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S
ince the advent of nanotechnology, the
exploration of nanoscopic structures
continues to spur new developments

in all areas of the natural sciences, ranging
fromresearchon their fundamental properties
to ultrasensitive detectors, subwavelength
light management, biomedical diagnostics
and therapeutics, etc.1�10 Especially, where
this concerns optical phenomena, a key role
is played by microscopy techniques capable
of spatial resolution at the nanometer scale.
This appears to be an unreachable goal with
conventional diffraction-limited imaging tech-
niques, which offer hardly better than half a
wavelength resolution. However, a variety
of significant technological advances in both
electronic andoptical near-fieldmicroscopies
now offer routine discrimination of optical
features smaller than 10 nm.11

Unfortunately, this high-resolution con-
trast does not necessarily come with easy,
faithful interpretation of recorded images.
To beat the diffraction limit, the evanescent
near-fields must be accessed by some kind
of (scanning) probe.12 The intricate interac-
tion between an unknown sample under
study and the probe is all but fully under-
stood. A detailed model for recorded signals
would also be very beneficial in inverse scat-
tering problems.13,14 Here we concentrate on
scanning near-field optical microscopy. For a
handful of special cases, successful models are
available,which represent the signalmeasured
in termsof easily understoodquantities.15�17A
general theory for SNOM, based on the Max-
well equations, is also available.18 In this frame-
work, the measured signal can be calculated
by integrating over an infinite plane, separat-
ing tip and sample.
The current situation in SNOM is somewhat

reminiscentof scanning tunnelingmicroscopy
(STM) in the early 1980s. Ab initio theories
were available but cumbersome to use, and
simplified models based on ad hoc assump-
tions often led to paradoxical interpretations.

This changed when Tersoff and Hamann pro-

vided their celebrated interpretation frame-

work,19,20 which allowed scanning tunneling

microscopy images to be easily interpreted

with certainty and largely without a priori

knowledge or further simulations.
In STM, the interpretation of recorded sig-

nals is based on Bardeen's formula for
the current across a tunneling barrier.21 It
presumes weak coupling between the two
electrodes referred to as “sample” and “tip”.
Weak coupling is appropriate for electronic
states that decay evanescently into the
gap between the electrodes. Tersoff and
Hamann proceeded by introducing the sim-
plest conceivable model for a tip, namely,
a point-like s-wave emitter. Their elegant
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ABSTRACT Near-field microscopy offers the

opportunity to reveal optical contrast at deep

subwavelength scales. In scanning near-field

optical microscopy (SNOM), the diffraction limit

is overcome by a nanoscopic probe in close

proximity to the sample. The interaction of the probe with the sample fields necessarily perturbs

the bare sample response, and a critical issue is the interpretation of recorded signals. For a few

specific SNOM configurations, individual descriptions have been modeled, but a general and

intuitive framework is still lacking. Here, we give an exact formulation of the measurable signals

in SNOM which is easily applicable to experimental configurations. Our results are in close

analogy with the description Tersoff and Hamann have derived for the tunneling currents in

scanning tunneling microscopy. For point-like scattering probe tips, such as used in apertureless

SNOM, the theory simplifies dramatically to a single scalar relation. We find that the measured

signal is directly proportional to the field of the coupled tip�sample system at the position of the

tip. For weakly interacting probes, the model thus verifies the empirical findings that the

recorded signal is proportional to the unperturbed field of the bare sample. In the more general

case, it provides guidance to an intuitive and faithful interpretation of recorded images,

facilitating the characterization of tip-related distortions and the evaluation of novel SNOM

configurations, both for aperture-based and apertureless SNOM.

KEYWORDS: imaging theory . reciprocity theorem . Born series interaction .
apertureless near-field microscopy . SNOM
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analytical expression for the tunneling current showed
it is simply proportional to the wave function of the
bare sample at the location of the point-like tip.
Some of the earliest results in SNOM were inspired

by the successes of STM, emulating the evanescent
coupling character. Possibly the closest equivalent,
albeit somewhat exotic, is the observation of photon
tunneling through a gap filled with liquid metal.22

Illumination by total internal reflection and pick up
by a near-field probe that frustrates the evansecent
fields shares similar evanescent field features with the
STM.23,24 In the late 1990s, a number of general and exact
descriptions of SNOM were proposed, which arrive at
formulas that closely resemble that of Bardeen.25 Re-
markably, no explicit assumption of weak coupling be-
tween sample and tip is necessary in their derivation. In
principle, therefore, these formulas do also describe the
operation of SNOMs;aperture-based or apertureless;
that do not operate in the weak coupling regime.26

In the present report, we outline an approach to an
analytic theory for recordable SNOM signals. The cor-
relation between the general expressions for the elec-
tronic tunneling matrix elements and the optical rec-
iprocity relations is rooted in the intimate relations
between the Schrödinger equation and the Maxwell�
Helmholtz equation,27,28 which are the respective wave
equations for theelectron andphoton. This suggests the
possibility of picking up the idea of Tersoff and Hamann
of a point-like probe tip for SNOM, aswell. We show that
it is possible to express recordable signals as an integral
of the probing tip volume. Consequently, for aperture-
less or scattering-type SNOM;which are indeed point-
like at the wavelength scale;an analytical, closed-form
expression is obtained for the measured signals in
SNOM that is analogous to the Tersoff�Hamann results.
We demonstrate the utility of this framework in discuss-
ing how different forms of apertureless SNOM may be
used to map local electric field components and how
well thesemaybe related to thebare samplenear-fields.

RESULTS AND DISCUSSION

Bardeen's formulaMμν�
R
dS 3 (ψuh3ψν�ψν3ψuh) de-

scribes the flow of charge (or equivalently probability
density) across a fictitious plane inserted in the gap
between probe tip and sample. An analogon for SNOM
has been derived earlier by Carminati, Greffet, and co-
workers,whoused reciprocity theory in their approach.29

Reciprocity describes the relation between two scenar-
ios (1,2) under reciprocal illumination. Figure 1 displays a
typical application for SNOM: in scenario 1, only the tip is
present, and in scenario2, both tipandsamplearepresent.
The tip can thus be defined and characterized (in scenario
1) without reference to any sample. This allowsunravelling
sample properties from the unknown signal generated by
the sample being probed (in scenario 2).
Inside the volume V that contains the tip, the dis-

tribution of materials is identical in both scenarios;

outside it may differ. The surface δV of this volume is
presumed to be located entirely in vacuum, which
causes 3E to vanish exactly. For point-like current
sources, j1,2

(sou) = I1,2δ(r � ra,b), we write the reciprocity
theorem as30

1
iωμ0

I
δV
dSn̂i(E1jDiE2j � E2jDiE1j)

¼ E1 3 I2jrb � E2 3 I1jra (1)

Formally, this integral is the equivalent of Bardeen's
expression for a matrix element of the tunneling cur-
rent. Bardeen's formula is an approximation for scalar
(evanescent) wave functions solving the Schrödinger
equation. Equation 1 solves the Maxwell equations
exactly for vectorial fields, provided the materials in-
side the integration volume are nonmagnetic and have
symmetric dielectric tensors.
The great advantages of eq 1 are the terms on the

right-hand side. The currents are set parallel to the
polarizations of the exciting (I2) and the detected (I1)
radiation.31 The electric signal measured in a given
experiment is the term E2 3 I1. The term E1 3 I2 is an
undesired background term that needs careful atten-
tion. In many cases, it is actually eliminated, for exam-
ple, if rb is outside of V, that is, in a transmission type of
experiment. The same term also vanishes if E1^I2,
which is the basis of the so-called cross-polarization
scheme.32

To apply the reciprocity theorem eq 1 to SNOM, it is
advantageous to choose a half-space confined by a
plane parallel to the xy plane as integration volume
(Figure 1). On the upper boundary, the surface integral
vanishes under the Sommerfeld radiation condition.
The remaining integral surface, the evaluation plane,
allows for a successful treatment of the most general
case in Fourier space.
In close analogy with experiment, the tip is chosen

vertically aligned and the evaluation plane in the tip�
sample gap. We proceed with computing the fields
scattered by the tip alone T := E1|ze and the whole tip�
sample system S := E2|ze on the evaluation plane. This is
conveniently accomplished with an angular spectrum
representation (see Methods section). Together with
the volume equivalent representation33 for the tip
field, the exact expression for the measurable SNOM

Figure 1. Two reciprocal scenarios. (a) In scenario 1, a source
I1 at position ra emits radiation, which is scattered by the tip
anddetected at position rb. (b) In the reciprocal scenario 2, an
additional sample is present, whose surface right below the
probe tip is at height zs. Source anddetector have exchanged
their respective roles. A virtual evaluationplane is considered
at height ze in the gap between tip and sample.
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signal (eq 1) becomes a comparatively simple term as
an integral over the scattering tip volume

E2 3 I1jra ¼ E1 3 I2jrb � iω

Z
d3rT(r)Δε (r)Sþ(r) (2)

Such integrals over small tip volumes are easily manage-
able with modern numerical Maxwell solvers. One may
consider eq 2 as a fall-back option for delicate cases, or if
specifically crafted probe tips deviated significantly from
the point-like dipole model, which is considered next.
Sþ(rt) should not be confused with the actual field

S(rt) of the tip�sample system at the location of the tip
in scenario 1. Instead, it denotes those field compo-
nents that exist in the evaluation plane and travel up
toward the tip, as displayed in angular spectrum
representation.

Point-like Tip Model. In the form of eq 2, reciprocity
theory is fully general, applicable to both aperture-
based and apertureless versions of SNOM. We now ask
what algebraic simplification and intuitive understanding
can be gained if we restrict ourselves to point-like tips in
the apertureless case? Nanoscopic probe tips, in the spirit
of the dipole tipmodel,34 are often treated as a point-like
dipolar moment p(rt) = VtT(rt)Δε (rt). This replacement
turns eq 2 into the central result of this report, the simple
scalar relation for the measured signal

E2 3 I1jra ¼ E1 3 I2jrb � iωp(rt) 3 S
þ(rt) (3)

It is the equivalent of the Tersoff�Hamann formula I �
Dt(EF)|ψν(rt)|

2 for the tunneling current in STM. There, the
measured signal is proportional to the squaremodulus of
the sample wave function |ψν(rt)|

2 at the location of the
tip, multiplied with the density of states Dt of the tip. In
close analogy, the detected electric field is proportional
to the field Sþ(rt) at the tip position, projected by the
inner product on the dipole moment p of the tip. One
difference between STM and aSNOM is noteworthy:
whereas |ψν(rt)|

2 is a property of the bare sample, Sþ

describes the fully coupled tip�sample system. There-
fore, in the following, we discuss how the field Sþmay be
related to the unperturbed sample near-field S(unp) in the
absence of any probe tip.

Evaluation of the System Response. To evaluate the
components of the system field S at the evaluation plane
which travel upward, we adopt a Born series treatment of
the tip�sample interaction.35 Diagrammatically, the prop-
agatorof thecoupled tip�samplesystemis representedby

where the evaluation plane is indicated by the dotted
horizontal line and sample and tip interfaces by a solid

straight and curved line, respectively. Wiggly arrows
represent the well-known vacuum propagator, and
dotted arrows are self-depolarizations of the tip or
sample

containing all orders of interactions of the sample or tip
with itself.

We immediately see that all components traveling
upward are scattered from the sample to the evalua-
tion plane. The total field incident on the sample,
however, is influenced by the near-field probe. The
direct contribution S0 of the source I2may be part of S�

or Sþ, depending on whether its location rb is above or
below the evaluation plane.

We abbreviate the consecutive action of a propa-
gator and polarization byΓ (see Methods section). We
further introduce the interaction tensors

which describe one round trip action from the sample
to the tip and back onto the sample itself or vice versa.

Algebraically, we can rewrite the upward traveling
part of S according to eq 4 in two different versions as

Sþ ¼ (Γ
es
Σ

s
)(1�Θ

ss
)�1(Eins þΓ

st
Σ

t
Eint )

¼ Γ
es
Σ

s
Eins

(7a)

þ (Γ
es
Σ

s
Γ

st
Σ

t
)(1�Θ

tt
)�1 � (Γ

ts
Σ

s
Eins þ Eint ) (7b)

depending onwhether the view focuses on the tip (7b)
or the sample (7a).

In the Born series picture, the desired measurable
signal is thus generated in three steps. First, the in-
cident radiation excites the tip and sample directly,
and first-order scattering from one of them;say the
sample;may be viewed as a coherent additional
excitation of the other: (Γ tsΣ sEs

in þ Et
in). Second, is an

infinite series of interactions, whose terms can be
summed up as a geometric sum: (1�Θ tt)

�1. The third
and last term contains (ΓesΣ s), that is, the final scatter-
ing via the sample to the evaluation plane.

The interaction termΘ tt is crucial for the validity of
the Born series approach. The expansion can only
sensibly be employed, if it converges, that is, if )Θ tt ) < 1
in the sense of an operator norm. If the tip may be
consideredpoint-like,Θ tt canbe representedby a simple
matrix, facilitating a direct criterion for when the Born
series may be terminated after a suitable low order.

At this point, a cautious note regarding direct
scattering from the tip to the detector may be in order.
It is one of the major sources of undesired back-
ground, as it carries no information about the sample.
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Any measurable signal that stems directly from the tip
is due either to S0 ∈ Sþ, if the source I2 at rb is located
below the evaluation plane, or due to the term (E1 3 I2),
if rb is above the evaluation plane, inside the integra-
tion volume. Thus, this parasitic background signal
cannot generally be assumed to vanish, unless special
care is taken to ensure exactly normal field vectors,
E1^I2,36 or this signal is suppressed by modulation/
demodulation techniques to a level below the detector
noise floor.

We may terminate the Born series after an appro-
priate order, for example, in the case of a vanishingly
small contribution from the tip (i.e., R t f 0, Γ st f 0,
Σ t f 1). In that case, we find as the lowest order
contributions to the measurable signal Sþ the bare
sample field and the first and second order terms

In virtually all implementations of aSNOM, a modulation/
demodulation scheme is employed. By oscillating the tip
above the sample, rt varies periodically in time with a
frequency Ω. With the evaluation point rt moving, the
contributions to the measured signal Sþ(rt(t)) vary. Im-
portantly, this alters Et

in, Γ st, and Γ ts and hence all
contributions to Sþ. After demodulating the measured
signal at the fundamentalΩ, one still measures consider-
ableparasitic backgroundsignaldue toS0 orE1 3 I2.Onlyby
demodulation at the second or higher overtone ofΩ can
these (with some experimental care37,38) be sufficiently
suppressed. To lowest order, the recorded signal is thus

E2 3 I1jra � iωp(rt)(S(unp) þ S(1t) þ S(2s)) (9)

which confirms the long-established experimental
approach.39

With the field Sþ of the tip�sample system known,
we apply eq 3 to obtain the signal in typically em-
ployed experimental schemes for aSNOM. These are
commonly classified by polarization configurations of
the exciting and scattered radiation at the current
sources. By suitably aligned, symmetric optics, one
can ensure that the radiation has the same polarization
at the center of the tip as at the source. As a demon-
stration, we choose a sample represented by a set of
scattering points in vacuum. Already in this simple
model, we can quantitatively compare signal contribu-
tions fromdifferent terms of the Born series (eq 7a) and
learn which terms might contribute to the signal in the
general case. From the analytic relation of each term to
the unperturbed field, measured signals on unknown
samples are intuitively interpretable.

Coupled-Dipole Model. The coupled-dipolemodel con-
siders situations where the radiation at the tip from
both I1 and I2 is parallel polarized. Both sources are
assumed to be located at the same location ra = rb
inside the integration volume V. With additional as-
sumptions regarding the reflection of the incident
radiation at the sample interface40�42 and the actual
shape of an elongated tip, it is possible to approach a
quantitative description. For situations where the
probe tip is located above a flat, featureless substrate
surface, the interaction of the tip with the surface is
analytically described by the quasi-static coupled-
dipole model, whose most sophisticated version was
given by Cvitkovic et al.43 For a point-like tip of polar-
izability R, the field scattered by the whole tip�sample
system upon illuminationwith vertically polarized light
is found proportional to

E(sca) � (1þ rp)R 1� 1
16πR3

βR
� ��1

� (rpEins þ Eint )

(10)

where R is the polarizability of the tip, β and rp the
quasi-static and Fresnel refletion coefficients of the
sample surface, respectively, and R is the height of the
tip above the surface. An equivalent expression is
found for the case of horizontally polarized radiation.

We recognize the great similarity to eq 7b . In eq 10,
the contributions due to S0 and E1 3 I2|rb are not con-
sidered, as they are filtered out from the measured
signal by demodulation, as discussed above. Both
relations contain the full Born series of interactions,
which allows extracting information about thematerial
constants of the sample immediately underneath the
tip. As no termination of a Born series is necessary,
in this case, any probing tip may be used, regardless of
the strength of its influence on the sample, as long as
the signal remains measurable.

An advantage of eq 7b for future investigations is
the possibility to extract more detailed information
regarding the experimental conditions, such as the size
of the lateral area over which the tip�sample interac-
tion effectively averages, or how exactly the signal
evolves as the tip moves laterally over a material con-
trast boundary or some topography changes, etc. For
extended analysis of the influence of finite sized tips,
eq 7 can be used in conjunction with eq 2 instead of
eq 3 for point-like tips.

Cross-Polarized aSNOM. In the cross-polarized aSNOM
configuration, the current source I1 in scenario 1 and
the scattered field E1(ra) are both p-polarized. If I2 is
s-polarized (i.e., E1 3 I2 = 0), then according to eq 3, the
recorded signal simplifies to

E2 3 I1jra ¼ �iωp(rt) 3 Sþ(rt) (11)

regardless of the location of rb. We assume the tip is
isotropic in the xy plane and mainly polarizable along
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the z-axis. Choosing a grazing incidence excitation of
the tip, its dipole p in scenario 1 is mainly vertically
polarized. Themeasurement is thus sensitive mainly to
the z-component of the field Sþ of the tip�sample
system in scenario 2. It is not clear at this point, though,
what the disturbance due to the presence of the tip is. To
this end, we relate Sþ to the field due to an unperturbed
sample S(unp) in the absence of any probe tip.

We place the evaluation plane infinitesimally below
the tip position. Under the assumption of a strongly
anisotropically polarizable tip (R tz . R tx,y), the con-
tribution S(1t) to the signal becomes negligible, as the
field Et

in incident at the tip induces hardly any polariza-
tion. The Born series is dominated by S(unp) and S(2s)

(see also Figure 2).
The measured signal is thus proprtional to Sþ ≈

(1 þ Θ tt)S
(unp)(rt). The interaction tensor Θ tt involves

multiple three-dimensional convolutions; its exact nat-
ure is an intricate function of sample and tip geometry
and will have to be subject to further detailed investi-
gations.44 For weak tips, Θ tt , 1, the measured signal
is proportional to the unperturbed field, convoluted
with a lock-in demodulation effect.

Deconvoluting the signal at an overtone of the
tip oscillation adds an additional spatial decay in
the measured signal (compare Figure 2b,e). In the limit
of infinitesimally small tip oscillation amplitudes, the
signal recorded at the nth overtone is proportional
to the ∂

n/∂zn derivative of the field.45 The recorded Sþ

image appears spatially sharpened relative to the
unperturbed field image S(unp). This is particularly
prominent if both objects and tips are point-like. Also

at the edge of sample structures, one may observe in
cross-polarized aSNOM a more abrupt signal change
than is actually present in S(unp). Above extended
sample regions, which vary smoothly on the scale
of the tip size and exhibit slowly varying fields, the
spatial contrast enhancement mentioned above is less
pronounced.

These considerations are illustrated in Figure 2.
Contrasting Figure 2c and Figure 2d affirms that the
full Born series is well represented by the first-order
approximation eq 9, which in turn is dominated by
S(unp) and S(2s) (Figure 2f). The strongly z-polarizable
tips conveniently used in cross-polarized aSNOM
usually make the contribution S(1t) to the full signal
much weaker (Figure 2e). This analysis confirms that
images obtainedwith cross-polarized aSNOMare good
linear representations of the unperturbed bare sample
fields. This is in agreement with the empirical finding
that aSNOM in cross-polarization produces near-field
optical maps that are very well reproduced by simu-
lated near-field images of the bare substrate in the
absence of any probing tip.46�50

Horizontal Component Mapping aSNOM. Recently,
Hillenbrand et al. introduced another aSNOM config-
uration to measure horizontal electric fields.51 The ap-
proach is somewhat similar to thecoupled-dipole scenario,
in that both incident and analyzed radiation have the
samepolarization. However, in the present case, they are
s-polarized, which for very weakly s-polarizable probe
tips generates an intricate interplay between the sample
and the tip that is necessarily vectorial in nature.

Experimentally, two variations have been demon-
strated. In transmission geometry, rb is below the
evaluation plane and eq 3 takes the form of eq 11
but includes an upward-propagating direct excitation
S0 ∈ Sþ. In back-reflection geometry,52 ra = rb are both
inside the integration volume, giving the measurable
signal the form the full eq 3 . Here, the direct illumina-
tion does not contribute because S0 ∈ S�.

We may again assume the experimentally relevant
case of a point-like tip that is mostly polarizable in the
vertical direction, R tz . R tx,y > 0, but it must not be
completely unpolarizable in the horizontal direction.
Otherwise, the s-polarized dipole component p(rt)
picked up at the location of the tip would vanish, and
no measurable signal could be recorded.

In Figure 3, simulated near-field images showing
the individual contributions to the signal are displayed.
Except for projecting out the x component, the simula-
tions were performed with parameters identical to the
cross-polarized configuration of Figure 2 . Note that
whereas Figure 2c-g displays a common color scale, as
does Figure 3c-g, these color scales differ between
these two cases by about 1 order of magnitude. Mainly
due to the assumed stronger vertical polarizability of
the probe tip, the recordable signals are stronger in the
cross-polarized case.

Figure 2. Simulation of signal components in cross-
polarized aSNOM at λ = 1064 for the special case of a point-
like tip and sample. (a) Sketch of the aSNOM configura-
tion. A set of point-like dipoles representing spherical gold
colloids is scanned by an anisotropic point-like tip, repre-
senting a silicon ellipsoid. Displayed are the z-components
of (b) the unperturbed sample field S(unp) in the absence of
any probe tip, compared to (c) the full Born series signal Sþ,
(d) the approximated signal, which is the coherent sum of
(e) S(unp), (f) S(1t), and (g) S(2s), deconvoluted at the second
overtone of the tip oscillation frequency. Each colloid
responds with two lobes of opposite optical phase.
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The comparison of Figure 3c,d shows that, as in the
case of cross-polarized aSNOM, the full Born series is
well approximated by the two lowest relevant orders,
following eq 9. Evidently, with the simulation para-
meters chosen in Figure 3, the approximated field is
dominated by the unperturbed field. For stronger
interacting tips, also the higher order terms S(1t) and
S(2s) will contribute to the signal significantly.

Both terms S(1t) and S(2s) can be of the same order
and contribute coherently to the measured signal
(Figure 3e,f) in very different forms. To explore this
situation further, we compare numerical aSNOM
images generated with exclusively z- or x-polarizable
tips in Figure 4 . For both cross-polarized andhorizontal
component mapping, aSNOM z-polarizability exclu-
sively contributes to S(2s) (Figure 4d,h). The s-polarized
incident light cannot excite the tip, and S(1t) vanishes in
these cases (Figure 4c,g). Horizontal polarizability pre-
dominantly contributes to the signal term S(1t), excited
by light incident on the tip (Figure 4a,e). However, the
S(2s) components are not zero in these cases (Figure 4b,f).
For probe tips predominantly polarizable in x-direction,
S(2s) can be suppressed in favor of S(1t).53

Note that the aSNOM image presented in Figure 4h
only appears to be of dipolar character. Both lobes are
symmetric in amplitude and phase, and the central
node line occurs for symmetry reasons. According to
eq 8c, it represents the unperturbed field S(unp), con-
voluted with Θ tt. In the yz symmetry plane of an

excited x-dipole, however, no coupling to a z-polariz-
able tip is possible andΘ tt vanishes. The signal due to
S(1t) (Figure 4e) is favorable in this respect. According to
eq 8b, however, this signal does not represent the
unperturbed response of the sample to the field Es

in

directly incident on the sample. Rather it represents a
different sample response to an excitation emitted
indirectly by the tip, ~Es

in = Γ st Σ t
Et
in.

CONCLUSIONS

Wehave provided a general and exact framework for
the measurable signals in scanning near-field optical
microscopy. The starting point is a form of reciprocity
theory appropriate for dissipative, nonmagnetic, reci-
procal tips. (In passing, we note the possibility of an
analogous theory for transparent, nonmagnetic, but
nonreciprocal tips, which bears great similarity with
energy conservation theorems.) As was already re-
ported earlier by Carminati, Greffet, and co-workers,54

only the upward traveling components of the coupled
tip�sample system contribute to any measurable signal.
With the goal of an intuitive formulation that allows
immediate conclusions about qualitative aspects of

Figure 3. Simulation of signal components obtained with
horizontal component mapping aSNOM. (a) Sketch of
the aSNOM configuration. Except for projecting out the
s-polarized component, the simulations were performed
with parameters identical to the cross-polarized configuration
of Figure 2 . Displayed are the x components of (b) the
unperturbed sample field S(unp) in the absence of any probe
tip, and (c) the full Born series signal Sþ, (d) the approxi-
mated signal, which is the coherent sum of (e) S(unp), (f) S(1t),
and (g) S(2s), deconvoluted at the second overtone of the tip
oscillation frequency. The response of each colloid is domi-
nated by a central lobe, except for (f), where this lobe is
symmetry-forbidden. For a single colloid, all terms are
symmetric in amplitude and phase to a vertical axis through
the center of the colloid. We discard the background term
E1 3 I2|rb of eq 3 .

Figure 4. Comparison of the first-order contributions to the
field Sþ picked up by differently polarizable tips in different
aSNOM configurations. All images show a point-like dipole
representing a spherical gold colloid of 10 diameter, scan-
ned by a point-like tip polarizable exclusively in x-direction
(a,b,e,f) or in z-direction (c,d,g,h) by the same magnitude.
The excitation is always assumed to be s-polarized radiation
of 1064 wavelength. (a�d) Cross-polarized aSNOM images,
(e�h) horizontal component mapping aSNOM images. The
left row (a,c,e,g) shows the S(1t) contribution, the right row
(b,d,f,h) shows S(2s).

A
RTIC

LE



ESSLINGER AND VOGELGESANG VOL. 6 ’ NO. 9 ’ 8173–8182 ’ 2012

www.acsnano.org

8179

SNOM, our variant of the theory is expressed as an
integral over the probing tip's volume (eq 2). It can be
conveniently reduced to the point-like tip case (eq 3).
This latter formulation constitutes an analogue to the
formula of Tersoff and Hamann for the analysis of
scanning tunneling microscopy signals obtained with
point-like electrodes.
The analysis of the upward traveling field compo-

nents is achieved in a Born series framework. A criter-

ion for the applicability of the Born series is given. We
discuss a number of typical experimental situations:
the coupled-dipolemodel, the cross-polarization scheme
for mapping out-of-plane field components, and hor-
izontal component mapping of electric field compo-
nents. All of them are found to be amenable to
analysis with the model presented here, which indi-
cates its utility also for future developments in scan-
ning near-field microscopy.

METHODS

Reciprocity Theory. To motivate the application of reciprocity
theory, it is convenient to draw attention to an often unnoted
intimate relation between reciprocity and energy conservation.
Indeed, at first sight, the flow of energy across an interface
separating a sample from a near-field probe tip might seem like
an opportune candidate to establish an optical analogue to the
probability flow in Bardeen's case. The flow of energy is re-
presented by the Poynting field S = E � H, and the associated
theorem for optical energy conservation is well-known.55 Its
close relative, the reciprocity theorem, contains terms of similar
shape (E2� H1� E1� H2). It constitutes a relation between the
fields in two scenarios 1 and 2 under different illumination
conditions.56

To treat energy conservation and reciprocity in the same
formalism, we rewrite the Poynting vector as 2S = (E2�H1þ E1
� H2) with both scenarios being identical. In the following, we
consider generalized terms (E2 � H1 þ ζE1 � H2). This puts
reciprocity theory on par with energy conservation. The sign
factor ζ = (1 automatically tracks both energy and reciprocity
theory, and an explicit choice is made after it has become
evident which theorem is best suited.We start from theMaxwell
equations in SI units

rD ¼ F (12a)

r� E ¼ � :
B (12b)

rB ¼ 0 (12c)

r� H ¼ :
Dþ j (12d)

with the constitutive equations

D ¼ εE (13a)

B ¼ μH (13b)

j ¼ σE (13c)

All material properties are described by unit bearing quantities;
that is, they are not measured relative to the vacuum values ε0
and μ0; ε and μ are the electric and magnetic permittivity,
respectively, and σ the conductivity. By multiplying H 3 with
eq 12b and E 3 with eq 12d and adding appropriately, one
obtains

�r(E2 � H1 þ ζE1 � H2) ¼ H1
:
B2 þ ζH2

:
B1 þ E2

:
D1 þ ζE1

:
D2

þ E2j1 þ ζE1j2 (14)

Here the fields E,D,H,B,j are all real-valued functions of space
and time. The indices 1 and 2 refer to the two different
scenarios, as depicted in Figure 1. In both scenarios, a volume
V is considered to enclose the scattering probing tip located at rt
with a hemisphere of infinite radius. The distribution of material

scatterers inside the volume does not change, but the fields are
generally very different. In scenario 1, a source I1 at position ra
emits radiation, giving rise to E1 at position rb. In the reciprocal
scenario 2, an additional sample is present outside the integra-
tion volume. Source and detector have exchanged their places;
source I2 at position rb emits radiation, which leads to a field E2
at position ra.

The material operators ε ,μ ,σ are local functions of space,
describing causal responses in time, most easily represented as
Kramers�Kronig compatible functions of frequency. This calls
naturally for a complex-valued representation, which is carefully
introduced by substituting E f RE = (1/2)(EþE), etc. It is also
most convenient for near-monochromatic scenarios,57,58 such
as those excited by narrow-band laser sources, in which all time-
dependent phenomena vary with frequencies in a narrow band
Δω around a central frequencyω. As is well-known, in this case,
product terms separate into two classes: fast terms, which
oscillate (approximately) with exp(�2iωt), and slowly varying
terms, which vary on frequency scales less thanΔω. Thus, there
are four possible equations, namely, the fast and slow terms in
the energy (ζ = þ1) or reciprocity (ζ = �1) theorem.

Here we concentrate on the exact monochromatic approx-
imation. In this case, it is advantageous to split the current
densities into source and scattering parts, j = j(sou)þj(sca), and to
subsume the conductivity tensor for all scattering media in the
dielectric permeability, ~ε = ε � σ /iω. The slow terms of the
energy conservation theorem are

Rr(E2 � H1 þ E1 � H2) ¼ þR (2iω)(E1~ε
AHE2 þH2μ

AHH1)

�R (E1 3 j
(sou)
2 þ E2 3 j

(sou)
1 ) (15)

Conventionally, only the slow terms are regarded as relevant to
optical measurements because the fast terms oscillate with
frequencies 2ω. THz and are orders of magnitude faster than
what is detectable with currently available detectors. Curiously,
though, the slow energy conservation terms correspond algeb-
raically most closely to the fast terms of the reciprocity theorem

Rr(E1 � H2 � E2 � H1) ¼ þR (2iω)(E1~ε ASE2 þH2μ
ASH1)

�R (E1 3 j
(sou)
2 � E2 3 j

(sou)
1 ) (16)

Besides the great similarity between eqs 15 and 16, there are
subtle, yet crucial, differences. Whereas we do make no assump-
tions about the symmetryof thematerial tensors, thefirst termson
the right-hand sides of the energy and reciprocity relation contain,
respectively, only the anti-Hermitian and antisymmetric parts. If
these terms do not vanish by symmetry, they can pose consider-
able numerical difficulties in further applications of the equations.

One may choose one or the other, depending on whether
the material tensors are Hermitian or symmetric, respectively.
(Note that this concerns only the inside of the hemispherical
volume.) On the one hand, energy conservation may be suc-
cessfully applied to magneto-optically active and other materi-
als that break (local) time-reversal symmetry.59 Reciprocity, on
the other hand, usually facilitates dissipative media, which
break (optical) energy conservation. These algebraic considera-
tions hint at the underlying deeper symmetries that exist
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between energy conservation, time-reversal symmetry, and
reciprocity.

We assume a symmetric dielectric function ~ε AS = 0 and
nonmagnetic materials. We integrate eq 16 over a volume
containing the tip and use the Gauss theorem to transform it
into the surface integral eq 1.

Angular Spectrum Representation. For evaluating eq 1, we re-
present both fields scattered by the tip and the whole system in
the evaluation plane using angular spectrum representation.
Angular spectrum representation is based on a two-dimen-
sional Fourier transform of electric fields. The Helmholtz equa-
tion constitutes the out-of plane propagation constant k0

2 =
ω2/c2. We distinguish between components traveling upward
(ξ = þ1) and downward (ξ = �1).

Ei(r) ¼ ∑
ξ¼ ( 1

1
2π

ZZ
d2k )E

ξ
i (k ), z0)� exp(ξikz(rz � z0))exp(ik )r ))

kz ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2)

q
for propagating modes

kz ¼ þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2) � k20

q
for evanescent modes (17)

The upward and downward traveling field components ξ = (1
can be separated in Fourier space

E(k ) , z) ¼
1
2π

ZZ
d2k )E(r)exp(�ik )r )) (18)

through the use of a projection operator

Eξ(k ), z) ¼
kz � iξDz

2kz
E(k ) , z) (19)

Notice that this requires, besides the field in the evaluation
plane, also its normal derivative. An alternative scheme might
be more convenient for certain numerical implementations. If
the derivative of the field in the transformation plane is not
available, but the fields are known in two parallel planes close to
each other, the projections can also be obtained as

Eξ(k ) , z) ¼ ξ
E(k ) , z)� E(k ) , zþΔz)exp(�ξikzΔz)

2isin(kzΔz)

� exp(�ξik )r )) (20)

Once the fields are distinguished into their upward and down-
ward traveling components, one can propagate them very
easily from one plane to another:

Eξ(k ) , z) ¼ Eξ(k ) , z0)exp(ξikz (z� z0)) (21)

Note that this propagation may only be applied inside of
homogeneous media. In our case, fields are propagated
through the gap between tip and sample.

Integration over the Evaluation Plane. In order to derive eq 2, we
use the self-consistent scattered field expression for the tip field

Ti(r) ¼ k20
ε0

Z
d3r0Tm(r0)Δεmj

(r0)� 1þrjri

k20

 !
eik0 jr � r0 j

jr� r0j (22)

Here, Δε is the difference between the scatterer permittivity and
the background medium. The integration volume covers only the
finite tip volume, whereΔε is nonzero. With the angular spectrum
representation of the scalar Green function60�62

eik0 jrj

jrj ¼ � i

8π2

ZZ
d2 ~k

)

1
~kz
e�i~k
z rze

i ~k

)r ) (23)

one can substitute eq 22 for T and eq 17 for S in eq 1. After a few
algebraic manipulations, eq 2 is obtained.

Green Functions. As is well-known, a single scattering event is
mediated by the vacuum Green dyadic of the Helmholtz
equation

G 0
ij
(r, r0) ¼ � 1þrjri

k20

 !
exp(ik0jr� r0j)

4πjr� r0j (24)

We introduce the tensor Γ = (k0
2/ε0)G

0R to describe the con-
secutive action of polarizing a scatterer and propagating the
scattered field to the target location. The polarizability is R =R
dVΔε .
We abbreviate the fields after a single scattering event by

Esca(r) ¼ �
Z
d3r0G 0(r, r0)Δε (r0)Ein(r0) (25a)

¼ ΓEin (25b)

In this sense, the self-interaction of tip and sample (eq 5) can be
written as

Σ ¼ ∑
¥

n¼ 0
Γ n ¼ (1� Γ)�1 (26)

We write the upward traveling part of the sample-field accord-
ing to eq 4 as

Sþ ¼ (Γ
es
Σ

s
)� (1þΘ

ss
þΘ 2

ss
þ :::)� (Eins þΓ

st
Σ

t
Eint ) (27)

which we abbreviate as eq 7a.
Numerical Evaluation for Point-like Samples. In a typical experi-

ment, one considers an excitation source at a certain location,
which gives rise to a scattered field. At another location, one
places a detector, which then measures the effect communi-
cated from the source to the detector. In numerical simulations,
this signal can be calculated straightforwardly with any variant
of rigorous Maxwell equation solving method. Essentially, one
computes in a single scenario the transmission of energy from
the source to the detector.

Reciprocity theory uses a different approach to obtain this
signal, which considers two reciprocal scenarios. It establishes
relations between oscillating currents and resulting electric
fields if one interchanges the locations where the currents
are placed and where the fields are measured. For computing
optical scattering signals, one considers in the first scenario the
source currents that generate the exciting radiation as in an
actual experiment. The resulting fields are evaluated at the
location of the detector. In the second scenario, their places are
interchanged. In this case, one considers currents in the place of the
detector to excite scattered response fields at the location of the
source. This may at first seem somewhat counterintuitive. By com-
bining the two scenarios, however, it is possible to establish a
relation thatdirectly represents theexperimentallymeasured signal.

To motivate further the application of reciprocity theory, we
apply the field of the tip�sample system to the case of a sample
consisting of point-like scatterers in vacuum. The scatterer
polarizabilities represent spherical gold colloids of 10 nm dia-
meter. The refractive index of gold at 1064 nm wavelength is
taken from Johnson and Christy.63 The tip�sample distance is
25 nm. The polarizability of the tip is assumed to be the same as
a 10 nmdiameter sphere of silicon for the in-plane components.
We chose that value according to the data sheet of typical
silicon tips employed in our experimental setup (ATEC-NC, Nano
and More). In Figures 2 and 3, we chose the out-of plane
component of the tip polarizability 10 times as large as the in-
plane components. In Figure 4, the magnitude of dipolar
moment is equal between individual tips pxa,b = pzc,d. The point
sources I1,2 are collimated by optics inside the integration
volume. The exact geometry of illumination and detection path
is represented by the tensorial connection between source
current I1,2 and incident field on tip and sample. In the simula-
tion, we assume the illumination field to be a plane wave of
same polarization as the sources, making this tensor a multiple of
the unit operator. The angle of illumination is 70� from the surface
normal. The (complex valued) measured signal at the second
overtone of the tip oscillation frequency is proportional to

E2 3 I1j2Ω �
Z 2π=Ω

0
dtp(rt(t)) 3 S

þ(rt(t)) 3 exp(2iΩt) (28)

Weplot theabsolutevalueof the signal. Thefield incidenton the tip
in scenario 1 changes with the oscillating tip position. The dipolar
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moment p changes with time, and also portions of S changing
linearly with tip�sample distance contribute to the signal. This
includes far-field scattering of a substrate�air interface.

The images are a demonstration of the Green function
ansatz for discrete sample dipoles to show the Born series
may be terminated after few orders. More sophisticatedmodels
for sample and tip can be easily applied using eq 2.
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financial interest.

REFERENCES AND NOTES
1. Lieber, C. M. Nanoscale Science and Technology: Building

a Big Future from Small Things.MRS Bull. 2003, 28, 486–491.
2. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The

Optical Properties of Metal Nanoparticles: The Influence of
Size, Shape, and Dielectric Environment. J. Phys. Chem. B
2003, 107, 668–677.

3. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon
Subwavelength Optics. Nature 2003, 424, 824–830.

4. Rosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics.
Chem. Rev. 2005, 105, 1547–1562.

5. Maier, S. A.; Atwater, H. A. Plasmonics: Localization and
Guiding of Electromagnetic Energy in Metal/Dielectric
Structures. J. Appl. Phys. 2005, 98, 011101.

6. Ozbay, E. Plasmonics: Merging Photonics and Electronics
at Nanoscale Dimensions. Science 2006, 311, 189–193.

7. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble
Metals on the Nanoscale: Optical and Photothermal Prop-
erties and SomeApplications in Imaging, Sensing, Biology,
and Medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

8. Yoshida, M.; Lahann, J. Smart Nanomaterials. ACS Nano
2008, 2, 1101–1107.

9. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.;
Van Duyne, R. P. Biosensing with Plasmonic Nanosensors.
Nat. Mater. 2008, 7, 442–453.

10. Halas, N. J. Plasmonics: An Emerging Field Fostered by
Nano Letters. Nano Lett. 2010, 10, 3816–3822.

11. Vogelgesang, R.; Dmitriev, A. Real-Space Imaging of Na-
noplasmonic Resonances. Analyst 2010, 135, 1175–1181.

12. Méndez, E.; Greffet, J.-J.; Carminati, R. On the Equivalence
between the Illumination and Collection Modes of the
Scanning Near-Field Optical Microscope. Opt. Commun.
1997, 142, 7–13.

13. Carney, P. S.; Schotland, J. C. Inverse Scattering for Near-
Field Microscopy. Appl. Phys. Lett. 2000, 77, 2798–2800.

14. Carney, P. S.; Frazin, R. A.; Bozhevolnyi, S. I.; Volkov, V. S.;
Boltasseva, A.; Schotland, J. C. Computational Lens for the
Near Field. Phys. Rev. Lett. 2004, 92, 163903.

15. Kosobukin, V. Theory of Scanning Near-Field Magnetoop-
tical Microscopy. Tech. Phys. 1998, 43, 824–829.

16. Taminiau, T. H.; Moerland, R. J.; Segerink, F. B.; Kuipers, L. K.;
van Hulst, N. F. λ/4 Resonance of an Optical Monopole
Antenna Probed by Single Molecule Fluorescence. Nano
Lett. 2007, 7, 28–33.

17. Walford, J. N.; Porto, J.-A.; Carminati, R.; Greffet, J.-J. Theory
of Near-Field Magneto-Optical Imaging. J. Opt. Soc. Am. A
2002, 19, 572–583.

18. Greffet, J.-J.; Carminati, R. Image Formation in Near-Field
Optics. Prog. Surf. Sci. 1997, 56, 133–237.

19. Tersoff, J.; Hamann, D. R. Theory and Application for the
Scanning Tunneling Microscope. Phys. Rev. Lett. 1983, 50,
1998–2001.

20. Tersoff, J.; Hamann, D. R. Theory of the Scanning Tunneling
Microscope. Phys. Rev. B 1985, 31, 805–813.

21. Bardeen, J. Tunnelling from a Many-Particle Point of View.
Phys. Rev. Lett. 1961, 6, 57–59.

22. Pohl, W. D. Near-Field Photon Tunneling Devices Using
Liquid Metal. U.S. Patent 5619600, 1997.

23. Krenn, J.; Wolf, R.; Leitner, A.; Aussenegg, F. Near-Field
Optical Imaging the Surface Plasmon Fields of Lithogra-
phically Designed Nanostructures. Opt. Commun. 1997,
137, 46–50.

24. Krenn, J.; Dereux, A.; Weeber, J.; Bourillot, E.; Lacroute, Y.;
Goudonnet, J.; Schider, G.; Gotschy, W.; Leitner, A.;

Aussenegg, F.; et al. Squeezing the Optical Near-Field
Zone by Plasmon Coupling ofMetallic Nanoparticles. Phys.
Rev. Lett. 1999, 82, 2590–2593.

25. Carminati, R.; Sáenz, J. J. Scattering Theory of Bardeen's
Formalism for Tunneling: New Approach to Near-Field
Microscopy. Phys. Rev. Lett. 2000, 84, 5156–5159.

26. Knoll, B.; Keilmann, F. Enhanced Dielectric Contrast in
Scattering-Type Scanning Near-Field Optical Microscopy.
Opt. Commun. 2000, 182, 321–328.

27. De Raedt, H.; Lagendijk, A.; de Vries, P. Transverse Localiza-
tion of Light. Phys. Rev. Lett. 1989, 62, 47–50.

28. Steuernagel, O. Equivalence between Focused Paraxial
Beams and the Quantum Harmonic Oscillator. Am. J. Phys.
2005, 73, 625–629.

29. Carminati, R.; Sáenz, J. J.; Greffet, J.-J.; Nieto-Vesperinas, M.
Reciprocity, Unitarity, and Time-Reversal Symmetry of the
S Matrix of Fields Containing Evanescent Components.
Phys. Rev. A 2000, 62, 012712.

30. Porto, J. A.; Carminati, R.; Greffet, J.-J. Theory of Electro-
magnetic Field Imaging and Spectroscopy in Scanning
Near-Field Optical Microscopy. J. Appl. Phys. 2000, 88,
4845–4850.

31. Monteath, G. D. Applications of the Electromagnetic Reci-
procity Principle; Pergamon Press: New York, 1973.

32. Esteban, R.; Vogelgesang, R.; Dorfmüller, J.; Dmitriev, A.;
Rockstuhl, C.; Etrich, C.; Kern, K. Direct Near-Field Optical
Imaging of Higher Order Plasmonic Resonances. Nano
Lett. 2008, 8, 3155–3159.

33. Balanis, C. A. Advanced Engineering Electromagnetics;
Wiley: New York, 1989.

34. Koglin, J.; Fischer, U. C.; Fuchs, H. Material Contrast in
Scanning Near-Field Optical Microscopy at 1�10 nm Re-
solution. Phys. Rev. B 1997, 55, 7977–7984.

35. Sun, J.; Carney, P. S. Strong Tip Effects in Near-Field
Scanning Optical Tomography. J. Appl. Phys. 2007, 102,
103103.

36. Esslinger, M.; Dorfmüller, J.; Khunsin, W.; Vogelgesang, R.;
Kern, K. Background-Free Imaging of Plasmonic Structures
with Cross-Polarized Apertureless Scanning Near-Field
Optical Microscopy. Rev. Sci. Instrum. 2012, 83, 033704.

37. Vogelgesang, R.; Esteban, R.; Kern, K. Beyond Lock-in
Analysis for Volumetric Imaging in Apertureless Scanning
Near-Field Optical Microscopy. J. Microsc. 2008, 229, 365–
370.

38. Esteban, R.; Vogelgesang, R.; Kern, K. Simulation of Optical
Near and Far Fields of Dielectric Apertureless Scanning
Probes. Nanotechnology 2006, 17, 475–482.

39. Hillenbrand, R.; Keilmann, F. Complex Optical Constants
on a Subwavelength Scale. Phys. Rev. Lett. 2000, 85, 3029–
3032.

40. Raschke, M. B.; Lienau, C. Apertureless Near-Field Optical
Microscopy: Tip�Sample Coupling in Elastic Light Scatter-
ing. Appl. Phys. Lett. 2003, 83, 5089–5091.

41. Bek, A. Apertureless SNOM: A New Tool for Nano-Optics.
Ph.D. Thesis, EPFL, 2004.

42. Renger, J.; Grafström, S.; Eng, L. M.; Hillenbrand, R. Reso-
nant Light Scattering by Near-Field-Induced Phonon Po-
laritons. Phys. Rev. B 2005, 71, 075410.

43. Cvitkovic, A.; Ocelic, N.; Hillenbrand, R. Analytical Model for
Quantitative Prediction ofMaterial Contrasts in Scattering-
Type Near-Field Optical Microscopy.Opt. Express 2007, 15,
8550–8565.

44. Deutsch, B.; Hillenbrand, R.; Novotny, L. Visualizing the
Optical Interaction Tensor of a Gold Nanoparticle Pair.
Nano Lett. 2010, 10, 652–656.

45. Walford, J. N.; Porto, J. A.; Carminati, R.; Greffet, J.-J.; Adam,
P. M.; Hudlet, S.; Bijeon, J.-L.; Stashkevich, A.; Royer, P.
Influence of Tip Modulation on Image Formation in Scan-
ning Near-Field Optical Microscopy. J. Appl. Phys. 2001, 89,
5159–5169.

46. Zentgraf, T.; Dorfmüller, J.; Rockstuhl, C.; Etrich, C.; Vogel-
gesang, R.; Kern, K.; Pertsch, T.; Lederer, F.; Giessen, H.
Amplitude- and Phase-Resolved Optical Near Fields of
Split-Ring-Resonator-Based Metamaterials. Opt. Lett.
2008, 33, 848–850.

A
RTIC

LE



ESSLINGER AND VOGELGESANG VOL. 6 ’ NO. 9 ’ 8173–8182 ’ 2012

www.acsnano.org

8182

47. Dorfmüller, J.; Vogelgesang, R.; Weitz, R. T.; Rockstuhl, C.;
Etrich, C.; Pertsch, T.; Lederer, F.; Kern, K. Fabry-Pérot
Resonances in One-Dimensional Plasmonic Nanostruc-
tures. Nano Lett. 2009, 9, 2372–2377.

48. Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.;
Etrich, C.; Kern, K. Plasmonic Nanowire Antennas: Experi-
ment, Simulation, and Theory. Nano Lett. 2010, 10, 3596–
3603.

49. Dorfmüller, J.; Dregely, D.; Esslinger, M.; Khunsin, W.;
Vogelgesang, R.; Kern, K.; Giessen, H. Near-Field Dynamics
of Optical Yagi-Uda Nanoantennas. Nano Lett. 2011, 11,
2819–2824.

50. Dregely, D.; Taubert, R.; Dorfmuller, J.; Vogelgesang, R.;
Kern, K.; Giessen, H. 3D Optical Yagi-Uda Nanoantenna
Array. Nat. Commun. 2011, 2, 267al.

51. Schnell, M.; Garcia-Etxarri, A.; Huber, A. J.; Crozier, K. B.;
Borisov, A.; Aizpurua, J.; Hillenbrand, R. Amplitude- and
Phase-Resolved Near-Field Mapping of Infrared Antenna
Modes by Transmission-Mode Scattering-Type Near-Field
Microscopy. J. Phys. Chem. C 2010, 114, 7341–7345.

52. Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth,
F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.;
Hueso, L.; et al. Resolving the Electromagnetic Mechanism
of Surface-Enhanced Light Scattering at Single Hot Spots.
Nat. Commun. 2012, 3, 684.

53. McLeod, A.; Weber-Bargioni, A.; Zhang, Z.; Dhuey, S.;
Harteneck, B.; Neaton, J. B.; Cabrini, S.; Schuck, P. J. Non-
perturbative Visualization of Nanoscale Plasmonic Field
Distributions via Photon Localization Microscopy. Phys.
Rev. Lett. 2011, 106, 037402.

54. Carminati, R.; Nieto-Vesperinas, M.; Greffet, J.-J. Reciprocity
of Evanescent Electromagnetic Waves. J. Opt. Soc. Am. A
1998, 15, 706–712.

55. Jackson, J. D. Classical Electrodynamics, 3rd ed.; Wiley: New
York, 1998.

56. Collin, R. E. Field Theory of GuidedWaves; Oxford University
Press: New York, 1990.

57. Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous
Media; Pergamon Press: New York, 1963.

58. Schwinger, J.; Deraad, L., Jr.; Milton, K.; Tsai, W.; Norton, J.
Classical Electrodynamics; Westview Press, 1998.

59. Nye, J. Physical Properties of Crystals: Their Representation
by Tensors and Matrices; Oxford University Press: New
York, 1957.

60. Marathay, A. S. Fourier Transform of the Green's Function
for the Helmholtz Equation. J. Opt. Soc. Am. 1975, 65, 964–
965.

61. Devaney, A. J.; Wolf, E. Multipole Expansions and Plane
Wave Representations of the Electromagnetic Field.
J. Math. Phys. 1974, 15, 234–244.

62. Kvien, K. Angular Spectrum Representation of Fields Dif-
fracted by Spherical Objects: Physical Properties and
Implementations of Image Field Models. J. Opt. Soc. Am.
A 1998, 15, 636–651.

63. Johnson, P. B.; Christy, R. W. Optical-Constants of Noble-
Metals. Phys. Rev. B 1972, 6, 4370–4379.

A
RTIC

LE


