clear that the economic growth in the world was largely attributed

to the low energy prices. In order to sustain the economic growth and lifestyle we will

need to supply an additional 10 terawatts (TW) until 2050 [1] in an environmental

clean and economical cheap way. Supplying this additional energy solely by combus-

tion of fossil fuels would require a yearly storage of additional 25 billion metric tons of

CO2 (140 times the volume of lake Geneva!) to avoid further environmental impact.

Already the emission of anthropogenic greenhouse gases from combustion of fossil

fuels restulted in an increase of the global average surface temperature by 0.85 °C in

the last 130 years causing melting of glaciers, rising sea levels and extreme weather

events [2]. Using nuclear power as an alternative energy source would require to build

a new 1 GW nuclear fission plant every day until 2050. Hence, this extra supply of

energy can only be matched including sustainable energy sources. Of all sustainable

energy sources, the sun with its 120.000 TW shining onto the earth surface sticks out

to be the most promising one. However, the solar energy has to be converted either

into electric energy (photovoltaics [3, 4]) or fuels (photocatalysis [5]) to be used in our

society.

In conventional silicon-based photovoltaics sunlight is absorbed in the semiconduc-

tor generating electrons and holes. Due to an internal electric field (p-n-junction) the

charge carriers are separated and can be used as an electric source. The challenges

with silicon-based photovoltaics are the need of high quality Si leading to higher

production and environmental costs as well as the relative low performances under

diffuse (cloudy) light conditions. These aspects have been tackled by the invention of

dye-sensitized solar cells in 1991 [4] in which dye molecules are adsorbed on top of a
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Chapter 1. Introduction

titanium dioxide (TiO2) scaffold in combination with an electrolyte. The sunlight is

absorbed by the dye molecule and the excited electron is immediately injected into

the conduction band (CB) of the TiO2. The electron performs a load and subsequently,

the dye is regenerated by the electrolyte. In these cells the interaction of the molecules

and the underlying TiO2 substrate are central for the overall performance of the cells.

This area of research has recently seen a lot of attention due to the finding of methy-

lammonium lead halides perovskites substituting the dye molecule [6, 7, 8]. These

new cells reach an efficiency of over 20% [9] making this technique industrial relevant

with first commercially available modules being potentially released in 2017 [10].

Being the leading semiconductor catalyst, TiO2 also plays an important role in solar

energy conversion to fuels, such as hydrogen. Hydrogen presents an interesting al-

ternative source of fuel since burning it with oxygen is emission free. To avoid the

production of greenhouse gases photocatalytic water-splitting (PWS) is a promis-

ing candidate. In PWS cells, which were introduced more than 40 years ago, water

molecules are adsorbed on a catalytic semiconductor [5] (Figure 1.1a). The absorbed

sunlight is used to create electrons and holes in the semiconductor which subse-

quently split water into its components creating molecular hydrogen and oxygen.

TiO2 has proven to be the leading semiconducting catalyst for this reaction, due to its

high abundance, stability and band alignment, but device efficiencies are too low to

be economically sound. This results in high hydrogen production costs using TiO2-

based devices of around $10 kg−1 H2 which are 10 times higher than for hydrogen

production using steam refinement [11]. Hence, over 95% of the hydrogen production

derives from steam refinement processes extracting hydrogen from fossil methane

but releasing greenhouse gases during the process. Due to the low efficiencies of these

devices more studies have to be directed towards PWS, such as understanding the role

of photogenerated charge carriers in the TiO2 substrate, to make hydrogen a clean

and sound alternative to fossil fuels.

Figure 1.1: Principle of photocatalytic water-splitting (PWS,a) and the band alignment
of TiO2 (b).
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As stated, in both solar conversion types - photovoltaics and -catalysis - the TiO2

substrate has a strong influence on the device efficiency. Advancements require a

better fundamental understanding of TiO2 with its surface properties and interaction

with different molecules. As an example, an examination of figure 1.1b underlines that

for water splitting operations the TiO2 anatase (101) band alignment requires further

optimization. While the CB is well aligned with the hydrogen reduction, the holes

created in the valence band (VB) after light absorption have a strong overpotential

to perform the oxygen evolution reaction. Reducing the bandgap by shifting the VB

closer to the Fermilevel is desired and a strong field of research.

In general, natural TiO2 occurs in its thermodynamical most stable form rutile but to

have a higher surface to volume ratio TiO2 is usually used in devices as small nanopar-

ticles which coalesce in the anatase (101) termination [12]. Due to the transition of

anatase into rutile at elevated temperatures, crystals of sufficient size and quality to

perform fundamental research have been scarce [13] and give an explanation of the

missing understanding of the anatase surface.

In this thesis, we use scanning tunneling microscopy (STM) to investigate the funda-

mental properties of a natural grown TiO2 anatase (101) crystal. The STM, which was

invented by G. Binnig and H. Rohrer in 1982 allows the routinely imaging of individual

atoms and molecules [14, 15, 16]. Furthermore, the STM also provides information

about the electronic structure and can even give chemical resolution on the molecular

scale. We will present the working principle of the STM in chapter 2.

One important attribute of the TiO2 anatase (101) surface is its chemical reactivity.

The reasons for this are manifold ranging from surface passivation to enhanced ad-

sorption of molecules. To improve the adsorption of molecules and catalytic reactions,

the chemical reactivity of TiO2 anatase surface needs to be increased. This plays an

important role in photocatalysis where a stronger adsorption and catalytic response

directly leads to an increase in efficiency of the device. A prominent source for in-

creasing the chemical reactivity for metal oxides are oxygen vacancies (VOs). The VOs

change the oxidation of neighboring surface Ti atoms from Ti4+ to Ti3+ resulting in

a filling up of the Ti3d bands. This additional reservoir of electrons can be used to

enchance chemical reactivity. However, VOs have the tendancy in TiO2 anatase (101)

to migrate from the surface to subsurface layers leaving the surface stoichiometric

and non reactive. We will present in section 3.1.2 that these VOs are also apparent

at the [-111] step edge explaining the high reactivity which results in more molecule

being adsorbed on this step edge than elsewhere. By controlling the amount of step

edges (e.g. creating vicinal surfaces), it is possible to increase the amount of catalytic

active centers (VOs) on the TiO2 anatase (101) surface and thus, increase the chemical

reactivity. However, this method is limited by the fact that in nanoparticles atoms

at step edges account for approximately 15% of the total amount of surface atoms
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for a particle of 3 nm in diameter [17]. Using our findings and a modification of the

standard UHV preparation method we successfully create in section 4.2 a new surface

phase, the so-called titanium terminated surface phase, which extends the amount

of VOs over the whole phase. Another important aspect of the filling up of the Ti3d

bands caused by VOs is the reduction of the bandgap by filling up states in the VB

adjusting it closer to the oxygen evolution potential. Hence, we can combine the two

most desired attributes in photocatalysis, better band alignment and higher chemical

reactivity, in a surface phase which only modifies the very surface leaving the bulk

properties untouched.

On the other hand, surface passivation, the overall reduction of chemical reactivity of

a surface, plays an important role in engineering and physical chemistry and is used to

prevent surfaces from corrosion. Usually this is done with metal surfaces by growing a

thin oxide layer on top. In the case of optical sensors based on thin film TiO2 which

are already on market, passivation could be used to maintain the optical properties of

the film under ambient or even aqueous conditions. In section 4.1, we will present the

growth of an oxygen network on top of the TiO2 anatase surface significantly reducing

chemical reactivity which is investigated by STM and spectroscopy techniques. We

achieve this network growth by standard UHV preparation methods exposing the

crystal to excessive oxygen. The findings open new ways to reduce reactivity of the

TiO2 anatase (101) surface.

To further enhance PWS a detailed understanding of the interaction between single

water molecules and the TiO2 anatase (101) substrate is crucial. A certain level of

understanding has been achieved in the past using averaging techniques like X-ray

photoelectron spectroscopy (XPS) or infrared spectroscopy (IR spectroscopy). These

studies could show temperature dependences of water desorption and adsorption, the

influence of oxygen vacancies on the dissociation process, and so on [18, 19, 20, 21].

However, the photo dissociation of a single water molecule on TiO2 anatase (101)

cannot be investigated by these techniques. This results in a lack of understanding of

the water splitting process. For this, a direct imaging technique with chemical identifi-

cation on the atomic scale is needed but has been unprecedented for molecules on

semiconductors. Indeed, the chemical identification of the individual molecules is

critical due to the variety of adsorbate species on the anatase surface. We will present

in chapter 5 how the unique combination of the direct imaging technique STM with

inelastic tunneling spectroscopy (IETS) can be used to chemically identify molecular

and dissociated water on TiO2 anatase (101). The idea behind this technique, which

has been pioneered experimentally by W.Ho in the late 1990s [22, 23, 24], is the detec-

tion of molecular vibrations which can be used as fingerprints to identify different

molecules. We will first use STM-IETS on the well studied CO on Cu(100) system

to optimize our settings. Following, we will present how STM-IETS can be used to
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identify the water bending and stretching modes of individual water molecules on

the TiO2 anatase surface. This opens a new path towards investigating light-induced

water splitting on the molecular scale, since now it is possible to identify the reaction

products, which first steps will be discussed in chapter 6.

Since water is ubiquitous in ambient atmosphere the water monolayer interaction

with the TiO2 surface has far reaching consequences in photoelectrochemical cells

[25] and PWS. Hence, a lot of research has been dedicated to identify the adsorption

state and structure of the water monolayer on the different TiO2 polymorphs. How-

ever, on anatase (101), it is not yet clear if a water monolayer adsorbs molecularly or

dissociated [26, 21, 20, 19]. We will present in section 5.3.2 our findings of a globally

ordered water monolayer consisting purely our of molecular H2O on the anatase (101)

surface. The structure of the monolayer is investigated by STM in combination with

IETS and DFT calculations. The results obtained in this section will be a step closer to

understanding the water monolayer adsorption on anatase (101).

In summary, this thesis will introduce the technical background for the tools used

throughout the thesis in chapter 2. After a general introduction of TiO2 anatase (101)

and the importance of VOs for the atomic structure of the terrace as well as step

edges in chapter 3, we will discuss the engineering of surface properties of the anatase

crystal in detail in chapter 4. The water adsorption on TiO2 anatase (101) is subject in

chapter 5. The thesis will conclude and give an outlook in chapter 6.
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2 Scanning Tunneling Microscopy (STM)
and Spectroscopy (STS)

The invention of the scanning tunneling microscopy (STM) by G. Binnig and H. Rohrer

in 1982 revolutionized the field of nanotechnology due to its ability to routinely resolve

individual atoms and molecules [14, 15, 16]. This pioneering work was awarded

with the Nobel prize in 1986. Its versatility allowed scientists not only to resolve

topographic features but also to manipulate single atoms and create unprecedented

nanostructures, gain insights into electronic and magnetic properties, distinguish

individual molecules due to their chemical fingerprint, and many more.

The working principle of the STM is shown in figure 2.1. It is based on the quantum

mechanical tunneling effect which allows electrons to tunnel through a potential

barrier which energy is higher than that of the electron [27]. If now a small negative

bias voltage is applied to the sample, electrons can tunnel from filled states in the tip

into empty states of the sample resulting in a small tunneling current in the range

of 10−9 A. In order to detect these low currents a current amplifier is used. Since the

tunneling current is exponentially dependent on the tip-sample distance (see equation

2.4) already small changes in the topography down to 10−12 m can be detected.

The STM has two different operation modes. In constant current, a feedback controller

maintains the current by regulating the tip-sample distance through a piezoelectric

transducer that is attached to the tip. The tip then scans over the surface and changes

in the z-position of the tip are simultaneously recorded to produce topographic images.

In constant height, the feedback loop is switched off and the tip is kept at a constant

height while it scans the surface. Here, the origin for the contrast are the recorded

changes in the tunneling current. This mode can only be used on flat surfaces, since

strong variations in the surface height may result in tip crashes into the sample. In the

following the theoretical background and the experimental system will be presented.
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Figure 2.1: Working Principle of the STM. a, Schematic drawing of the STM setup with
applied bias voltage VB on the sample. The detected current or tip position can be
used to display a topographic image of the sample. b, Energy diagram of the tunneling
process in the STM. Electrons can tunnel e.g. from occupied tip states to unoccupied
sample states when VB is applied.

2.1 Scanning Tunneling Microscopy

Although the tunneling effect was already observed in 1897 by Robert Williams Wood

when he was investigating field emission of electrons [28], it took another 30 years

until G. Wentzel, H. A. Kramers and L. N. Brillouin set the base to describe this effect

with their famous Wentzel-Kramers-Brillouin (WKB)-approximation [29, 30, 31].

As described before, the tunnel effect allows electrons to penetrate a barrier although

the energy E of the electron is smaller than the potential barrier height U. Due to the

particle-wave dualism the electron can be described as a wavefunction which has to

fulfill the Schrödinger equation:

∂2
zψ(z)−κ2(z)ψ(z) = 0 (2.1)

with κ(z) =
√

2m
ħ2 (U (z)−E). Here, ħ= h

2π is the Planck constant, E and m the energy

and mass of the electron and U (z) is the potential barrier in z-direction (tip sample

direction).

The solution to equation 2.1 can be split into three different regions. In the tip and the

sample region, where E >U , the solution is:

ψ(z) =ψ(0)e±i k(z)z (2.2)

with k(z) =
√

2m
ħ2 (E −U (z)). In the classically forbidden region in between tip and

sample, i.e. inside the barrier, the solution is:

ψ(z) =ψ(0)e±κz (2.3)
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2.1. Scanning Tunneling Microscopy

Figure 2.2: Schematic of a one-dimensional quantum mechanical tunnel junction.
Due to the wave-particle dualism the tunneling electrons can be described as wave-
functions that need to fullfill the Schrödinger equation in the different areas.

This wavefunction describes an electron tunnelling through the barrier in the positive

and negative z-direction. Due to the exponential, the wavefunction decays in the

barrier but the probability density to find an electron, which is the absolute square of

the wavefunction |ψ(0)|2e−2κz , is non-zero and thus, the electron can tunnel through.

As depicted in figure 2.2 the workfunction Φ is the minimum amount of energy re-

quired to excite an electron from a metal substrate to the vacuum level. In the following

we assume that the workfunctions of the tip and the sample are equal and that the po-

tential U is equal to the vacuum level which results in U (z)−E =Φ=ΦT = 1
2 (ΦT +ΦS).

If we now apply a small bias voltage (E ¿Φ) to the tip, electrons close to the Fermi

level have the possibility to tunnel into empty states of the sample. This results in a

current which can be described using the transmission probability T , which links the

incoming and outgoing current:

I ∝ T = I (z)

I (0)
= e−2κz (2.4)

The analytical description of the transmission probability was first presented by J.

Bardeen in 1961 [32]. In his approach Bardeen investigated a planar tunnel junction

with two metal electrodes seperated by a vacuum barrier. The electrodes were hereby

far away from each other so that the electron wavefunctions of each of the electrodes

can freely decay into the vacuum. The individual solutions are

ψ=ψu,v e−i Eu,v t/ħ (2.5)

Bringing both electrodes together the solution of the combined Schrödinger equation
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is

ψ=ψue−i Eu t/ħ+
∞∑

v=1
cv (t )ψv e−i Ev t/ħ (2.6)

and has a probability to transfer a state from one electrode into the other. In the elastic

tunneling regime the energy of the tunnelling electron in its initial and final state is

equal Eu = Ev . The inelastic case (Eu 6= Ev ) will be discussed later in section 2.2. With

the approximation that two sets of wavefunctions are orthogonal
∫
ψ∗

uψv d 3~r ≈ 0 we

insert the solution into the Schrödinger equation and define the transmission matrix

element to be

Muv =
∫
ψuU2ψ

∗
v d 3~r (2.7)

with U2 being the potential of electrode 2. The tunneling current can now be described

as

I = 2πe2

ħ |Muv |2ρ2(EF )ρ1(EF ) (2.8)

Rewriting the transmission matrix element by evaluating a surface integral of the two

free electron wavefunctions at the surface of the separation, it follows

Muv = ħ
2π

∫ (
ψu

∂ψ∗
v

∂z
−ψ∗

v
∂ψu

∂z

)
d xd y (2.9)

Interestingly, the potential barrier doesn’t play a role in the tunneling matrix element.

Introducing this matrix element into 2.8 and approximating the Fermi distribution

function to be a step function at low temperatures, it yields for the current at low bias

voltages:

I = 4πe

ħ
∫ eVB

0
ρ2(EF −eVB +ε)ρ1(EF +ε)|Muv |2dε (2.10)

Assuming that the magnitude of the matrix element doesn’t change in the range of the

bias voltage that is considered, the tunnel current is a convolution of the density of

states (DOS) of both planar metals.

In the case of STM electrons don’t tunnel anymore between two planar metal junctions,

since a tip is scanning the surface. In order to circumvent this challenge J. Tersoff and

D.R. Hamann proposed their still widely applied Tersoff-Hamann model [33]. In this

model the tip is a locally spherical potential well with a radius R, a center position

~r0, and the nearest distance to the surface d . The matrix element from 2.9 can be

evaluated for a s-wave tip to

Muv = ħ2

2m
4πκ−1Ω−1/2

2 κReκRψv (~r0) → M ∝ψ(~r0) (2.11)

withΩ2 as the tip volume. If the DOS of the tip (ρ2) is constant in the probed energy
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range, we can take it out of the integral in 2.10 and it yields for the current

I ∝ ρ2|ψ(~r0)|2
∫ eVB

0
ρ1(EF +ε)dε= ρ2

∫ eVB

0
ρ1(EF +ε,~r0)dε (2.12)

This equation shows that the tunneling current is proportional to the integral of the

sample local density of states (LDOS) at an energy eVB at the center position ~r0 of the

tip. The derivation of equation 2.12 with respect to the voltage leads to

d I

dV
∝ ρ1(EF +ε,~r0) (2.13)

This equation is essential to the STM since it allows to get directly the DOS of the

investigated system. Commonly, to have a better signal-to-noise ratio, a lock-in

technique is used to modulate the bias voltage with a small ac-voltage in the order

of a few mV at a certain frequency (≈ 500 Hz) and then to detect the differential

conductance at the selected frequency. With this technique it is possible to resolve

individual molecular orbitals, gain information about relative changes in the bandgap,

probe surface states, and many more.

2.2 Inelastic Tunneling Spectroscopy

By introducing molecules (CH3(CH2)COOH and CH3COOH) into a metal-metal oxide-

metal (Al-Al2O3-Pb) tunnel junction, R.C. Jaklevic and J. Lambe found peaks in the sec-

ond derivative of the tunneling current which were not present without the molecules

[34]. By substituting the hydrogen of these molecules with its isotope deuterium, the

energies of the features redshifts, which is known as the isotope effect. Hence, these

features could be linked to the vibrational states of the introduced molecules. The

frequency of the vibration can be described approximately with

fH,D =
p

k

2π

√
mH,D +mC

mH,DmC
(2.14)

Since the chemical bonds of the molecules should be the same in the normal and the

deuterated version the spring constant k is also the same in both cases. Due to the

increased mass of the deuterium (mD≈ 2·mH) the frequency shifts to approximately

3/4 of the frequency of the undeuterated molecule (fD≈ 3/4· fH) [35]. In their research,

Jaklevic and Lambe saw a shift from 360 mV to 275 mV which qualitatively agrees to

this theory. The vibrational states are interesting since they allow direct chemical iden-

tification of the molecules which is used in Raman spectroscopy, electron energy loss

spectroscopy (EELS) and IR spectroscopy. The advantage of this technique compared
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to EELS or IR spectroscopy is that only as few as 109 molecules are needed to give a

reasonable spectrum and the ability to detect certain weak or even forbidden optical

transitions [36, 37].

Figure 2.3: Working Principle of STM-IETS a, Energy level diagram showing if the
applied bias exceeds the vibrational energy a new inelastic tunneling channel is
opened. This leads to an increase in the conductance at the bias voltage corresponding
to the vibrational energy, which can be seen as an increase of the slope in the I-V- (b),
a step in the dI/dV-V- (c) and a peak in the d2I/dV2-V-curve (d).

The adaptation of the inelastic tunneling spectroscopy (IETS) to the STM for the

chemical identification of single molecules was first predicted theoretically in the late

1980s [38, 39, 40]. These studies not only present a fundamental theoretical model

but also predict the inelastic tunneling contribution to be in the order of 0.1-1% of

the total current. This lead to the pioneering experimental work in the group of W.

Ho in the late 1990s [22, 23, 24] which showed for the first time that it was possible to

obtain molecular vibrations of singly adsorbed molecules on metal surfaces and thus,

chemical identify and distinguish different molecular species. Additionally, it also

allowed the imaging of molecular structure and chemical bonding [41]. In general,

long data acquiration times are used to get a reasonable singal-to-noise ratio (10-100

minutes per spectrum). This was only possible due to the advances in mechanical

stability and the use of cryogenic temperatures due to the low IETS signal and already

small conductance changes would smear out the signal. There are two techniques

to obtain the second derivative of the current by either directly recording the second

harmonic of the lock-in frequency or by mathematical derivation of the differential
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conductance. The latter we will use in the following. The schematic of the work-

ing principle of STM-IETS is depicted in fig. 2.3. Electrons can tunnel inelastically

from occupied states in the tip to unoccupied states in the sample if the applied bias

voltage is equal or above the energy needed to excite a molecular vibration (a,red).

This excitation can occur by two different mechanisms: 1. Dipole excitation in which

the field produced by the tunneling electron and the transition dipole moment of

the vibrational mode interact or by 2. Resonant excitation in which the tunneling

electron is shortly trapped in an unoccupied or partially occupied molecular orbital

[42, 43]. In the metal-molecule-metal tunnel junction, the inelastic tunneling can

occur independent of sign of the applied voltage. This opens another channel for the

electrons to tunnel which enhances the conductance and can be seen as an increase

in the slope in the I-V-curve (b), a step in the dI/dV-V-curve (c) or as peaks in the

d2I/dV2-V-curve (d). The symmetry around the Fermi level for this system allows to

differentiate molecular vibrations from other tunneling contributions.

In general, the well-studied selection rule for the detection of vibration modes in

IR spectroscopy and Raman spectroscopy are different and hence, both techniques

are complementary [37]. Also in STM-IETS selection rules apply but are not as rig-

orous as in the other techniques, where some transitions are forbidden. Lorente et

al. presented a combined theoretical and experimental study identifying symmetry

related selection rules [44]. Investigating the symmetry of the projected density of

states (PDOS) at EF and of the vibrational mode lead to the conclusion that in order

to keep the matrix element 〈ψa |δν|ψλ〉, which creates the inelastic tunneling signal,

nonzero, both have to have the same symmetry (e.g. symmetric PDOS around EF and

symmetric vibrational mode).

The conventional use of noble metals as substrates in STM-IETS stems from the

smooth and substantial DOS in the energy region around EF , which is desirable to

be able to distinguish vibrational from other peaks. This is also the reason why this

technique has not yet been studied extensively for molecules on semiconducting

substrates. In order to have substantial DOS around EF the semiconducting substrate

has to be highly doped to provide states close to the Fermilevel resulting in a shift

of one of the bands. However, measureing the peaks in the bandgap is technically

challenging and thus, the symmetry around EF of the molecular vibration no longer

holds making it harder to differentiate between vibrational and electronic peaks.
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2.3 The Gate-STM

2.3.1 Precision Laboratory

All the STM measurements in this thesis were performed on the homebuilt Gate-

STM (GSTM). During this work, the GSTM was moved from the sixth floor into

the new precision laboratory of the Max Planck Institute for Solid State Research

in Stuttgart, Germany. This new building presents state of the art vibration isolation.

To achieve this level, vibration measurements were first performed on the campus to

determine the best area to build the building. Additional to the heavy fundament of

the measurement hall which is separated from the office and machining buildings,

the experimental setups are placed into electromagnetic and acoustic shielded boxes

on reinforced concrete blocks of a weight around 150 t (see figure 2.4a). These blocks

are further separated from the main fundament via air dampers. Taken all together

the vibrational level could be significantly reduced from the sixth floor (black curve in

figure 2.4b) to the precision laboratory (red curve) making this building a unique place

for high precision measurements, which was crucial to the performance of tunneling

spectroscopy used throughout this thesis. With this environment and assuming a

change of one order in magnitude for the tunneling current if the tip-sample distance

changes by 1 Å (see equation 2.4), we have a general stability of our STM of less than

0.8 pm.

Figure 2.4: Precision Laboratory of the Max Planck Institute of Solid State Research.
a, Example of one of the electric and machanical isolated boxes in which the STMs
are placed. b, Vibration level measurements of the precision laboratory (red) in
comparison to the 6th floor (black) and other laboratories.
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2.3.2 The Instrument

The GSTM, which can be seen in figure 2.5, is working under UHV condition which

requires the use of two chambers, a preparation (yellow) and a STM (red) chamber sep-

arated by a plate valve. The transfer of samples or tips between those chambers occurs

using a linear transfer manipulator. This manipulator is also equipped with a tube

through which it can be cooled either using pressurized air or liquid gases. This allows

the preparation of samples at low temperatures down to 100 K. Before measuring the

samples with the STM, samples and tips were prepared in the preparation chamber

after being introducing via a load lock from ambient condition. Therefore, the system

is equipped with an Argon ion sputter gun, gas leak valves and an annealing stage to

heat up samples to several hundred ◦C. Moreover, it is possible to deposite molecules

or metals using attached evaporators or the water leak valve. The detailed preparation

procedures for the noble metals and tips as well as for the TiO2 anatase (101) crystals

are described in section 2.3.3 and 3.1, respectively. To realize a good vacuum within

the chambers with a base pressure of 1×10−10 mbar, the system is equipped with a

membrane pump, three turbomolecular pumps and two ion getter pumps (IGPs). Dur-

ing operation all pumps except the IGPs were switched off to reduce the vibraitonal

noise level. In the STM chamber, the STM is cooled down to 5 K by a liquid helium

bath cryostat which results in an even lower base pressure of < 1×10−11 mbar since

it acts similar to a cryogenic pump. To ensure a low liquid helium consumption an

additional liquid nitrogen shield surrounds the cryostat. Further information about

the realization of the GSTM can be found in Ref. [45].

The STM head and helium bath cryostat are vibrationally decoupled from the liquid

nitrogen shield and the rest of the system by an upper air damping stage. The lower

damping stage used before the movement of the system to the precision laboratory

initially decoupled the whole system from the ground but was not anymore needed in

the new building due to the good vibration isolation of the concrete ground.

2.3.3 Tip and Noble Metal Crystal Preparation

Having a well-shaped and sharp metallic tip is a strong necessity while doing STM. For

all the measurements performed in this work, we used electrochemical etched Pt0.8-

Ir0.2 tips (Keysight Technologies, N9801A). We found these tips to be the most stable

while working on the metal oxide TiO2, since other tips like tungsten were oxidized

rapidly and thus, not usable anymore. The tips are placed inside a tip exchange stage

and introduced into the preparation chamber via the load lock. Subsequently the tips

are heated up using the filament of the sample annealing stage to remove residues

from the etching process (6 A, 15 mins). After the tip exchange, the new tip is prepared
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Chapter 2. Scanning Tunneling Microscopy (STM) and Spectroscopy (STS)

Figure 2.5: The Gate STM. a, The GSTM consists of two chambers, a preparation
(yellow) and a STM chamber (red) which are separated by a plate valve. The STM unit
is decoupled via an upper damping stage. Additionally, the system is equipped with a
water leak valve (blue) and a Laser system (purple,b).

by a combination of field emission (600 V, 25 µA) on a noble metal surface, using high

voltage pulses (7-10 V, 20-200 ms) and tip dips (1-10 nm). To characterize the quality

of the prepared tip, topographic and spectroscopic features (surface state at -0.5 V [46]

and image potential states [47]) of Au(111) are used. Since the tip preparation is done

on the noble metal crystals, we constantly had to switch between our samples which

resulted in contaminations of the samples since they were warming up when taken

out of the STM. To circumvent this, we designed a sample garage shown in figure 2.6

in the 5 K cryostat of the STM to be able to switch between the TiO2 and noble metal

samples without warming up the individual crystals.

Figure 2.6: Design of the new sample garage in the STM.

The noble metal crystals (Cu(100) and Au(111), MaTecK GmbH) employed in this thesis

are hat-shaped and 7 mm in diameter. The crystals were aligned with an accuracy of

< 0.1◦ and mechanically polished. The preparation of the crystals in the preparation
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2.3. The Gate-STM

chamber consists of repeated cycles of annealing (800 K, 10-15 minutes) and Ar+

ion sputtering (1 kV ion energy, 60 ◦ grazing incidence, 10 minutes). This resulted

in flat and clean surfaces with terrace sizes of up to 100 nm which are separated by

monoatomic steps.

2.3.4 Integration of a Laser System

To investigate the light response of water on TiO2 anatase (101) system, which is

further discussed in the outlook chapter 6, a Laser system (Omicron LightHUB) was

purchased. As a first requirement to be able to shine in light into the tip-sample

junction the window in our UHV STM chamber had to be exchanged, since it was not

ultraviolett (UV) transparent. We chose fused silica (Pfeiffer Vacuum) due to its high

transmission in the UV and good stability at a wider temperature range (Fig. 2.7b).

Moreover, it was necessary to align the beam direction with the built-in window. For

this we changed the flange holding the window resulting in a lower reflection since

the laser beam hits the window perpendicular (Fig. 2.7a).

We chose this particular Laser system because it allows us the exchange and modifi-

cation of the laser sources in an easy way. We carefully chose the wavelengths to be

at 355 and 405 nm, which can be changed in a fast manner during operation. The

wavelengths were chosen calculating the energy of the photons comparing to the

bandgap of TiO2 anatase (101). Since the bandgap of anatase is 3.2 eV, we wanted to

obtain a laser source with high energy photons that can promote electrons from the

VB to the CB. Hence, we chose 355 nm (3.5 eV) for one of the laser sources. On the

other hand as a reference but also since we create a bandgap reduced phase in section

4.2, we wanted to have a second laser source which is just below the energy of the

bandgap (405 nm, 3.06 eV). With this we are able to excite electrons from the VB to

the CB in the bandgap reduced phase but not in the normal oxygen-terminated one.

More details about these measurements are given in the outlook chapter 6.

After attaching the laser to our frame, we guide the light through an optical fiber into

our camera system outside of the vacuum chamber. Since the fiber is fed in on the

side of the camber system which can be seen in figure 2.5b (blue cable), we introduced

a beam splitter at this position. This allows us to simultaneously use the laser with

our charged-couled device (CCD) camera (EHD Imaging GmbH, Zoom 125 system,

UK1156M CCD camera [45]). The use of our camera system to feed in light into the

chamber has the advantage that we can position the light in x-,y- and z-direction and

focus the beam onto the sample.
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Figure 2.7: New flange and optical transmission of the new window. a, Design of a
new flange to support the new fused silica window as well as bringing the surface
normal of the window in line with the beam direction to reduce potential reflections.
b, Optical transmision spectrum of fused silica. In the wavelength range of interest
around 355 and 405 nm the transmission is >95%.
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3 Titanium Dioxide (TiO2)∗

TiO2 is the natural oxide of titanium and has widespread applications in industry

due to its non-toxicity, high abundance and wide-bandgap which results in a yearly

production of around 5 million tonnes [49]. Recent market analysis even predicts that

the global TiO2 market will experience a further growth leading to a production of

up to 7.5 million tonnes in 2019. 80% of the produced TiO2 is used as pigments in

varnishes and paints due to its high refractive index [50]. An additional 8% is produced

for the use in cosmetic or food products. The remaining 12% are used in technical

applications like pure titanium, catalysis, conductors or chemical intermediates. TiO2

is produced using mainly the mineral ilmenite (FeTiO3) or directly using rutile TiO2

ores.

Due to the high relevance in industry TiO2 belongs to the most studied metal oxides.

A main driving force for surface studies is the fundamental understanding to improve

catalytic reactions on metal oxides. TiO2 has thereby served as a model system for

heterogeneous catalysts using metal clusters. Although first studies by Haruta et al.

on Au clusters on TiO2 and other metal oxides investigating the oxidation of CO to

CO2 were already done in the late 1980’s [51, 52, 53, 54, 55, 56, 57, 58] there is still a

strong and active research trying to enhance catalytic reactions [59, 60].

Another strong field of surface research is the performance of TiO2 under light. In

photocatalysis TiO2 received a lot of attention due to the pioneering work of Fujishima

and Honda in 1972 who found that TiO2 can photocatalytically split water without

using an external bias [5]. This part of research will be further discussed in chapter

5. A lot of work has also been dedicated to the photo-assisted degradation of organic

molecules for self-cleaning purposes. In these devices, TiO2 creates electron-hole

pairs when enlightened with UV photons leading to a formation of radicals when re-

acting with adsorbants like water. These radicals can then interact with the polutants

degrading and thus, cleaning the surface or surrounding. This research has found a

∗Parts of this chapter are based on publication #4 [48] of the CV publication list.
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number of applications ranging from cleaning of wastewaters [61] over desinfection

of surfaces [62, 63] to self-cleaning coatings of windshields and windows [64, 65].

Modern photovoltaic applications like dye-sensitized solar cells (DSSCs) [4] or the

highly emerging perovskite solar cells [6, 7, 8] use mesoporous TiO2 as support mate-

rial due to its band alignment, stability and high charge carrier mobility. As explained

in the introduction in DSSCs, dye molecules are adsorbed on TiO2 harvesting in-

coming photons and exciting electrons in higher energy orbitals. These hot carriers

are injected into the CB of TiO2 and the dye molecule is subsequently regenerated

by a redox electrolyte. In perovskite solar cells the dye molecules are replaced by

perovskites (ABX3, e.g. CH3NH3PbI3) resulting in record efficiencies of over 20% [9]

making this technique industrial relevant with first commercially available modules

being potentially released in 2017 [10].

For all application areas, the fundamental understanding of the TiO2 anatase (101)

structure is of detrimental importance. Especially the influence of VOs and step edges

for the catalytic activity of the anatase surface is a field of strong interest [13, 66, 67].

These studies could show that VOs are catalytic active centers, which will be described

more in detail in section 3.1.2. Still, the origin of higher chemical reactivity of the

[-111] step edge on anatase (101) remained unclear. In the following chapter, we

will present after the introduction of the surface structures of the different TiO2 poly-

morphs (anatase and rutile), a new step edge model of the high reactive edge on

anatase (101) explaining the origin of the higher chemical reactivity to come from

embedded VOs.

Anatase vs Rutile

TiO2 has three natural occuring crystal structures rutile, anatase and brookite, whereas

rutile is the thermodynamical most stable and studied structure. Since brookite is

technologically irrelevant, we will focus on the rutile and anatase crystal structures.

Both crystal structures consist of distorted octahedral building blocks in which six

oxygen atoms surround one titanium atom (Fig. 3.1). In rutile the octahedra are little

distorted and stack with one shared corner alternating by 90◦. The unit cell is body-

centred tetragonal (a = b = 4.584 Å, c = 2.953 Å [13]) with 2 apical Ti-O bonding lengths

of 1.98 Å and 4 equitorial Ti-O bonding lenghts of 1.95 Å. In anatase the distortion of

the octahedron is significant and stacking occurs without alternation of the building

blocks. This results in a unit cell with 4 titanium and 8 oxygen atoms with unit cell

parameters of a = b = 3.782 Å and c = 9.502 Å and slightly different Ti-O bonding lengths

(apical: 1.97 Å, equitorial: 1.94 Å). In both configuration the oxygens are threefold

coordinated to titanium atoms in the bulk.

Although being metastable, anatase is even more technologically relevant than rutile,
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since TiO2 crystals with a size below 11 nm coalesce into the anatase termination [12].

This is due to the fact that the thermodynamically most stable surface termination

of anatase - the (101) surface (Figure 3.1 f) - has even a lower surface energy than

the lowest surface energy termination for rutile - the (110) surface (Figure 3.1 c). The

rutile (110) surface consists of five- and sixfold coordinated titanium atoms which are

connected via two- and threefold coordinated oxygen atoms which is similar to the

anatase (101) surface.

Figure 3.1: Rutile and Anatase. a,d, Unit cell of TiO2 rutile and anatase. b,e, Stacking
of the octahedral building blocks in the different terminations. c,f, Balls-and-stick
model for rutile (110) and anatase (101).

Being the metastable polymorph, anatase transforms to rutile at high temperatures

giving rise to challenges preparing atomically clean and flat crystals of sufficient size

and quality which are needed to study anatase with surface techniques like STM

[13]. The transistion temperature in air starts around 600 ◦C [68] but ranges from

400-1200 ◦C have been reported depending on material properties, atmosphere and

particle sizes [69, 70]. The transition is reconstructive which means that breaking and

reforming of bonds are involved in the process leaving this transition to be irreversible

and time-dependent.

The bandgap of both polymorphs is 3.03 and 3.2 eV for rutile and anatase, respectively.

Due to the larger bandgap and a longer lifetime of electron-hole pairs, photoexcited

charge carriers are separated more efficiently on the anatase termination resulting in

its superior photocatalytic performance over rutile [71, 72]. The relative alignment

of the bands in rutile and anatase is still controversial but recent results suggest that

anatase exhibits a higher work function than rutile [73]. When rutile and anatase is
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combined, which is done in the most common photocatalyst P-25, electrons (holes)

can be transferred from anatase (rutile) to rutile (anatase) and the powder exceeds the

photocatalytic efficiency of powders only consisting of one of the crystal structures

resulting in an even better charge carrier separation [73].

3.1 Preparation of Oxygen-Terminated Anatase

(101)

As described before, experimental studies on TiO2 anatase (101) are scarce due to the

challenges in the synthesis and surface preparation. To circumvent this, we employed

natural grown TiO2 anatase (101) crystals throughout the studies for this thesis. The

color of the crystals can be used as an indication for the amount of doping apparent in

the crystal ranging from isolating (transparent) to conductive (metallic opaque) [13].

We used metallic opaque colored crystals throughout this study which can be seen in

figure 3.2a. These single crystals are 4×4×(1.5-2) mm3 in size and were ordered from

SurfaceNet GmbH. It was not possible to use crystals with a bigger height of 2.5 mm

and more, since the quality of these crystals was usually insufficient. The single crys-

tals were cut along the (101) plane and subsequently polished resulting in a roughness

that was smaller than one lattice constant. We performed XPS, X-ray diffraction (XRD),

and resistance measurements to characterize the quality of the samples, which was

also subject in the previous thesis [45]. XPS was used to determine the amount of

impurities which were found to be lower than 1% for Al, Pb, Zn, Nb and Zr. These

impurities act as dopants and are needed to make the crystal conductive which is a

prerequisite to perform STM measurements. Due to the onset of the conduction band

minimum (CBM), we could conclude that the crystals are strongly n-doped. The XRD

data revealed that the crystal was cut precisely in the (101) direction and the resistance

measurements were performed to exclude that the crystals are isolating.

The TiO2 single crystal was mounted, cleaned with high-purity ethanol and intro-

duced into the preparation chamber via the load-lock. The crystals were prepared

by repeated cycles of vacuum annealing (920 K, 30 min) and Ar+ sputtering (1 kV, 10

min, 60◦ grazing incidence to the surface normal, 2 µA sample current) to achieve

atomically flat and clean surfaces. Since vacuum annealing via electron bombardment

desorbs oxygen [74] the surface becomes defective and non-stoichiometric. In order

to restore the stoichiometry the sample was annealed at elevated temperatures (670

K) in an oxygen environment (1 × 10−6, 30 min). The preparation is finished with a

final post-annealing step at 920 K for 30 minutes in a residual oxygen environment

(2-6 × 10−9) and subsequently the crystal is transferred into the 5 K STM. If the crystal

was still not in the desired status, the preparation was repeated.
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3.1. Preparation of Oxygen-Terminated Anatase (101)

3.1.1 Characterization of the Anatase (101) surface with

STM

Figure 3.2: Anatase TiO2 (101).
a, Empty-states topographic STM
image of the TiO2 (101) crys-
tal. The step edges of the ter-
races preferentially align along the
[010], [1̄11], and [111̄] crystallo-
graphic directions. The insert
shows the macroscopic TiO2 crys-
tal with a size of 4×4 mm. b, High-
resolution STM image of an in-
dividual island showing rows of
dumbbell shape protrusions rep-
resenting the Ti-O pairs. The in-
sert shows a DFT-based simulated
STM image using Tersoff-Haman
with overlaid unit cell in good
agreement with the experimental
data. c, STS on the pristine TiO2

surface reveals a featureless large
bandgap of 4 eV.
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In surface science the overall idea for using single crystals is to model the technological

relevant pigments with facet sizes of around 20 nm by preparing terraces of similar

sizes. This can be seen in figure 3.2a which shows an empty-state STM image of the

pristine TiO2 anatase (101) surface with trapezoidal-shaped terraces separated by

monoatomic steps. In general, imaging unoccupied states with the STM lead to better

results due to the n-doping of the TiO2 crystal bringing the CB close to the Fermi level.

Imaging the occupied states of anatase (101) holds challenges because the applied

voltage needs to be below -3 V which creates instabilities for the tip. The step edges

of the terraces preferentially align along the [010], [1̄11], and [111̄] crystallographic

directions. The individual white protrusions marked by black arrows in figure 3.2b can

be attributed to adsorbates. Since the CB (VB) is mainly governed by cationic Ti 3d

(O 2p) states, titanium (oxygen) atoms should be imaged as bright (dark) protrusions

in an empty-state STM image. However, the surface oxygen atom stands out of the

surface and is thus, closer to the tip which due to the high sensitivity in the tip-sample

distance of the STM could also lead to imaging of a bright protrusion. Figure 3.2c

shows a high-resolution image of the TiO2 surface resolving the anatase (101) structure,

which can be seen in the overlaid lattice. The dumbbell shaped protrusions which are

aligned along the [010] direction resemble the surface Ti5c-O2c pair resolving that both

titanium and oxygen are measured with a similar contrast. It was reported that surface

O2c should appear brighter than the Ti5c atoms in DFT-simulated and experimental

STM images [17]. This was not observed throughout our studies for both experimental

and DFT-based simulated STM images [48].

We performed STS on the pristine TiO2 anatase (101) surface which can be seen

in figure 3.2c. The tunneling spectrum reveals a featureless large bandgap of 4 eV

that is significantly higher than the value of 3.2 eV reported earlier in this chapter

3. This value is an overestimation due to some of the applied potential in the tip-

sample junction is dropped in the sample. This leads to a tip-induced band bending

in the surface region of the semiconductor resulting in a shift of the CBM(valence

band minimum (VBM)) to more positive (negative) bias voltages in the STS which is

common for semiconductors [75, 76, 77, 78].

3.1.2 Oxygen Vacancies

Defects play an important role in modifying physical and chemical properties of

metal oxides since defects act as adsorption and catalytic active sites for molecules.

The control of the defect concentration is important to increase efficiencies and

thus, is well studied [79, 80]. Among all defect sources, oxygen vacancies (VOs) are

an important source in metal oxides. VOs have a strong influence on the chemical

reactivity [48] and on photocatalytic and -physical properties [81, 82, 83]. In TiO2 when
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a VO is created, an unpaired electron is formed or the VO leaves the neighboring Ti in

an undercoordinated state (Ti4c ) changing the oxidation from Ti4+ to Ti3+ and filling

up the Ti3d band which results in the formation of bandgap states. This additional

reservoir of electrons can be used to enhance chemical reactivity or reducing the

bandgap [48]. However, on the anatase (101) surface, isolated VOs are usually not

stable and diffuse into subsurface layers away from the catalytically active sites only

creating traps for photoexcited charged carriers. Additionally, isolated VOs exhibit

repulsive interactions [66, 84, 85]. This limits the ability to modify the surface to

enhance chemical reactivity. Hence, the local modification of VO on TiO2 anatase

(101) has been a subject of study in recent years [66, 86]. In these studies STM has

been used to apply high electric fields (+5 V tip bias) to pull VOs to the surface and

study the cluster behaviour and show the important influence of the vacancies to

chemical reactions.

Step Edges

Step edges are representing one of the most common surface defects resulting from

the formation of terraces during the growth or preparation process. Similar to VOs,

step edges play an important role in improving catalytic performances also acting as

catalytically active sites. This is also one of the reasons why TiO2 anatase is used mostly

as nanoparticles since atoms at step edges account for approximately 15% of the total

amount of surface atoms for a particle of 3 nm in diameter [17]. Interestingly, TiO2 has

different chemical reactivities depending on the step edge direction which can be seen

in figure 3.2a and b, in which step edges along the [010] crystallographic direction have

little to none adsorbates, while the other step edge orientation have white protrusions

associated with adsorbents. Setvin et al. also presented that step edges along the

[-111] direction have a higher electron density using STM [67]. However, the origin of

the higher electron density was not clear using the proposed stoichiometric step edge

model from Ref. [17].

We investigated this issue by performing STS on the different step edge orientations

which can be seen in figure 3.3 [48]. The spectroscopic data taken on the flat terrace

(red) and the low reactive [010] direction (black) reveales the same featureless large

bandgap of 4 eV (CBM 0.5 V, VBM -3.5 V). When we perform STS on the high reactive

[-111] step edge we find a reduction of the bandgap by 2 eV (CBM 0.5 V, VBM -1.5 V)

due to the occurance of a bandgap state around -3 V. In collaboration with the group

of Feliciano Giustino from University of Oxford, England, DFT calculations indicated

that the additional feature arises from occupied Ti3d states similar to previous studies

on undercoordinated Ti4c states (Ti3+ states) [87, 88, 89, 90, 91]. When we simulated

STM images using the stoichiometric atomistic models from ref. [17] we were able

25



Chapter 3. Titanium Dioxide (TiO2)

Figure 3.3: Step edges of TiO2 anatase (101). a,d, High resolution STM topograph
showing the low reactive [010] and the high reactive [-111] step edge. b,e, Corre-
sponding DFT-based simulated STM images on the base of the theoretical models
presented in c and f. Different views on the non-stoichiometric [-111] step edge are
presented in i and j which significantly differ from the stoichiometric step edge model
in k. g, Experimental STS data obtained on the high reactive [-111] step edge reveals a
reduced bandgap due to the occurance of a bandgap state around -2.7 V which could
be attributed to Ti3+ states. h, DFT-based simulated spectroscopy, using the model
presented in f, can reproduce the bandgap states.

to reproduce the non-reactive [010] step edges but not the high reactive [-111] step

edge. Hence, we propose a new non-stoichiometric step model of the [-111] step edge

including VOs which can be seen in figure 3.3f. In this model we create one VO every

two Ti atoms in the top row leaving the edge Ti atoms undercoordinated. Subsequent

DFT-based STM simulated images (Fig. 3.3 e) agree nicely with our experimental data.

Additionally, simulating the STS data using DFT with a Hubbard parameter of 3.5 eV,

which represents an average of the range of parameters used in previous studies for

VOs in TiO2 [92, 93, 94], reproduces well the occurance of a bandgap state (Fig. 3.3 h).

Moreover, the calculated PDOS does not exhibit any gap states for the stoichiometric

[010] step edge. It is important to note that the bandgap in the DFT-based calculation

(2.2 eV) considerably underestimates the actual bandgap by 1 eV which is common for

semiconductors using DFT-based methods [95]. Furthermore, the bandgap state in

the simulation is split into two peaks which has been reported in previous theoretical
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studies of VOs in bulk TiO2 but is not resolved in our experiments [96]. Taken together,

we presented a new model for the [-111] step edge of TiO2 explaining its high reactivity

to origin from VOs. Hence, step edges are a way to control the amount of VOs on the

surface close to catalytically active sites opening new ways to improve TiO2-based

catalysis.
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4 Engineering the Surface Properties of
TiO2 Anatase (101)∗

After the introduction of the TiO2 anatase (101) structure in chapter 3 titanium diox-

ide (TiO2) anatase, we will focus in this chapter on engineering the surface properties

of anatase (101). As described before, TiO2 anatase (101) plays an important role

in various applications such as catalysis. Hence, considerable effort has been ded-

icated to engineer the surface properties of TiO2 influencing chemical reactivity or

the bandgap. Depending on the application an increase or decrease in the chemical

reactivity of the anatase surface is desired. For catalytic applications an increase

of the reactivity is wanted, since it directly improves the efficiency of these devices.

On the other hand, for sensors the chemical reactivity needs to be at a minimum

to improve longterm stability. In order to implement the surface modifications into

production, the procedures have to be reversible and economically cheap. This chap-

ter will present modifications of the TiO2 anatase (101) surface either reducing or

increasing the chemical reactivity by solely changing duration and temperatures of

the normal UHV surface cleaning procedure without additional material. Since in

both cases the modification only applies to the surface layer, the bulk properties of

TiO2 remain untouched. The tuning of the surface reactivity showcases the potential

of the TiO2 anatase surface possibly stimulating future research in this area.

The first part of this chapter will report on a new oxygen superstructure produced

on the TiO2 anatase (101) surface creating a low-reactive network also reducing the

overall roughness of the surface. The second part will present a new surface phase on

TiO2 anatase (101), the so-called Titanium-terminated surface phase, with a higher

chemical reactivity and reduced bandgap.

∗Parts of this chapter are based on publication #1 [97] and #4 [48] of the CV publication list.
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Chapter 4. Engineering the Surface Properties of TiO2 Anatase (101)

4.1 Oxygen Network

Figure 4.1: Network and its electronic characterization on TiO2 anatase (101). a, STM
image of a network formed on top of the TiO2 anatase surface. b, STM topograph
showing different network patches on top of a pristine TiO2 island. The amount
of adsorbates on the pristine terrace is substantially higher than on the networks
suggesting lower reactivity of the network. c, High-resolution STM image displaying
an individual small island with nearby adsorbates and the decoration of the step edges.
d, STS on top of the network (red) and the pristine surface (black) reveals the same
featureless large bandgap with no gap states. (scalebars: a = 10 nm; b = 5 nm; c = 1
nm)

Passivation of surfaces plays an important role in engineering material properties,

meaning the reduction of chemical reactivity. A common technique is the passivation

of metals using small metal oxides to prevent surface corrosion and maintain the bulk

properties. In the case of optical sensors based on thin film TiO2, which are already
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4.1. Oxygen Network

available on market (sglux GmbH), the surface properties have to be stable over time

and not transform or react with the surrounding. This raises the interest of passivation

layers on the TiO2 surface.

In general, to obtain a clean anatase (101) crystal when newly introduced, the prepa-

ration procedure presented in section 3.1 would be repeated multiple times. However,

taking a closer look on the surface after only a few preparation cycles at initially slightly

higher temperatures (700 instead of 650 °C for the first annealing steps), we find a new

mash-like network which is shown in figure 4.1a. A high-resolution STM topograph of

several network patches on the anatase (101) surface is shown in figure 4.1b. We find

that the surface of the network patches is substantially cleaner than the surrounding

anatase surface hinting that the network is chemically less reactive. Another indi-

cation for passivating the TiO2 anatase (101) surface is that the high reactive [-111]

step edges appear to have fewer adsorbates than before (white arrows) when prepar-

ing a clean anatase (101) surface (cf. figure 4.1c with section 3.1.2). This step edge

shows a stripe-like contrast suggesting decoration of the step edge by the adsorbates.

Considering that the step edges along the [-111] direction of the pristine surface are

covered with VOs, we believe that molecules which adsorb during preparation fill

out the vacancies on the step edges. Performing STS on the network (red) shown in

4.1d reveals the same featureless large bandgap equal to tunneling spectra performed

on clean TiO2 anatase (101) (black). Since there are no gap states appearing, we can

conclude together with the topographic images that this network is chemically less

reactive than the anatase surface.

The coverage of the networks range on different positions on the crystal from a few

percent of a monolayer to nearly a full monolayer coverage. It is interesting to note

that the growth of the networks occurs on the terraces and not the step edges which

we attribute to the covering of the high reactive VOs. When the coverage is further

increased to be close to a monolayer the network can even grow over the step edges of

the underlying anatase substrate. This smooths out the surface removing the usual

trapezoidal shaped islands of the TiO2 anatase (101) surface which can be seen in

figure 4.1a.

In order to determine the structure of this network we performed a Fourier trans-

form (FT) of the STM image which can be seen in figure 4.2a. The FT reveals that the

networks have a rhombic unit cell of 7.4 × 7.4 Å2 and a small angle of α= 83.5°. The

long diagonal is oriented along the [010] crystallographic direction of the anatase TiO2

(101) surface. Taking a atomically resolved STM image on a network patch next to a

pristine surface area (Fig. 4.2b) allows us to overlay the anatase lattice on the substrate

to determine the adsorption sites of the network. A schematic of this process is shown

in figure 4.2c. We find that the intersections of the network patch are located on top of

hollow sites in the anatase surface. Furthermore, each individual site of the rhombus
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Figure 4.2: Network structure on TiO2 anatase (101). a, FT of the image in figure 4.1a
revealing a rhombic structure with a unit cell of 7.4 × 7.4 Å2. b, High-resolution STM
image allows the identification of the network position with respect to the underlying
anatase lattice. c, Schematic representation of the network on top of the anatase
surface. The intersection fall into the hollow sites of the anatase lattice while the
individual sites of the rhombus contain one surface Ti5c (Marked 1-4). (scalebar: b = 1
nm)

contains exactly one surface Ti5c atom, which are labeled with 1-4.

We functionalized our tip by picking up one of the adsorbates which can be seen in

figure 4.3. In figure 4.3a the unfunctionalized tip displays the DOS of the network ho-

mogeneously with no change in electronic contrast. The functionalized tip, however,

reveals an electronic substructure which can be seen with enhanced contrast in the

insert of b (white border). It becomes prominent that indeed not the intersections are

the positions of the molecules but the individual sites of the rhombus. Furthermore,

the electronic structure has a little asymmetry which can be explained by the differ-

ence in the local surrounding of the molecules and the anatase lattice.

The insert in figure 4.3a shows an enhanced contrast of the black bordered area (white

border) displaying a grain boundary in the network. The different network patches are

shifted by the distance of two neighboring hollow site in the TiO2 anatase (101) lattice.

Since both lattices are connected, this might be a representation of error correction in

the networks. When we recorded voltage dependent STM images, the different scans

reveal that no additional states occur in the network or the grain boundary revealing

that the two networks behave chemically the same.

The isolated patch in figure 4.4 suggests that the network consists out of the adsorbates

present on the anatase surface since the edges of the network patch are decorated

with adsorbates that have the same feature size and appearance (blue arrows). The

adsorbate free edges also have bigger feature size than the inner network features

(yellow arrows). We predict that the networks grow by attaching the surrounding

adsorbate (green circles) in a first step and the subsequently incorporating them into
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Figure 4.3: Functionalized tip STM image of the network on TiO2 anatase (101). STM
topograph without (a) and with functionalized tip (b). The functionalization results in
an enchanced electronic resolution revealing the substructure of the network (insert
in b). The molecules are located in between the intersections. The insert in a displays
a grain boundary. (scalebars: a,b = 2 nm)

the network geometry. The second step introduces a change in the orientation of

the adsorbates resulting in a change of the DOS which finally ends in the network

formation.

Taken together and looking at our preparation, we propose the adsorbates forming

this network to be molecular oxygen, which we dosed in our preparation method. In

general, molecular oxygen appear as brigth features on the anatase surface and can

either adsorb in a (sub-)surface VO or on a surface Ti5c in the vicinity of subsurface
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Figure 4.4: Growth of a Network Patch on TiO2 Anatase (101). High-resolution STM
topograph reveals the growth of the network to be a two-step process. After attach-
ment of nearby adsorbates (green circles) onto the edges of the network (blue arrows)
the adsorbates get incorporated. The adsorbate free edges also have bigger feature
size than the inner network features (yellow arrows).

extrinsic donor atoms along the [010] direction [98]. Since the networks clearly grow

on top of the pristine anatase surface and not in the surface plane, the first option

can be neglected. Considering the use of a natural grown TiO2 anatase crystal the

occurance of extrinsic donors migrating to the subsurface is very likely. Moreover,

we showed that the network components are adsorbed on the sites of a rhombus.

As described earlier, the sites contain exactly one surface Ti5c atom onto which the

molecular oxygen could bind. If the amount of oxygen is increased, it then becomes

energetically more favorable for the oxygen molecule to rotate its orientation away

from the [010] crystallographic direction to form a network.

To confirm those assumption, we will proceed with XPS measurements of the net-

work to determine the network components to be oxygen excluding the growth of an

overlayer by metal impurities which are present in the TiO2 anatase crystal and can

migrate to the surface. Furthermore in collaboration with the theory group of Felician

Giustino, we will calculate the energetics behind the formation of the network as well

as the covering of molecular oxygen of the high reactive step edges.
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4.2 Titanium-Terminated Anatase (101)

A main drawback of TiO2 anatase (101) based photodevices is its large bandgap of

more than 3 eV allowing only UV-photons to be absorbed and form electron-hole

pairs that can further be separated to generate electricity or participate in a chemi-

cal reaction. This limits the overall efficiency of devices to maximal 4% of the total

incident solar energy. In order to make the use of TiO2 economically sound in pho-

tocatalysis a lot of effort has been dedicated to reduce the bandgap to the visible

using strategies based on ion implantation, doping, composite semiconductors, and

metal loading [99, 100, 101, 102, 103, 58, 104]. However, in general these modifica-

tions induce defects that act as recombination centers lowering the overall efficiency

and substitutional heteroatoms have a limited solubility [13]. A different approach is

the modification of the surface structure to introduce bandgap states which showed

success on the less technologically relevant rutile (001) surface reducing it by 0.4 eV

[105] and on the (011) [106] surface by 0.9 eV.

As already discussed in section 3.1.2 VOs are a source for enhanced chemical reactivity

being preferential adsorption (desorption) sites on the anatase surface but have the

tendancy to diffuse into subsurface layers. However, we found that VOs can be found

on steps in order to bring them to stabilize them on the surface, which gives one

explanation to the better photocatalytic properties for nanocrystals. Still the amount

of edge VOs are relatively low compared to the overall amount of surface atoms consid-

ering that only every second oxygen on the high reactive step edges is removed. Hence,

it would be desirable to modify the anatase surface in a way to increase the amount of

surface VOs and thus, reducing the bandgap and increasing the reactivity but keeping

the overall bulk properties of the crystal. The latter is of critical importance since only

the surface region (few nanometers in depth) generates photoexcited charge carriers

[71] and reduction of the bulk crystal leads to recombination centers reducing the

overall efficiency.

In the following we will present a modification of the TiO2 anatase (101) surface layer

which combines both desired attributes, a higher chemical reactivity and a bandgap

reduction to the visible.

4.2.1 Preparation of a New Surface Phase on TiO2 Anatase

(101)

The preparation procedure of the clean anatase (101) crystal leading to the oxygen

termination was already presented in section 3.1. We tweaked our UHV prepara-

tion procedure to first anneal the crystal to 920 K for 20 min in a maximum residual

pressure of 2.0 × 10−9 mbar. Subsequently, we let the crystal cool down to below
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Figure 4.5: Reversible phase transitions of TiO2 anatase (101). a,b, STM images (Vs

= 2.0 V, I = 0.1 nA, T = 5 K) showing the pristine oxygen-terminated TiO2 anatase
(101) surface. c, STM image after modifying the preparation procedure of the crystal
resulting in the creation of a new surface phase (blue overlay) coexisting with the
oxygen-terminated phase (red overlay). d, High-resolution STM image of an isolated
terrace of the new surface phase reveals different preferential orientations for the step
edges and a different DOS contrast compared to the oxygen termination. Furthermore,
annealing the sample in oxygen atmosphere returns the surface from the mixed state
into a pure oxygen terminated surface making this process fully reversible. (scalebars:
a,c = 20 nm, b,d = 1 nm)
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330 K and continued our preparation by Ar-ion sputtering at a pressure of about 6 ×
10−6 mbar for 10 minutes resulting in a sample current of 1.1 µA. We performed the

sputtering with a grazing incident angle of 20° to the surface plane. The annealing

and sputtering was repeated one more time. Following, the crystal was heated up to

920 K for 10 minutes under UHV conditions. Afterwards the chamber was backfilled

with molecular oxygen with a pressure of 8 × 10−7 mbar for 30 minutes followed by an

annealing in vacuum at a residual oxygen pressure ranging from 3.5 × 10−9 - 6 × 10−9

mbar. The sample temperature remained at 920 K for the whole procedure. When the

last annealing step was finished, the crystal was cooled down slowly (0.2 K/s) to room

temperature and transferred into the 5 K STM.

This preparation procedure lead to a modification of the surface from the pristine

oxygen-terminated TiO2 anatase (101) surface (figure 4.5a) to a new surface phase

(figure 4.5c). We overlaid the new surface phase with blue color to discriminate it

more easily from the oxygen termination, since both phases coexist. The transition to

the new phase could be reversed by anneling the sample in UHV for 10 minutes, in

oxygen atmosphere (8 × 10−7 mbar) for 30 minutes and in residual oxygen (3.5 × 10−9

mbar) for 20 minutes. This fully reversible procedure allows us to study the physical

and chemical properties of the new partially covered surface layer.

Figure 4.6: Distiguishing both surface phases. a, STM topograph showing an adjacent
patch of the new surface phase on an oxygen-terminated island. b, STM linescan
performed over 4 different steps along the line in a. The new surface phase is an
intermediate step with a step height of 3.0 Å to the lower and 1.5 Å to the higher
O-terminated terrace. c, Overlaid red dotted lines reveal an offset between the protru-
sions while going from the oxygen termination to the new surface phase. (scalebars: a
= 2 nm, b = 1 nm)

In contrast to the oxygen-terminated surface, this new surface phase shows a differ-

ent electronic contrast and reveals a high density of adsorbates. In addition, high-

resolution STM topographs in figure 4.5b and d reveal that the step edges of an island

of the new phase coalesce in different directions than in the oxygen-terminated

phase. The [11-1] direction is substituted by a new preferred crystallographic direc-
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tion, namely the [12-1] direction, in the new surface phase indicating a local change

of the bonding environment. This can also be seen in the different shape of the brigth

protrusions on the islands. While the oxygen termination shows the known dumbbell

shaped protrusions originating from the Ti-O pair, the features on the new surface

phase island are more round-shaped.

Additional methods to distinguish both phases are presented in figure 4.6. In figure

4.6a, a linescan over multiple oxygen-terminated islands with an adjacent patch (blue)

of the new surface phase is performed. Analyzing the linescan in figure 4.6b reveals

that the new surface phase patch is placed in between the steps with a height differ-

enct of 3 Å to the lower and 1.5 Å to the upper terrace. Figure 4.6c also depicts a patch

of the new surface phase adjacent to an oxygen-terminated island. The overlaid red

dotted lines show that there is a shift between the points of highest DOS between both

phases.

Bandgap Reduction

Figure 4.7: Electronic structure of new surface phase. a, Atomic resolution STM image
of a new surface phase patch embedded into an oxygen-terminated island. b, Top view
of a waterfall plot presenting 20 tunneling spectra obtained along the line from A to B
in a. Red areas resemble points of negligable conductance indicating the bandgap.
Spectra taken on the oxygen termination show a featureless large bandgap while
spectra obtained on the new surface phase present a gap state at around -3 V which
significantly reduces the bandgap by 2 eV. (scalebar = 1 nm)

To understand the origin and structure of this new surface phase, we perfomed STS.

Figure 4.7a presents a high-resolution STM topograph of a new surface phase patch

embedded in an oxygen-terminated island. 20 individual STS spectra were acquired

on a line over both phases from A to B. These 20 spectra are presented in a top-viewed
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waterfall plot in figure 4.7b. Note that the color indicates the dI/dV signal and thus,

is a sign of conductance. Hence, the red area corresponds to little to none conduc-

tance and is an indication for the bandgap. The first 4 spectra, starting from A, are

recorded on the oxygen-terminated surface and reveal the well-known featureless

large bandgap of around 4 eV (CBM 0.5 V, VBM -3.5 V). Following the spectroscopy

onto the new surface phase an additional bandgap states appears around -3 eV signif-

icantly reducing the bandgap to 2 eV (CBM 0.5 V, VBM -1.5 V). The reduction of this

value, even when tip-induced band bending is included, is significantly higher than

the ones presented in the previous section 4.2. Returning to the oxygen-terminated

surface at B, the gap state disappears again which concludes that this state is not a tip

artifact.

4.2.2 Theoretical Model of the Titanium-Terminated

Surface Phase

Summarizing our experimental observations:

• We prepared a new surface phase on the oxygen-terminated TiO2 anatase (101)

surface which can be fully reversed by annealing in oxygen atmosphere.

• The new surface phase exhibits a change in the local bonding configuration

which manifests in a change of preferential step edge orientations and the

change in DOS.

• The bandgap of the new surface phase is significantly reduced due to the appear-

ance of a gap state around -3 V which is very similar to the state occuring at the

high reactive step edge on the oxygen-terminated surface due to the decoration

of VOs.

Following these results we propose a structural model for this new surface phase which

is terminated by titanium atoms and can be seen in figure 4.8b. In contrast to the

conventional oxygen-terminated model in a, the titanium-terminated surface phase

lacks the outermost oxygen row resulting in a complete coverage of undercoordinated

Ti4c . The structure furthermore undergoes a relaxation, in which the O3c atoms relax

outwards by 0.3 Å. As described before on the oxygen-terminated surface, the Ti and

O atoms are depicted with similar intensity in STM. Since the outermost oxygen is

removed on the Ti-terminated surface, the bright features in the STM images become

more round and can now be attributed mostly to the Ti atoms, which can be seen in

DFT-based STM simulations in figure 4.8c. The simulation also explains the shift in the

points of highest DOS when crossing from the O-termination to the Ti-Termination
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Figure 4.8: Theoretical model of the titanium-terminated surface phase. a,b, Theoret-
ical balls-and-sticks model of the oxygen- and the new titanium-terminated surface
phase which is created upon removal of the outermost oxygen row resulting in under-
coordinated surface Ti atoms. c, DFT-based STM simulation of the both phases with
an overlaid unit cell. Due to the removal of oxygen the protrusions shift and change
from a dumbbell to a more round configuration. d, Ab initio thermodynamic stability
calculation of both phases at 900 K versus the Hubbard parameter U revealing that the
Ti-termination can be stable for high values of U . e, Experimental STS performed on
different positions of the two phases showing strong similarity between the VO deco-
rated [-111] step edge of the oxygen termination and the oxygen depleted titanium
termination. f, DFT-based simulations of the electronic structure of the different
phases showing good agreement with the experimental data in e. (scalebar = 0.2 Å)

indicated by the red dotted line.

Figure 4.8e shows the experimental STS data obtained on different areas of the oxygen-

and titanium terminated surface. The red and black spectra are taken on the low-

reactive terrace and the [010] step edge showing again the large featureless bandgap.

The spectra taken independent of position on the Ti-terminated surface (blue and

teal) and on the high-reactive [-111] step edge of the O-termination show the same

feature since both bandgap states occur from VOs supporting our theoretical model.

Using this model to simulate the tunneling spectra shown in figure 4.8f, we find a good

agreement to our experimental data.

Since the Ti-terminated surface phase is very reactive, we investigated the relative

stability of the two phases using ab initio thermodynamic calculations presented in

figure 4.8d. The graph represents a phase diagram at 900 K with respect to the oxygen

partial pressure and the Hubbard parameter U . For high values of the Hubbard
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parameter (U above 6.5 eV) the Ti-terminated surface phase is more stable under

the experimental conditions (black dotted line). This value is relatively high but has

already been reported in literature [107]. More information about computational

details can be found in the method and supplementary information section of ref.

[48]. Furthermore we find experimentally that the Ti-terminated phase is stable up to

770 K in vacuum making this phase an interesting candidate for further studies.

4.3 Conclusion and Outlook

In summary, we found that different treatments of the TiO2 anatase (101) crystal can

lead to strong surface modifications changing the reactivity and bandgap. In the first

part by exposing the crystal to excessive oxygen at 400 K, we were able to initiate the

formation of an oxygen network growing even over step edges reducing the overall

roughness of the anatase surface. We found this network to be less chemical reactive

than the anatase surface. Moreover, due to the excessive oxygen also the VOs of the

high reactive step edges are covered reducing the global reactivity even further. This

makes the oxygen network an interesting candidate to passivate the anatase surface

from adsorbates maintaining its electronic properties in different conditions. Further-

more, the network could be used due to its porousity for templated adsorption which

has been already shown for molecular oxygen networks for adsorption of ammonia

on Pt(111) [108].

Changing the preparation method, we could form a new surface phase which is

Ti-terminated by removing the outermost oxygen row. This results in undercoordi-

nated surface Ti atoms that increase the chemical reactivity and substantially reduce

the bandgap of the surface layer to absorb light in the visible maintaining the bulk

properties. This unique combination of the Ti-terminated surface phase opens new

possibilities in photovoltaic and -catalytic applications.
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5 Water on TiO2 Anatase (101)∗

Water on TiO2 anatase (101) is of enourmous interest to the surface science com-

munity due to the broad range of applications ranging from photocatalytic water-

splitting (PWS) to self-cleaning coatings. Although numerous applications implicate

the interaction of water with TiO2 anatase, the underlying physical and chemical

properties of this interaction remain unclear. In PWS the photo-dissociation of an in-

dividual water molecule on TiO2 anatase (101), the common system in water-splitting

devices, has never been observed using a real space imaging technique due to the lack

of chemical identification on the single molecular level for this system. Real space

imaging is important to disentangle adsorption and the environment of an individual

molecule from the actual dissociation process. Not only from a fundamental point of

view but also to enhance efficiencies of applications, this presents a very important

observation which will have strong implications.

In the following chapter, we will present our solutions to the challenges described

before using the unique combination of STM and IETS. In section 5.1, we will intro-

duce this technique chemically identifying CO on Cu(100). Following, section 5.2 we

will discuss the observation of molecular fingerprints of water and its components on

the TiO2 anatase (101) surface allowing the individual labeling. The last part of the

chapter will present a new structure of an ordered water monolayer on TiO2 anatase

(101) contributing to the discussion of the adsorption of water of TiO2.

5.1 IETS on CO on Cu(100)

As described in the method section 2.2 the unique combination of scanning tunnel-

ing microscopy (STM) and inelastic tunneling spectroscopy (IETS) allows to obtain

chemical information on the single molecular level. In order to use this technique for

∗Parts of this chapter are based on publication #2 [109] and #3 [110] of the CV publication list.
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the characterisation of individual water molecules and hydroxyls on the TiO2 anatase

(101) surface, we first studied the well-known CO on Cu(100) system to calibrate our

measurements to have the highest possible resolution.

5.1.1 Preparation

We prepared our Cu(100) crystal by repeated cycles of annealing at 800 K for 10 min-

utes and Ar+ ion sputtering for 10 minutes (2 µA sputter current) as described in

section 2.3.3. This lead to a clean metal surface, which we also used to prepare and

characterize our tip. Subsequently, the sample was cooled down to 110 K using a liq-

uid nitrogen flow through the manipulator, while we dosed carbon monoxide inside

our preparation chamber at a pressure of 10−7 mbar for 10 seconds (1 Langmuir).

To prevent contamination, the IGPs were turned off during the dosing and only the

turbomolecular pumps were operating. Afterwards, the sample was introduced into

the STM.

Figure 5.1: Adsorption of CO on Cu(100). a, STM topograph of Cu(100) with adsorbed
CO molecules (black). b,c, High-resolution STM image combined with a linescan over
the molecule shows the round feature size of the CO molecule to be around 1.2 nm in
diameter and 30 pm in height. (scalebars: a = 2 nm, b = 1nm)

This preparation leads to adsorption of CO molecules on the metal surface as pre-

sented in figure 5.1a. The constant current image of a single CO molecule in figure 5.1b

shows that CO is measured as a dark round protrusion meaning that its DOS is lower

than the surrounding DOS of the metal. A linescan over the molecule is displayed in

figure 5.1c showing a depth of around 30 pm in good agreement with previous results

on other Cu surfaces [111].

CO binds typically with the carbon atom onto metal surfaces resulting in a vertical

adsorbtion. The adsorption can be described using the Blyholder model [112] - a

theoretical model extending the known Dewar-Chatt-Duncanson model [113, 114],
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which describes metal-ligand interactions using donation and back-donation chem-

ical mechanisms. The CO-metal bond is formed by a charge transfer from the 5σ

orbital of the CO into unoccupied metal orbitals and a backdonation from the metal d-

band to the empty 2π orbitals of the CO molecule. Depending on the metal substrate

CO can bind on atop (terminal), bridging, 3- and 4-fold hollow sites. For d metals

the atop site of the metal is the usual adsorption site which is also the case for CO on

Cu(100) [115, 116]. The metal-carbon bond is relatively weak and can be easily broken

at room temperature which then leads to desorption of CO. Hence, single molecular

studies of CO on Cu are generally carried out at low temperatures also explaining the

cooling down of the sample during preparation [117].

5.1.2 The Compressed Phase

CO can adsorb in different superstructures on Cu(100) depending on the concentra-

tion. If the amount of CO is half a monolayer it forms a c(2x2) sturcture where the CO

is located atop on every second Cu atom [118, 119, 120]. If this amount is exceeded,

CO can form a compressed phase, which was first described by Tracy [117]. These

structures were later identified as c(5
p

2×p
2)R45° and c(7

p
2×p

2)R45° using low

energy electron diffraction (LEED) and EELS [121, 122, 123]. Theses structures exhibit

domains of CO molecules which are seperated by ordered arrays of domain walls

in which the CO molecules are closely packed, which is shown in figure 5.2b. The

difference between the c(5
p

2×p
2)R45° and the c(7

p
2×p

2)R45° lies in the amount

of CO molecules per unit cell, which is 3 for the first case and 4 for the latter one [123].

A thourough analysis of the different positions of the individual CO molecules on

the Cu surface was done by Thamankar using STM and DFT [124]. In their study it

was shown that the structure relaxes by molecular tilting and bending shifting the

adsorption of some CO molecules to be non terminal.

We prepared the c(7
p

2×p
2)R45° CO superstructure on Cu(100) using a longer du-

ration and higher pressure while dosing the CO (100 Langmuir: 5·10−7 mbar for 200

seconds). An STM topograph of the structure can be seen in figure 5.2a. As described

unit cells of 4 CO molecules with a c(2x2) structure are formed and separated by do-

main walls (white lines) of closed packed CO. The domains can sometimes be enlarged

to double the size which can be seen in figure 5.2b.

For CO on Cu(100), different vibrational modes can be obtained: a C-O stretch mode,

a CO-Cu stretch mode, and hindered rotation or translation modes [120]. The en-

ergy of these modes have been characterized by infrared-reflection absorption spec-

troscopy (IRRAS) [125] and also by STM-IETS [111]. To optimize our measurement

readout we focused on the hindered rotation mode with an energy of around 36 meV.

We obtain the inelastic tunneling signal by recording the differential conductance
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Figure 5.2: The c(7
p

2×p
2)R45° CO superstructure on Cu(100). a, STM overview of

the superstructure showing different domains of CO molecules separated by domain
walls (white lines). Atomic-resolved current (b) and d2I/dV2 (c) maps at the energy
of the hindered rotation (35.6 mV) revealing the substructure. The CO molecules at
the domain walls relax outwards and thus, do not adsorb on exactly terminal sites
of the Cu(100) lattice anymore. d, Differential conductance (upper) and the derived
spectrum (lower) on CO on Cu(100) showing the hindered rotation mode at 35.6 mV.
(scalebars: a = 2nm, b,c, = 1nm)

and then subsequent mathematical derivation. We carefully chose a modulation

voltage of 7 mV for our lock-in system and a measurement time of 15-30 minutes

to have reasonable signal to noise levels (integration time 300 ms, 5-10 repetitions).

Furthermore, we set the modulation frequency of the lock-in to 420 Hz which was the

frequency of minimal noise in our STM noise spectrum.

The differential conductance signal obtained on the compressed phase of CO is shown

in the upper part of figure 5.2d. As described in the theory section 2.2 the prominent

step-like features in the differential conductance can be attributed to vibrational

modes. To enhance visibility we performed the derivation of the differential conduc-

tance to end up with a spectrum of the d2I/dV2 signal in the lower part of figure 5.2d.

Note that in order to reduce the noise introduced during the derivation the d2I/dV2

spectrum is Gaussian smoothed 10 times. Due to the derivation the steps occur as

peaks and we can determine the peak positions. We found a significant peak at ±
35.6 mV ± 2.9 mV, which we identify as the hindered rotation mode of CO. We can

use this knowledge to set our bias voltage to 35.6 mV and simultaneously recorded

current and the d2I/dV2 signal. For this measurement we set the integration time of

our lock-in system to 10-30 ms and slow down our scan speed to match every pixel

with the integration time resulting in a measurement duration of 30-60 minutes. Using

this technique we can clearly see the positions of the CO atoms, since the vibrational

mode signal is the highest above the molecule. Hence, the substructure of the phase

with its domain walls is revealed (cf. figure 5.2c). It is possible to see the relaxation
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of the CO atoms in the domain wall away from each other in good agreement with

earlier studies [124]. In the following section we will use this knowledge and settings

to apply it to water molecules and hydroxyls on TiO2 anatase (101).

5.2 Identifying Water Molecules and Hydroxyls

via IETS

As already described in the introduction in chapter 1 lots of studies of the dissocia-

tion of water on TiO2 were performed using averaging techniques like photoelectron

spectroscopy (PES) or IR spectroscopy. These studies contributed to the overall un-

derstanding including that photoexcited charge carriers are separated more efficiently

on the anatase termination than on rutile and that oxygen vacancies are formed under

ultraviolet light [71, 72]. In particular, the physical and chemical properties of oxygen

vacancies and their effect on the surface reaction have been intensively studied [18].

However, the elementary steps of the photo dissociation of a single water molecule

on TiO2 anatase cannot be investigated by these ensemble measurement techniques.

This requires a direct imaging technique on the atomic scale, for which STM has

been proven to be an ideal tool. However, the key components of water splitting,

H2O and OH, appear too similar in STM to clearly label the individual species. So far,

this labeling in STM has been done using topographic data and the behavior of the

molecules in different electric fields or temperatures but remained ambiguous due to

different tip and sample conditions [126, 98, 127], which even lead to an erratum in

Science [128]. A labeling of the different molecules on TiO2 is crucial to understand

the photo-dissociation process and its products. In the following, we use the combi-

nation of STM and IETS to label individual water molecules and their components on

the semiconductor TiO2 anatase (101). In general, the use of this detection technique

is challenging on semiconductors due to the low DOS at the Fermi level reducing

the already small IETS signal even further. However, by using a highly n-doped natu-

rally grown TiO2 anatase (101) crystal, we create enough states around EF to detect

vibrational peaks of molecular and dissociated water on the anatase surface using

IETS. This result is supported by DFT calculations in collaboration with the group

of Feliciano Giustino and by investigating the isotope effect for molecular vibrations

using deuterated water and hydroxyls.

5.2.1 Preparation Method

To deposit water onto the anatase crystal, we introduced high ohmic destilled water (>

18 MΩ) in a cleaned kovar glass and attached it to our preparation chamber separated

47



Chapter 5. Water on TiO2 Anatase (101)

by a valve. We further cleaned the water using repeated freeze pumping cycles to

reduce the amount of other adsorbents on the TiO2 surface. In these cycles, the water

was frozen using a small liquid nitrogen dewar. Following, the lines and the test tube

connecting to a valve at the chamber were pumped externally by a turbomolecular

pump stand. When the pressure reached below 10−6 mbar, the valve towards the

pump stand was closed and the test tube was heated up until the water liquified. This

process was repeated at least 3 times.

After the preparation of an oxygen-terminated TiO2 anatase (101) surface using the

method presented in section 3.1, we cooled down the anatase sample to 120 K using a

constant liquid nitrogen flow through our manipulator. We backfilled our preparation

chamber with H2O for 10 seconds reaching a pressure of 10−9 mbar. Afterwards, the

sample was introduced to the STM. Since this preparation lead to ice formation,

which will be further discussed in section 5.3.1, we subsequently took out the sample

from the 5 K STM to let it warm up to room temperature and then reintroduce it into

the STM. This removed the physisorbed ice layer and weakly bonded molecules in

agreement with temperature programmed desorption (TPD) data which is presented

later in this chapter. We ended up with single random molecular adsorption which

can be seen in a STM image in figure 5.3a. Using this preparation, we hardly found

any aggregates on the terraces or the step edge indicating that the adsorbates are

immobile.

5.2.2 H2O and OH + H

The high-resolution STM image in figure 5.3b shows the individual molecules ad-

sorbed on the anatase (101) surface as dumbbell shaped protrusions of 0.9 nm in size.

Due to the atomic resolution, we find that the molecule adsorb on top of a Ti-O dimer

row with its center being atop of a surface Ti5c atom. By investigating the individual

protrusions we can find slight differences in the contrast. Mainly, we find two species,

a symmetric and an asymmetric dumbbell shaped protrusion which is shown in figure

5.3 c and e, respectively. To enhance visibility, we changed the color scale in figure 5.3

d and f. Note that depending on the applied voltage, current, and even temperature

(here Vbias = 1 V, I = 1 nA, T = 5 K) the features look different and the two species might

not be distinguishable anymore solely by topographic imaging.

To chemically identify the two species, we performed STM-IETS which can be seen

in figure 5.4. In order to obtain the IETS data, we record the differential conductance

spectrum using the settings presented in section 5.1 (integration time: 300 ms, 7 mV

modulation voltage, 5-10 repititions, measurement time per spectrum 15-30 minutes).

Subsequently the spectra were derived, normalized and Gaussian smoothed. The

following IETS data will be presented as follows: (i) is the spectrum obtained on the
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Figure 5.3: Adsorbation of H2O and OH + H on TiO2 anatase (101). a, STM overview
image of single random water molecules and hydroxyls adsorbed on the anatase
surface (Vbias = 1V, I = 1 nA, T = 5K). b, High-resolution STM allows the further dis-
tinguishing of two species - a symmetric dumbbell shaped protrusion (c,d) and an
asymmetric one (e,f). (scalebars: a,b = 1 nm, c-f = 0.2 nm)

molecule featured in the insert, (ii) is the corresponding substrate spectrum of TiO2

anatase (101), and (iii) is the difference spectrum of (i) and (ii). It is important to also

record the substrate tunneling spectrum before and after each individual molecule

spectrum to remove spurious background signals that are introduced by different tip

conditions that might change during measurement [129]. Due to the normalization

of the spectra the baseline of the difference spectra might not be flat. However, to

avoid artificial data modification the baseline was not fitted and subtracted. Note

that the inelastic tunneling spectra were performed hundreds of times on different

molecules, thus proving reproducibility. Figure 5.4a presents the IETS data obtained

on the symmetric dumbbell protrusion from figure 5.3c and d. We find a clear peak

in the difference spectrum (iii) at 191 mV ± 12.3 mV and a broader feature in the

region between 300-500 mV with a maximum around 474 mV. The lower frequency

peak at 191 mV can be assigned to a molecular bending mode δbend(H-O-H) of water

which is illustrated in a scheme in figure 5.4c. This is in good agreement with previ-
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Figure 5.4: STM-IETS of H2O and OH+H on TiO2 anatase (101). a, STM-IETS obtained
on (i) symmetric dumbbell shape protrusion, (ii) the pristine TiO2 anatase (101)
surface, and (iii) the difference spectrum. The difference spectrum reveals a distinct
peak around 191 mV and a broader one in the area from 300-500 mV with a maximum
at 474 mV. These energies correspond to moleculare bending and stretching modes of
H2O allowing us to assign the symmetric protrusions. b, The IETS data obtained on
the asymmetric protrusions only show a broad peak in the higher energy range with a
maximum at 480 mV but no feature around 200 mV. This allows us the assignment
of the asymmetric features to be dissociated water molecule (OH+H). c, Schematic
drawing of the possible molecular vibrations of H2O on TiO2 anatase. (scalebars = 0.2
nm)

ous attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)

[130] and our DFT-based simulations (Figure 5.5 and Table 5.1). The high standard

deviation for this peak comes from the fact that we initially did not distinguish be-

tween isolated water molecules and water complexes where a hydrogen bond can be

formed as discussed later in this section. On the other hand, the broad feature in the

higher frequency regime can be attributed to a superposition of different symmetric

and antisymmetric νsym,asym(O-H) stretch modes. Hence, we assign this symmetric

dumbbell shaped protrusion to be a single H2O molecule. The IETS data obtained on

the asymmetric feature (figure 5.4b) reveals only a broad feature in the higher energy

range with a maximum around 480 mV but no distinct peak around 200 mV. Since, this

molecule doesn’t have a bending mode, we assign this molecule to be a dissociated

water molecule - a hydroxyl with a neighboring hydrogen atom (OH+H).
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Figure 5.5: ATR-FTIR of H2O and OH+H on TiO2 anatase (101) taken from reference
[130]. The energies of the vibrations in eV are given in Table 5.1.

5.2.3 D2O and OD + D

To confirm the origin of the peaks in the IETS data, we investigated the well-known

isotope effect. Therefore, the TiO2 crystal was cleaned using the treatment presented

before and we exchanged H2O with its deuterated form D2O. Again the heavy water

was cleaned by freeze pump cycles and backfilled into the preparation chamber

at a pressure of 10−9 mbar for 10 seconds. The sample was cooled down during

the backfilling to 110 K and afterwards introduced into the STM. To obtain single

random molecular adsorption, the sample was heated up to room temperature and

reintroduced into the STM. This lead to similar topographic images as in figure 5.4,

since the deuterated water molecules have a similar size as the H2O molecules and also

appear as symmetric and asymmetric dumbbell shaped protrusions. We performed

STM-IETS on the different species which is presented in figure 5.6. The symmetric

feature in figure 5.6a shows a distinct peak at 146 mV and a broader peak in the higher

energy range from 250-450 mV with a maximum around 304 mV. These energies

correspond to δbend(D-O-D) bending and νsym,asym(O-D) stretch modes. As described

in the theory section in 2.2 about IETS, the vibration energy should redshift if hydrogen

gets replaced by deuterium by approximately 3/4 which is in good agreement with our

data (ED2O(146 meV)≈ 3/4· EH2O(191 meV)). This proves the origin of the IETS peaks

to indeed stem from molecular vibrations, i.e. molecular bending and stretch modes

of the water molecule. Using STM-IETS we investigated an asymmetric molecule

with a neighboring molecule depicted in the insert of figure 5.6b. We find no distinct
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feature around 150 mV but a broader peak with a maximum at 295 mV which allows

us the assignment of this molecule to be a dissociated D2O molecule (OD+D).

Figure 5.6: STM-IETS of D2O and OD+D. a, The symmetric features in the STM to-
pographic images shows a distinct peak at 146 mV in the inelastic tunneling spectra
and a broader peak with a maximum at 304 mV. b, On the other hand the asymmetric
feature only shows a broad peak around 295 mV with no apparent peak around 150
mV. This leads to the assignment of the symmetric (asymmetric) molecules to be D2O
(OD+D). (scalebars = 0.2 nm)

5.2.4 Energy Shift of the Stretch Modes

When we further investigate the energy range of the stretch mode, we find shifts of

the energy depending if the molecule is isolated or has a neighboring molecule. We

find that isolated molecules have substantially higher stretch mode energies than

water molecules or hydroxyls with a neighboring molecule. This feature is shown

in figure 5.7 in which we overlay the energy range of the combined symmetric and

antisymmetric stretch mode for each molecule with gray.

While the maximal intensity of stretch mode energy in the case of an isolated H2O

molecule (a) and an isolated dissociated OH+H molecule (b) is around 450-500 mV, it

redshifts by around 50 mV if the molecules have a neighbor (c,d). We investigated this

matter in conjunction with DFT calculations. The calculations show that this shift

is due to the formation of a water complex (cf. figure 5.8). This complex is formed

by a hydrogen bond between a water molecule to a surface hydroxyl as indicated

by the dashed black line in figure 5.8. This also explains the decrepancy we faced
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comparing our stretch mode data of the complexes (with hydrogen bonds) with

ATR-FTIR data. Since usually coverages of close to a monolayer or even more are used,

the water molecules are very likely to form these complexes redshifting the stretch

mode energy. Overall, we find good agreement between our experimental values, the

DFT-calculations and previously reported ATR-FTIR data (Table 5.1).

Figure 5.7: Energy shift of the stretch modes of water on TiO2 anatase (101). a,b, The
IETS data obtained on the isolated H2O and OH+H molecule shows a stretch mode
peak around 450-500 mV. c,d When these molecules are no longer isolated but have a
neighboring molecule the stretch mode energy redshifts by 50 mV (indicated by black
arrows) due to the formation of hydrogen bonds.
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Figure 5.8: DFT atomistic model of one of the water complexes on TiO2 Anatase(101).
The water complex is formed by a hydrogen bond of a water molecule with a neigh-
boring surface hydroxyl (dashed black line). This surface hydroxyl can originate from
a dissociated water molecule (OH+H) as depicted here.

5.2.5 STM Simulations and Dissociation Barriers for Water

on TiO2 Anatase (101)

Using DFT together with the presented experimental data we simulated the adsorp-

tion model of H2O and its dissociated form OH+H in the presence of an electric field

which is generated by the STM tip. The results are shown in figure 5.9a and c, respec-

tively. The oxygen of the H2O molecule forms a dative bond to a surface Ti5c and aligns

its intrinsic electric dipole perpendicular to the surface, with the H atoms pointing

upward due to the presence of the electric field. A similar effect is obtained for the

hydroxyl group where the oxygen forms a covalent bond. Using these models, we

were able to simulate STM images using Tersoff-Haman which is presented in figure

5.9b and d. The simulated STM image of the H2O molecule (b) shows two round

protrusions with its center on top of the Ti atom in the Ti-O dimer. The simulation
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Units: meV DFT STM-IETS ATR-FTIR [130]
System bend stretch bend stretch bend stretch
single H2O 195 459, 472 191 474
single H+OH 465, 472 447,480
H2O - (OH+H) complex
H2O 199 201 203
H2O with H bonding 404 420 399, 417

single D2O 143 331, 346 146 338
single D+OD 338, 343 327
D2O - (OD+D) complex
D2O 146 146 149
D2O with D bonding 293 304 298, 307

Table 5.1: Comparison of theoretical and experimental vibration energies of water
and its dissociated form on TiO2 anatase (101).

shows that the measured DOS features in the STM stem from the hydrogen atoms.

Due to the symmetry of the water molecule also the STM topographic features are

symmetric. In the case of the dissociated water molecule (OH+H) a hydrogen is split

from the water molecule and binds to a surface O2c atom in the vicinity. Since now the

symmetry of the molecule is broken, the simulated STM image shows an asymmetric

dumbbell shaped protrusion. Given the low diffusion barrier of hydrogen we also

calculated STM images for hydroxyls with and without hydrogen in the vicinity; the

calculated STM images of OH were not affected by the position of adjacent H. These

simulations are in good agreement with our experimental results.

In given conditions, around 30 % of protrusions appeared as asymmetric protrusions

indicating those molecules were dissociated without light. The occurance of dissoci-

ated water molecules on the anatase (101) surface can be explained by the preparation

procedure in which we heat up the sample to room temperature. Hence, we consider

the possibility of thermal dissociation by calculating the energy diagram of the water

dissociation which is shown in figure 5.10. For the dissociation to occur one hydrogen

bond of the water molecule is weakened and an intermediate activated complex (ii)

is formed. The activation energy of this complex is Ea = 0.26 eV. Following, the free

hydrogen binds to a surface O2c in the vicinity. The enthalpy difference ∆H between a

H2O molecule and the dissociative state (OH+H) is 0.16 eV meaning that the reaction

is endothermic. However, the hydrogen atom can diffuse further (v) by overcoming a

barrier of 0.44 eV blocking the reverse reaction. The diffused proton state is also less

favorable by 0.17 eV due to the formation of hydrogen bonds. Overall, owing to the

relatively low barrier heights, the thermal dissociation of water at room temperature

is highly probable. This is also supported by temperature dependent XPS data which
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Figure 5.9: Theoretic model and DFT-based STM simulated images of water on TiO2

anatase(101). a, Ball-and-stick model of H2O adsorbed on top of a the anatase surface.
The oxygen of the water molecule binds to a surface Ti5c reaching away from the
neighboring outermost oxygen row. b, DFT-based STM simulated image using the
model in a shows a symmetric dumbbell shaped protrusion. The bright features stem
from the hydrogens. c, For the dissociated water molecule (OH+H) again the oxygen
binds to a surface Ti5c reaching away from the neighboring outermost oxygen row. The
leftover hydrogen goes to a surface O2c in the vicinity. d, DFT-based STM simulated
image shows that this arrangement leads to a asymmetric feature.

showed the desorption of both, molecular water and hydroxyls at room temperature

[20] (XPS data is displayed in the next section 5.3.1). However, these results should

be taken as a qualitative description because, as already pointed out in Ref. [19],

we found that the energetics of the molecular and dissociated water is sensitive to

parameters used in the calculations.

Taken together, our combined experimental and theoretical analyses allow distin-

guishing water molecules and hydroxyls on the semiconductor TiO2 anatase (101)

surface using chemical fingerprints, i.e. molecular vibrations, obtained by STM-IETS.

Having single molecular chemical resolution on semiconductors opens new possi-

bilities for fundamental energy research, especially investigating the PWS on TiO2

anatase (101).
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Figure 5.10: Calculated dissociation barrier for water on TiO2 anatase (101) surface
and diffusion barrier for H proton on the surface. Upper curve: reaction pathway
calculated with a slab containing 4 TiO2 layers, and by sampling the first Brillouin
zone at the Gamma point. Lower curve: reaction pathway estimated from calculations
of the dissociation energies between the configurations (i), (iii), and (v), using a larger
slab (8 layers) and a finer (2x2x1) sampling of the Brillouin zone. In the lower curve
the reaction barriers were estimated by scaling the barriers calculated in the upper
curve via the ratios of the corresponding dissociation energies. The dissociation of (i)
the H2O molecule to (iii) OH + H occurs via (ii) an intermediate activated complex, for
which we estimated an activation energy Ea = 0.26 eV. This reaction is endothermic
with an enthalpy ∆H= +0.67 eV. The subsequent diffusion of the H proton on the
surface ((iii) to (v)) can take place by overcoming a potential barrier for which we
estimate an activation energy Ea = 0.44 eV. The diffusion reaction is also endothermic
with an enthalpy ∆H +0.75 eV.

5.3 Globally Ordered Water Monolayer on TiO2

Anatase (101)

Water is ubiquitous in ambient atmosphere and thus, water molecules do not only

adsorb isolated but rather form monolayers at higher coverages due to intermolecular

interactions. Since the interaction of these water layers with the TiO2 surface has far

reaching consequences in photoelectrochemical cells [25] and PWS, a lot of research
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has been dedicated to understand the adsorption state. On defect-free rutile (110) it

was highly debated for a long time experimentally and theoretically if water adsorbs

molecularly or dissociated [131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141]. Fol-

lowing, Walle et al. could present new experimentally decisive data showing that the

first water monolayer exhibits a significant fraction of dissociated water molecules

without the presence of surface defects by using highly surface sensitive photoelectron

spectroscopy [142]. On the technologically more relevant anatase (101) surface this

debate is still ongoing. While previous work suggested the adsorption of molecular

water on the anatase surface [26, 21, 143, 126, 144], more recent work from Walle show

a mixed dissociative and molecular water adsorption at 120 K on the anatase surface

[20] in conjunction with recent theoretical work from C. Patrick and F. Giustino [19].

This contradiction was explained by a difference in sensitivity for the OH detection

in contrast to previous XPS studies. In their paper, Walle et al. also related their work

to previous STM studies that showed a molecular water adsorption and stated: STM

does not provide the chemical identity of adsorbates [20].

In this section, we will discuss our investigation of the formation of water monolayers

on the TiO2 anatase (101) surface. By using different preparation techniques we are

able to control the amount of water on our surface. This ultimately leads to an ordered

monolayer consisting purely of H2O molecules which is also chemically identified

using STM-IETS. The findings presented here will bring new input into the discussion

of water monolayer adsorption on the anatase (101) surface.

5.3.1 Preparation of Di�erent Water Monolayers on TiO2

Anatase (101)

A lot of work has been done to understand the temperature dependence of water

adsorbed on TiO2 anatase. TPD experiments show 3 desorption peaks at 160, 190,

and 250 K which were attributed to molecular multilayer desorption, desorption of

molecular water which is hydrogen bonded to surface O2c and desorption of molecular

water bonded to surface Ti5c, respectively [21]. In rutile, an additional desorption peak

was found around 500 K [145, 146], which is attributed to desorption of dissociated

water molecules at VOs sites. Since this additional peak is missing for water desorption

on TiO2 anatase (101), new theoretical and experimental studies suggest that the broad

peak around 250 K in the TPD spectrum could be assigned to a mixed desorption of

molecular and dissociated water, due to similar adsorption energies [19, 20].

Hence, in order to form water monolayers which are chemically bonded to the surface

Ti5c atoms, we should deposit water at a sample temperature between 190 and 250 K.

However, due to the limitataions of our cooling system, our samples are cooled down

to 110 K using liquid nitrogen. To be still able to have a monolayer formation instead
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Figure 5.11: TPD and temperature dependent XPS spectra of water on TiO2 anatase
(101). a, TPD spectrum of D2O on TiO2 anatase (101) reveals 3 desorption peaks at
160, 190, and 250 K (taken from ref. [21]). b, Temperature dependent XPS spectra
of H2O show that even at room temperature small amounts of hydroxyls and water
molecules are present on the TiO2 anatase surface (taken from ref [20]).

of the water molecules only forming clusters, we can control a second parameter,

namely the deposition flux. Although we use state of the art needle valves, the control

of the flux remains challenging and has a lower limit, which we will discuss in the next

sections.

Ice Formation

We prepared our TiO2 anatase (101) crystal using the oxygen terminated treatment

described earlier in section 3.1. We subsequently cooled down the sample to TS = 120

K and backfilled the chamber at a pressure of 10−8 for 10 seconds. A STM overview

image of the ice covered anatase surface is presented in figure 5.12a. Depending on

the amount of ice multilayers the conductivity of the sample changes from conductive

to insulating. Using a low ice coverage we can observe the typical trapezoidal shaped
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Figure 5.12: Ice formation on TiO2 anatase (101). a, STM overview image of ice ad-
sorbed on the anatase (101) surface. Although the adsorption is amorphous the
trapezoidal shape islands of the antase (101) surface can still be seen hiniting towards
a low coverage. b, Zoom-in STM topograph reveals physisorbed ice. (scalebars: a = 20
nm, b = 5 nm))

islands with step edges along the crystallographic [010], [-111], and [11-1] directions.

Taking a closer look at the surface (cf. zoom-in in figure 5.12b) more and more tip

instabilites show as fuzzy lines in the image due to physisorbed ice which is only

bound by van der Waals interactions to the ice monolayer. Since this interaction is

weak the electric field of the tip is enough to move these molecule over the surface

resulting in horizontal lines. We tried performing STS and IETS on these ice layers

investigating the electronic structure which was challenging due to tip instabilities.

5.3.2 Water Monolayer

As described before, to achieve water monolayers on the surface we reduce the flux

so that the molecules have more time to rearrange on surfaces and to form ordered

structures. When we reduced the flux in our water deposition by reducing the pressure

of the backfilled chamber to 7.5 ·10−10 mbar for 5 minutes, we were able to create a

submonolayer coverage of water on the TiO2 anatase (101) surface as presented in

figure 5.13a. Although there are still physisorbed water molecules and ice clusters

present, we were able to image clearly an ordered water layer which can be seen in

figure 5.13b. The structure of this layer will be discussed later in this section.

Since there were still physisorbed water molecules present that influenced the tip

stability, we tried to improve the quality of our monolayer by further reducing the flux.

This was challenging, since the needle valve, as stated before, has a lower flux limit.

Hence, we pursued a different approach to deposit low amounts of water on the TiO2

anatase (101) surface. Due to all of our water depositions and subsequent transfers
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Figure 5.13: Formation of a water monolayer on TiO2 anatase (101) using water de-
position. a, STM image shows a submonolayer coverage of water adsorbed on TiO2

anatase (101) using backfilling the preparation chamber with a pressure of 7.5 ·10−10

mbar for 5 minutes. This results also in the adsorption of physisorbed water (b).
(scalebars: a = 10 nm, b = 2 nm)

into our STM, water molecules were trapped on the walls of our cryogenic STM cham-

ber which is cooled to 5 K. We let the STM cryostat warm up to the temperature of our

outer liquid nitrogen shield (77 K) for 24 hours. Following, we cooled down the system

again to 5 K by refilling our inner cryostat with liquid helium. This procedure lead to a

nearly perfect monolayer coverage of water molecules on the anatase (101) surface as

shown in figure 5.14a. Additional to the monolayer adsorption, ice cluster are formed

(blue circle) with a size between 1-2 nm. These ice clusters form preferentially on the

different high- and low-reactive step edges but also can be found on top of the water

monolayer.

High-resolution STM images combined with linescans in different crystallographic

directions (cf. figure 5.14b and c) reveal that the monolayer adsorbs along the [010]

direction since the amplitude of the oscillations in the linescans is the lowest along

this direction. If we compare the lattice parameter of the water monolayer with the

one of the underlying TiO2 anatase (101) substrate, we find that the parameters are the

same meaning that one round protrusion in the water monolayer corresponds exactly

to one Ti-O pair along the [010] and the [11-1] crystallographic direction (3.8 and

5.5Å, respectively). The monolayer also inhabits defects, which we attribute to either

missing or wrongly incorporated H2O molecules. Figure 5.14d depicts a [010] step

edge. Since this step edge presents a low-reactive surface defect, the water monolayer

formation is hindered at the edge. It is interesting to note that the clusters and water

molecules adsorbed in the vicinity of the low-reactive step edge are not stable when

the tip is scanning resulting in fuzzy images. On the high-reactive step edges which

are decorated by VOs, this effect is not present. Hence, the vacancies stabilize the

binding of the water molecules or clusters while the stoichiometric step edge presents

a surrounding in which the energy barrier between at least two binding states is low
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Figure 5.14: Formation of a water monolayer on TiO2 anatase (101) using the STM
chamber. a, STM image after using desorption of water from our STM cryostat by
heating up to liquid nitrogen temperature (77 K). This leads to formation of a nearly
perfect (b) monolayer of water on the anatase surface. c, Performing linescans in
different crystallographic directions ([010] and [11-1]) reveal that the monolayer is
adsorbed along the [010] direction. d, The instability of the [010] step edge can be
explained by not incorporated water molecules that change the adsorption due to the
electric field of the scanning tip. (scalebars: a = 10 nm, b,d = 2 nm)
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enough to be overcome by the tip-induced electric field.

Figure 5.15: Influence of high electric fields to the water monolayer. a,b, STM topo-
graph of the water monolayer before scanning with high bias voltages in the black
squared area. c, Scanning at increased bias voltages (2 V, Iset = 0.1-1 nA) lead to an
instable STM image. After transforming molecules into an intermediate activated
stage (d), water molecules are removed from the surface (e). (scalebars: a = 10 nm, b,e
= 2 nm, c,d = 1 nm)
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The study of desorption of molecules from surfaces using tip-induced electrons in

STM is an active research area. Having a better fundamental understanding of the

desorption allows the tailoring of surface reactions. This technique has been used to

characterize hydrogen desorption from Si (100) [42] but also from TiO2 rutile (110)

[147]. In general, electron-induced effects can lead to desorption of a chemisorbed

molecule if the energy of the tunneling electron is high enough to fill the antibond-

ing state and thus, break the bond between the molecule and the surface. This can

be enhanced if the electron tunnels inelastically and thereby vibrationally heats the

molecule. We were also able to desorb some of the water molecules using high electric

fields either by tip pulsing (3 V, 20 ms, Iset = 0.1-1 nA) or scanning at high voltage

biases (2 V, Iset = 0.1-1 nA) which can be seen in figure 5.15. The black square in figure

5.15a marks the area before we scanned with high bias voltage showing a monolayer

coverage of water (cf. figure 5.15b). After scanning this area with increased bias

voltage (figure 5.15c) the water molecules transform into an intermediate activated

state (d) until water molecules are removed (e). This activation and removal only

occured at bias voltages above 1.5 V and we assume that already this energy is enough

to transfer electrons into the H2O-surface Ti5c antibonding state to break the bond

and remove the water molecules most likely to adsorb on the tip. The success rate

for the desorption in the scanned area was around 50%. Due to the removal of some

water we were now able to characterize isolated and in the monolayer incorporated

water molecules.

Figure 5.16: Influence of tip pulses to the water monolayer. a, STM topograph showing
the water monolayer. b, After applying a high energy pulse (3 V, 20 ms) the substrate is
subsequently cleaned. c, Applying multiple pulses increases the clean substrate area.
(scalebars: a-c = 2 nm)

As described earlier, we were also able to clean the substrate and remove water

molecules from the monolayer by using tip pulses of 3 V, which can be seen in figure

5.16. To control the amount of clean substrate area, we can apply multiple pulses

in the same position (cf. 5.16b and c). This artificial area cleaning was important

throughout this experiment to be able to characterize and prepare our tip using STS

and voltage pulses on the substrate.
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The Water Monolayer Structure

Taking a closer look at the water molecules we find three different appearances which

are shown in figure 5.17. The blue encircled water molecule is isolated and appears as

a symmetric dumbbell shape protrusion as presented earlier in this chapter (cf. figure

5.17b and c). The height of the molecule obtained using a linescan over the molecule

is 1.5 nm and the size around 0.8 nm. The black encircled molecules (figure 5.17d and

e) present a dimer formation of water molecules. Due to steric hindrance between the

two molecules when adsorbed next to each other the appearance changes showing a

lower DOS in the center part and a higher DOS at the edges of the dimer. Interestingly,

we also see this behaviour in a molecule which is not completely incorporated into

the monolayer (green circle). While the molecule adsorbed fully in the monolayer

structure has two nearest neighbors along the [010] direction, the lower molecule

(green) misses one beneath. Hence, the molecule appears asymmetric with a higher

DOS at its lower part. Furthermore, the extension of the DOS of this molecule (green)

is significantly decreased compared to the isolated water molecule (blue) which can

be seen in the linescan in figure 5.17e. Taken together, this allows us the assignment

of a single round feature with 0.3 nm in size (figure 5.17f and g, red) in the monolayer

to be a water molecule.

We functionalized our tip by picking up an individual water molecule, which is shown

in figure 5.18a, to investigate our proposed idea further. Due to the functionalization,

the extension of the isolated water molecules (blue) is reduced to 0.5 nm which can be

seen in figure 5.18b and c. Interestingly, it enables the detection of a substructure for

the molecules forming dimers (black, figure 5.18d and e) as well as for the molecules

in the monolayer (red, figure 5.18f and g). For the water dimer the substructure looks

as follows: round feature at its ends and a contracted oval shape in the center. Fur-

thermore, instead of appearing in a single round protrusion, the water molecules in

the monolayer appear now in a contracted dumbbell shape consisting of two oval

shaped protrusions. The size of this protrusion is with 0.35 nm similar to the size

when measured without a functionalized tip.

Using the findings above, we try to determine the lattice positions of the water mono-

layer by overlaying the lattice of the TiO2 anatase (101) surface which is shown in

figure 5.19a. Again the single isolated water molecule binds with its oxygen on top of

a surface Ti5c atom resulting in a symmetric dumbbell shaped protrusion as shown

in figure 5.19b. For the dimer (figure 5.19c) and monolayer formation (figure 5.19d)

along the [010] direction the oxygen of one water molecule still binds to a surface Ti5c

atom, however, due to the steric hindrance induced by an additional water molecule

the water molecule rearranges leading to a change in the imaged DOS. For this we

turn to DFT calculations which will be discussed later in this section.

To investigate the suggestion of a mixed molecular and dissociated water monolayer
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Figure 5.17: Different molecular water adsorptions on TiO2 anatase (101). a, High-
resolution STM image of the water monolayer with a small clean substrate patch.
Water molecules can adsorb isolated (blue), with a single neighbor along the [010]
direction (water dimer, black; water molecule in the monolayer, green) or with two
neighbors (red). b,c, The isolated dumbbell shaped protrusions are symmetric with
a size of 0.8 nm similar to the previous chapter (blue circle). If a water dimer is
formed ((d,e), black circle) the individual molecular dumbbell features transform
into singly asymmetric features which can also be seen at the not yet fully in the
monolayer incorporated molecule in the green circle. Hence, we conclude that when
fully incorporated into the monolayer each water molecule correspond to exactly one
round feature ((f,g), red circle). (scalebars: a = 2 nm, b,d,f = 2 Å)
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Figure 5.18: Different molecular water adsorptions on TiO2 anatase (101) using a
functionalized tip. a, High-resolution STM image of the water monolayer with a small
clean substrate patch using a functionalized tip. b,c, Due to the functionalization, the
isolated dumbbell shaped protrusions is slightly asymmetric and reduced in size to
0.5 nm. d,e, Also the water dimer shows a substructure with a round feature at its ends
and a contracted oval shape in the center. f,g, When the water molecules have two
neighbors in the water monolayer the dumbbell shape transforms into two oval shape
protrusions supporting the assignment of the monolayer to consist purely out of H2O.
(scalebars: a = 2 nm, b,d,f = 2 Å)

adsorption on TiO2 anatase (101), we performed STM-IETS. We find clear indications

of water being present using the IETS features already described in the previous sec-

tion. In figure 5.20 we performed STM-IETS on a water molecule incorporated in the

monolayer (i) and on a clean substrate patch (ii). The difference spectrum (iii) be-

tween the water molecule and the substrate shows a strong feature around 215 mV and

a broader one in the area around 435 mV which is in good agreement with the bending

and stretching modes for water molecules with a neighboring one as presented in

the previous section. In general, performing STM-IETS on the monolayer was more

challenging due to tip instabilities. This lead in some cases to an appearance of an

additional peak around 300 mV, which we cannot clearly assign. However, we find the
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Chapter 5. Water on TiO2 Anatase (101)

Figure 5.19: Determining the structure of water monolayer on TiO2 anatase (101). a,
High-resolution STM image of the water monolayer overlayed with the anatase (101)
surface lattice (yellow = Ti, red = O). b, The isolated dumbbell shaped protrusion binds
with its center (oxygen) on top of a surface Ti5c atom. c,d, Lattice positions of a water
dimer and water molecules in the monolayer. (scalebars: a = 2 nm, b-d = 2 Å)

bending mode independent of the position of the water molecules in the monolayer.

Whenever we removed molecules from the substrate by tip pulsing or scanning at

high bias voltages as described before, we ended up with single isolated molecules

that showed the same features as the isolated water molecules in the previous section

when investigated by STM-IETS. These results allow us to identify the molecules as

H2O and to conclude that the monolayer only consists of pure water.

As described in the introduction to this section, the adsorption structure of the first

water monolayer on TiO2 anatase (101) has been also subject in a recent theoretical

study by Patrick and Giustino [19]. In their study two possible monolayer structures

were proposed: (i) By reverse engineering XPS data obtained by Walle et al. [20], a mix

of molecular and dissociated water which ball-and-stick model was proposed and is

shown in figure 5.21b. (ii) A 1 × 1 periodic water layer only consisting of molecular
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Figure 5.20: STM-IETS on the water monolayer on TiO2 anatase (101). STM-IETS
performed on water molecules incorporated into the monolayer with hydrogen bonds
a show strong evidence of water vibrational modes (δ(H-O-H) bending = 215 mV,
hydrogen bonded ν(O-H) stretch = 435 mV) in agreement with the values we presented
in the previous section.

water which is presented in figure 5.21c. For both structures also DFT-based simu-

lated STM images were shown. By comparing the simulated STM images with our

experimental findings, we find that the mix molecular and dissociated water structure

seems not to agree, since in our case the molecules do not seem to have an interrow

connection or asymmetries. Additionally, the position of the highest LDOS do not

seem to follow the same substructure as the one experimentally observed. Note that

in this experiment the sample was always kept at low temperatures (< 110 K) so that

the molecules might not receive enough thermal energy to dissociate in contrast to

the work of Walle et al., where the deposition was done at 120 K and subsequently

heated to 160 K [20]. The pure molecular water structure (5.21c) seems to fit better

with our experimental data, since the DOS seems to be in rows following the [010]

crystallographic direction of the anatase (101) lattice. Furthermore, the features are

single round protrusions which correspond to exactly one water molecule which

is similar to our findings. Still, the row of round protrusions in the simulated STM

images are positioned in between the surface Ti5c atoms in contrast to our finding

of these features to appear closer to the surface Ti5c atoms. Based on our STM and

IETS results, we propose the structure presented in 5.21d which is similar to the one

proposed in c but shifted.
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Chapter 5. Water on TiO2 Anatase (101)

Figure 5.21: Proposed models of the water monolayer on TiO2 anatase (101). a, Theo-
retical model of isolated water molecules adsorbed on the TiO2 anatase (101) surface.
b, Proposed model of a mixed molecular and dissociated water monolayer. The
DFT-based simulated STM image reveals a substructure different to our experimental
findings. c, Proposed model of a pure molecular water monolayer. The simulated
STM image shows a more uniform contrast similar to our results but the adsorption
sites of the rows are shifted. Hence, we propose the model presented in d. (b,c, taken
from Ref. [19]).

In summary, we found an unprecedented ordered monolayer of only H2O molecules

on TiO2 anatase (101) using STM in combination with DFT and tunneling spectra

techniques. This monolayer adsorbs uniformly in a 1 × 1 structure, although still

more calculations and experiments have to be done. The further study of this ordered

monolayer will be of importance to shed light into water adsorption on TiO2 anatase

(101).

5.4 Conclusion

We have shown in this chapter that STM in combination with IETS can be used

to obtain vibrational fingerprints of molecular and dissociated water molecules on
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the semiconductor TiO2 anatase (101). These vibrational fingerprints were used to

determine and distinguish the individual species on the anatase surface. This is of

critical importance to be able to study on the atomic scale the photocatalytic water

splitting reaction of individual molecules to enhance future TiO2-based devices. For

the first time, it is possible to undoubtly distinguish the individual components of a

water splitting reaction on the anatase (101) surface. Hence, the reaction dynamic and

pathway that have been controversially discussed in the past can now be studied in a

direct method, which we will further discuss in chapter 6. Furthermore, the benefits of

STM-IETS can be shared in various studies of chemical reactions at semiconducting

interfaces, which aim to understand heterogeneous catalysis (CO2 and NO2 reduction),

semiconductor device fabrication, fuel cells, and self-assembled monolayers.

Also we used STM in combination with IETS to study behavior of water monolayers

on TiO2 anatase (101) which could be created using two different approaches. The

finding of a globally ordered water monolayer consisting purely of H2O molecules is

of paramount importance to understand the fundamental water adsorption on TiO2

anatase (101). Since dissociation occurs at slightly higher temperatures than used

here during preparation, this work is also important to understand water splitting.
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6 Conclusions and Perspectives

In the following chapter we will discuss the conclusions that can be drawn from this

work and follow-up with possible future projects in this area of research.

6.1 Conclusions

In conclusion, this work presented a clearer understanding on the fundamental level

using STM about surface engineering of TiO2 anatase (101) and the interaction of

water with this substrate. The conceptional ideas and findings about creating a surface

with increased or reduced reactivity in the first part of this work are very interesting

for various fields in which TiO2-based devices are already commercially available.

Throughout the first part of this thesis, we presented the importance of VOs and

how these vacancies are the origin of the high reactivity of the step edges. Due to

the tendancy of VOs to migrate into the subsurface layers of TiO2 anatase crystals,

step edges represent one of the few possible strategies to trap those vacancies at the

surface where the catalytic reactions take place but not modifying the bulk properties.

The VOs also result in the filling up of the Ti 3d bands creating gap states and thus,

significantly reducing the bandgap to the visible. Not only is this the first time to

understand the origin but also it allows to improve devices using different simple

surface preparation methods creating highly stepped surfaces.

Another way to trap the high reactive VOs on the surface is the formation of the oxygen

deficient titanium-terminated surface phase. This surface phase can cover up to 70%

of a monolayer substantially increasing the area and amount of VOs on the surface.

Hence, a larger surface area benefits of the VOs but the bulk properties remain the

same.

One the other side the reduction of the surface reactivity, the so-called passivation,
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is of high interest to sensoring applications for devices that need to remain stable

on longer timescales. Thus, simple preparation methods that can passivate the sub-

strate in a cheap and easy manner are wanted. In section 4.1 we presented a surface

passivation creating a novel oxygen network on top of the TiO2 anatase (101) crystal.

This oxygen network was created using excessive oxygen at elevated temperatures

during the preparation procedure which ultimately lead to the network formation.

These networks grow by incorporating adsorbed molecular oxygen species on the

surface. The low amount of molecules adsorbed on top of the network compared to

the amount of adsorbates on the clean anatase substrate hinted already to a reduced

surface reactivity. Furthermore, the excess oxygen attaches to the VOs at the high

reactive step edges reducing the reactivity of the surface even further.

Summarizing this first part of the work, we can increase the reactivity by reducing the

overall oxygen content creating VOs or reduce the reactivity doing the reverse. This

opens a large playground, which we will introduce in the next section. Moreover, these

results are not limited to the metal oxide TiO2 but could potentially also be applied

to other metal oxides such as WO3 or SrTiO3 for which the role of VOs is not yet well

understood [148, 149, 150].

The second part of this thesis presented the results about the interaction of water

on the TiO2 anatase (101) surface. The study of single water molecules on the TiO2

anatase (101) surface is generally obstructed by a lack of a clear chemical identification

technique on the atomic scale. Without a clear identification of the individual species

on the anatase surface, studies of PWS cannot be done on the single molecular level.

To circumvent this, we presented the use of STM-IETS to label individual molecular

and dissociated water molecules on the anatase (101) surface. With this information

reliable and consistent future studies about single molecular PWS, as partly presented

in the next section 6.2, will be possible for the first time. Since this technique is not

restricted to water alone but can also be used for various molecules on different semi-

conductors, fundamental studies on individual reaction mechanisms such as CO2

reduction, which is an important industrial and environmental gas, will have a bright

future.

Since water in ambient atmosphere also adsorbs in multilayers, the finding of a well-

ordered monolayer purely consisting of H2O molecules on the TiO2 anatase surface

is an important step towards understanding water adsorption on TiO2 anatase (101).

So far, the adsorption is strongly debated as we highlighted in section 5.3.2. With our

findings, there is the chance to finally reach a conclusive picture, which is of critical

importance to all TiO2-based devices.
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6.2 Perspectives

6.2.1 Further Understanding of the Water Interaction on

TiO2

A further investigation of the ice layers is interesting also in context of environmental

science. Environmental scientists have recently suggested to inject aerosol particles

into the stratosphere (10-50 km height) to manage solar-radiation (SRM) onto the

earth [151]. The idea behind SRM is to reduce the amount of incoming sunlight onto

earth thus reducing global warming. This can be achieved by injecting particles either

to increase absorption in the stratosphere or to reflect the incoming sun light. TiO2 has

been recently mentioned to be a promising candidate to enhance sun light reflection

due to its high refractive index [152]. However, the interaction and impact of TiO2

nanoparticles within the stratosphere are not yet fully understood [153]. Since the

temperatures in the stratosphere range from 220-270 K, the ubiquitous water typically

adsorbs as ice on the surface of these nanoparticles. Hence, the understanding of

the interaction of ice layers on TiO2 anatase (101) is of critical importance to realize

the idea of SRM. We also found ice clusters (blue circles) of sizes between 1-2 nm

when we prepared the ice overlayers as shown in figure 6.1. The study of these ice

overlayers will be important to understand the formation of ice on the TiO2 particles

in the stratosphere and hence, estimate the absorption or reflection properties to

predict the amount of blocked sun light onto the earth surface.

Figure 6.1: STM image of ice clusters on the TiO2 anatase (101) surface. (scalebar = 2
nm).

As described before, the discovery of surface modifications enhancing or reducing
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the overall reactivity of the surface invite to a lot of future studies. In the case of PWS

on TiO2 the single molecular adsorption on the different phases is of strong interest.

Using the titanium-terminated surface phase, which has a high VO concentration, the

adsorption of water molecules is especially interesting. On rutile (110) it has been

shown using STM that VOs can act as defect-mediated dissociation sites for water

molecules healing out defect sites [154]. It would be interesting to study how the

titanium-terminated surface phase would be influenced by individual water adsorp-

tion using STM-IETS. Since the reactivity is increased on this surface termination, it is

likely that we could find more thermally dissociated water molecules on this phase

compared to the oxygen terminated one. This could be one prove that forming the

titanium-terminated surface phase increases the water splitting efficiency.

Another interesting experiment would be recreating the parameters we used to create

the pure H2O monolayer on the different reactive surfaces. These studies could show

the influence of VOs on the surface and/or in subsurface layers to the formation of a

single or multiple water monolayers. Additionally, the passivation of the surface by oxy-

gen networks could be shown. Since the oxygen network and the titanium-terminated

surface phase can coexist with the prisitine oxygen-terminated surface, reference

measurements could be easily taken. Also, the STM can be gradually warmed to liquid

nitrogen temperature (77 K) or even to room temperature, which allows a temperature

dependent measurement on the order of the monolayer. In summary, the finding of a

pure H2O monolayer on TiO2 anatase (101) presents an interesting start point for a lot

of future temperature-, energy- and light-dependent studies to further understand

the water interaction with the anatase surface.

6.2.2 Investigating Photoinduced E�ects using the

Lasersystem

Our work presented in section 5.3.2 marks an important step towards understanding

the water adsorption on TiO2 anatase (101). Due to the introduction of a laser to

our system as described in section 2.3.4, we can investigate the behavior of water

monolayers on the different reactive surface phases of TiO2 anatase (101) when irra-

diated by UV-light. Since our laser system is equipped with different wavelengths,

these measurements can also be performed varying the photon energy giving rise to

additional information.

Another interesting effect is the superhydrophilicity of TiO2 thin films which was

found in 1997 by Watanabe and co-workers [155] and initiated the development of a

new research field using TiO2 thin film coatings at room temperature. The effect allows

water adsorbed on TiO2 thin films to spread out under UV-illumination. Although

the amphilic behaviour of TiO2 films has been studied extensively, the origin of this
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effect remains elusive [156, 157, 158, 159, 160, 161, 162]. An interesting experiment

would be the simultaneous deposition of water at room temperature while shining in

UV light using the laser system. Since we can operate our STM at different tempera-

tures, it would be possible to do the deposition inside the chamber while scanning

the anatase (101) surface. Due to the difference in hydrophilicity, also the molecular

adsorption depends on the light irradiation increasing or reducing the amount of

adsorbed water. Moreover, using our identification techniques, we could identify the

adsorbed species on the anatase surface. This would be an important step towards

explaining superhydrophilicity.

Following up on the investigation of the single water molecule adsorption of the dif-

ferent reactive surface phases would be the first time investigation of PWS on TiO2

anatase (101) using STM-IETS in combination with our laser setup. We have already

started first experiments on shining in high energy photons in our tip-sample junction

but we did not see any changes for the exposed water molecules. However since we

gained more knowledge about the characterization of individual water and hydrogen

molecules during this PhD work, we are able to distinguish the different species in a

clear and fast manner. Furthermore, we still have room to improve the laser alignment

and stability, since the laser deposits a large amount of energy heating up the junc-

tion. In the next experiments we will try to enhance stability by warming up the STM

beforehand to a temperature where the cooling of the cryostat can compensate the

energy deposited by the laser. Another idea to circumvent the challenge of stability

in in situ experiments is to scan an area labeling the individual molecules by IETS.

The next step would be to retract the tip, while shining in the UV-light for a certain

time. Subsequently, the tip is approached in the same area and the molecules are

characterized once more using STM and IETS.

Using these measurement ideas and individual water molecules, we could study how

important photons are for the initial water splitting step, H2O to OH+H. As we have

shown in section 5.2 the dissociation barriers for water are very low allowing the

initial splitting to occur due to the substrate at room temperature. Since we oper-

ate in the dark, no UV photons can be adsorbed by the anatase substrate to create

charge-carriers. The interesting question is, in which way the photon contributes to

the overall water splitting. Mainly following two concepts will need to be addressed

and studied:

1. The first initial water dissociation step is solely due to the TiO2 anatase (101)

surface and only the following steps (OH+H to O+2H and the desorption of

O2/H2 from the surface) need excited charge carriers which are created when

the sample is illuminated by high energy photons.

2. The first initial water dissociation can be performed via the surface but also
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through excited charge carriers. Hence, the substrate mediated dissociation is

not rate-limiting.

Figure 6.2: Different water splitting reactions which can be investigated by STM:
Thermally-, electric field-, and photon-induced water splitting on TiO2 anatase (101).

Both findings would have far reaching consequences. If the first hypothesis is valid,

strategies modifying the surface activity, which would be the first rate-limiting step,

become more important. The titanium-terminated surface phase might be a good

candidate for this. In case of the second hypothesis for the initial step, water has the

opportunity to dissociate via two channels. This could give more information where

the actual rate-limitation in the H2 production using TiO2 anatase lies. For this also

the study of tip-induced electric field dissociation would be interesting which has

already been reported [67]. However, also in this study no chemical identification was

given and when we were not yet able to repeat the experiments with the same settings.

Nevertheless, these experiments also together with thermal-induced dissociation are

interesting to further understand the dissociation process. In summary, further inside

regarding the light-induced water splitting on TiO2 anatase (101) could lead to a better

understanding where the rate-limitations are creating possibilities to enhance device

efficiencies.

6.2.3 Di�erent Metal Oxides, Di�erent Reactions

As already presented, the STM-IETS technique is not limited to investigate water split-

ting on TiO2 anatase (101). The strategies presented here also hold true on different

semiconductors and molecules. First, we look on the semiconductor side. In order to

record an IETS signal having enough states around EF is important. We achieve this

by using a highly n-doped TiO2 anatase (101) crystal. Hence, the following two criteria
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have to be met to be able to detect the IETS signal:

• The semiconductor has to be sufficiently conductive to perform STM.

• Enough states have to be at the Fermilevel. The doping should not be too high

to prevent the transition of the semiconductor to a metal.

With this guideline a large range of semicoductors can be addressed especially metal

oxides such as WO3 or SrTiO3.

On the other hand, STM-IETS can be obtained from a large variety of molecules. A

prominent example would be the reduction of CO2 to CO. As ice, CO2 exhibits a ν(C=O)

stretch mode around 291 meV and a δ(O=C=O) bending mode around 82 meV. For CO

the ν(C≡O) stretch mode energy shifts to 265 meV and the bending mode disappears

[163]. Depending on the surface the values shift slightly and additional vibrational

modes might appear (e.g. rotational hindering in the case for CO on Cu as presented in

section 5.1). The differences in the IETS data should be significant enough to label the

individual molecules and perform a study similar to water splitting on TiO2 anatase

(101). Again the same questions about reaction mechanism and rate limitations can

be asked for this case previewing the strong potential of this tool. In summary, using

STM-IETS for different molecules on different semiconductors has the chance to

increase fundamental understanding of reaction mechanisms potentially enhancing

future catalytic device efficiencies.
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