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Abstract. In systems with complex multi-minima energy landscapes, it is often not only the global mini-
mum which is of great importance. For example, in materials science, metastable compounds corresponding
to local minima on the landscape play a crucial role in many technological applications. In order to reach
such modifications, both in computational and real world situations, it is necessary to optimally control
the dynamics of the system on the landscape. We present a general method, how to design optimal tem-
perature schedules for reaching particular basins on a complex landscape, by constructing a coarse-grained
transition probability matrix from stochastic global landscape explorations, and subsequently using opti-
mal control techniques on the Master equation describing the dynamics on the simplified energy landscape.
As a demonstration example, the landscape of MgF2 is considered.

1 Introduction

Trying to understand the dynamics of complex systems in
science, technology and applied mathematics typically in-
volves a detailed study of the energy or cost function land-
scape, which controls the time evolution of the system of
interest [1]. Important quantities are the stable regions of
the landscape [2–9] and the flow of probability as function
of time [10,11], both as function of external environmen-
tal and control parameters. The former correspond to e.g.
(meta)stable chemical compounds [6,7,12,13], folded or
unfolded states of a protein [14–19], magnetic phases [20],
stable attractors [21], or (sub)optimal solutions of com-
binatorial optimization problems [22,23], while the latter
characterizes the likelihood of transitions between stable
regions [24,25], the relaxation towards equilibrium [26,27],
and the progress of optimization algorithms [23,28]. From
a mathematical point of view, identifying such regions and
flows involves the determination of the minima of the land-
scape and the local volume contained within the basins of
the landscape, and the analysis of the connectivity of the
landscape including the determination of the energetic, en-
tropic and kinetic barriers [11,29] separating the minima
and multi-minima basins [2].

Such a global exploration of the landscape using a
large variety of methods and algorithms yields a detailed
model that can explain many aspects of the dynamics of
the underlying system, in particular the observed states,
phases or chemical modifications, their individual stabil-
ity and the transitions among them. However, in many
instances, it proves to be quite difficult to actually ac-
cess e.g. the global minimum or some particularly inter-
esting metastable configuration of the system in practice,
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even though our landscape information assures us of their
potential existence. This is particularly noticeable in the
fields of materials science and solid state chemistry, where
the rational design of new compounds and routes for their
synthesis has been lacking, and only in recent years a
change from an inductive to a deductive approach to the
field has been evolving [12,30]. Clearly, it would be of great
interest, to develop a methodology that allows us to em-
ploy the available landscape information to design an op-
timal schedule of the available control parameters that
drives the system of interest with a high probability to
the desired region on the landscape.

Of course, this general issue has already been inves-
tigated in the past. Much work has been devoted to the
development of optimal schedules for global optimization
algorithms that purport to reach the global minimum
of a given energy landscape in the most efficient fash-
ion [23,31–34]. Similarly, one notes that the above prob-
lem can often be recast as a finite-time thermodynamics
problem, where e.g. a particular thermodynamic state has
to be reached within a finite time with a minimal use of
resources [32,35]. Kunz et al. have used optimal control
methods to analyze the dynamics on landscape models
derived from clusters, with the goal to design an optimal
simulated annealing schedule to reach a desired probabil-
ity distribution in the configuration, for instance one fo-
cused at a particular structure in landscapes like a global
minimum [36]. Their landscape model was based on infor-
mation about the energies of the minima and the saddle
points connecting them.

In this study, we solve a similar optimal control prob-
lem for a particular solid compound, MgF2, where the
landscape model [24] is based on the energies of the
minima, the local densities of states and the transition
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probabilities among the basins as function of energy, which
have been measured using the so-called threshold algo-
rithm [37,38]. We use this information to construct a tran-
sition probability matrix between the basins as function
of temperature, employing so-called kinetic factors [11,29].
Thereafter we design optimal schedules that maximize the
probability to reach a particular modification of MgF2.
This system is of particular interest, since it is often com-
pared with TiO2, for which several modifications such as
rutile and anatase exist [39]; in contrast, however, MgF2

has so far only been synthesized in the rutile [39] (and
possibly a structurally closely related CaCl2 [40]) modifi-
cation, although the anatase modification occupies a large
deep-lying basin on the energy landscape second in energy
only to the rutile minimum [24].

2 The model system

2.1 Model description

The energy landscape of interest belongs to a simplified
model of the solid compound MgF2 that has been inves-
tigated in the past [41]. In that work, in order to reduce
the number of degrees of freedom to a manageable size,
MgF2 was described by a periodically repeated variable
unit cell containing two formula units of MgF2. No re-
strictions were placed on the possible movement of the
atoms within the cell and neither on the changes of the
unit cell parameters. Since many millions of energy cal-
culations were needed to explore the energy landscape,
the energy was computed using a simple Lennard-Jones-
plus-Coulomb potential, where the magnesium and fluo-
rine atoms were assigned charges +2 and –1, respectively,
and the distance parameter in the Lennard-Jones poten-
tial was given by the sum of the ionic radii of the ions. For
further details on the potential, we refer to reference [41].

In earlier work [24], the energy landscape of this model
has been explored using the threshold algorithm [37,38],
a stochastic walker-based exploration method, which ex-
plores the region of the landscape that is accessible from
a given starting minimum without crossing a sequence of
fixed energy lids. By sampling the distribution of states
encountered during the free random walk below the lids,
the local densities of states of the most important basins
around the minima on the energy landscape were com-
puted. Furthermore, by performing stochastic quenches
along the trajectories, the transition probability among
these basins as function of the energy level was mea-
sured. Note that these transition probabilities reflect both
energetic, entropic and kinetic barriers separating the
basins. Furthermore, if two minima were very closely re-
lated structurally and only separated by a very small en-
ergy barrier, they were assigned to the same minimum
basin since the focus was on the large-scale structure
of the landscape, not on the fine-tuning of structural
distortions. Each such run was repeated several times,
in order to improve the sampling statistics. From these
data, a tree-graph representation of the landscape was

constructed [24], together with the so-called transition
maps [24] and characteristic regions [42] of the landscape.

2.2 Data acquisition

Since the results of these threshold runs serve as the start-
ing point of the analysis in this study, some more details
regarding the data acquisition during these runs are pre-
sented below.

For the threshold-algorithm, the threshold (lid) set
{Eth

� } was used, in which the lids are spaced by
0.1 eV/atom and where the largest lid is Eth

1 . For each
lid and starting minimum, threshold runs of length up
to 2.5 × 105 Monte-Carlo steps were performed, and ev-
ery 5 × 104 steps, the random walker was quenched into
the nearest local minimum. It was observed that the state
space should be envisioned as a collection of minima with
their respective basins, i.e. the set of states which under a
quench leads to the minimum of the basin. These basins
are weakly coupled at the energies of interest in the present
study, i.e. inside such a basin local equilibrium can be es-
tablished on a very short time scale compared to a typical
transition time between the basins.

In particular, this separation of time scales argument
allows us to visualize the probability flow among the min-
ima, including their basins on the landscape, by writing
the corresponding transition matrix as a product of three
elementary probability matrices QH L: the matrix L de-
scribes the equilibration inside a given basin starting from
its minimum, H the horizontal flow of probability between
neighboring basins at a given level of energy, and Q the
subsequent quench of all probability inside a given basin
to its minimum. These matrices fulfill a dual purpose: they
allow us to formally describe the action of the threshold
algorithm on the level of transitions between basins and
thus incorporate the data from the threshold runs. Sec-
ondly, these three matrices are sufficient to construct the
transition matrices in the master equation that describes
the probability flow among then minima at non-zero tem-
peratures during the stochastic annealing procedure. In
Section 3.2, we will give a more precise definition of the
three matrices Q, H , and L.

The analysis of the threshold runs with their final
quench yielded the transition frequencies tj,k(Eth

� ), which
give the number of transitions from minimum k to mini-
mum j for runs with threshold energy Eth

� , and samplings
of the numbers of states inside a basin Nj(Eth

� ) below
threshold energy Eth

� [24,43]. For the transition frequen-
cies, the observed numbers are small and thus one has to
expect that they are susceptible to random fluctuations.

In order to obtain suitable input for our model, the
data needs to be pre-processed. We note that within one
basin the observed absolute number of states at a cer-
tain energy is not relevant in itself; it is only their ratio
between energy levels which is important for the mod-
elling [38]. Unfortunately we have no direct access to the
ratio between the DOS of the different basins. Thus the
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DOS is renormalized within a basin, i.e. the total number
of states inside basin j is set to one,

dj(Eth
� ) =

Nj

(
Eth

�

) − Nj

(
Eth

�+1

)

Nj

(
Eth

1

) . (1)

Here the data have been processed such that dj(Eth
� ) is

the relative number (fraction) of states at energy Eth
� .

As the number of runs starting from each single min-
imum are not necessarily equal, a renormalization of the
transition frequencies is applied as well:

rj,k(Eth
� ) = tj,k(Eth

� )/
∑

j′
tj′,k(Eth

� ). (2)

Note that – contrary to the DOS – the rates rj,k(Eth
� ) de-

scribe the relative number of transitions below the thresh-
old energy Eth

� , not at energy Eth
� . We stress already at

this point that due to the underlying random walk proper-
ties the stationary distribution in state space should fulfill
detailed balance. One of the consequences is that for each
pair of basins a non-vanishing transition rate in one direc-
tion implies one in the opposite direction as well. Based
on this data suitable typical data sets for systems with
different numbers of basins were created in order to show
different effects in this proof-of-concept paper.

3 The coarse-grained state space model

Based on these data sets, our aim is to construct a state
space model of the system, which forms the basis for the
dynamics we intend to describe. The dynamics will be de-
veloped in the form of a master equation, which allows
not only to describe thermal relaxation at a fixed tem-
perature, but which can also be used for analyzing the
system’s response to annealing schedules.

3.1 Model structure

The number of states in the state space of our system
is too large by far to allow a direct modeling. Instead
we coarse-grain the state space such that the model be-
comes treatable while yet preserving the dynamics. The
weakly coupled basins in the energy landscape form the
basis for this coarse-graining. Inside each basin the states
are collected into a number of nodes at different energies.
The set of states which are collected into a node are cho-
sen such that they allow immediate equilibration on short
time scales, i.e. one can assume local equilibrium in each
node at any time. For the details of such an approach see
references [26,44,45].

In our example system MgF2, the basins used cor-
respond to the following six modifications (for struc-
tural data and explanation of the notation cf. Ref. [41])
which are abbreviated by the number in parenthesis: ru-
tile (1), anatase (2), Mp1 (3), 1/2Occp (4), CdI2 (5), and
1/2BN (6).

Fig. 1. The structure of the coarse-grained state space model.
Note that the number of minima and their accompanying
basins can vary. The nodes depict coarse-grained collections of
states, and the lines show possible transitions between nodes.
Each basin has its minimum at a certain level (and thus at
a certain energy). The connections between a certain pair of
basins has a minimum energy below which it is zero, i.e. no
transition is possible.

We denote the nodes by a double index (j, i), where j
describes the basin and i the level of a node where the
count starts at the top energy. For instance the DOS in
basin j at level i is thus d(j,i) = dj(Eth

i ). For an easy
connection to the observed data the energies are chosen
to be the set of {Eth

� }. The structure of the model is shown
in Figure 1.

Based on the observed DOS we assign each basin its
minimum at the lowest energy for which the DOS is dif-
ferent from zero. The corresponding level is denoted imin

j .
In Figure 1 the lines indicate possible transitions between
nodes; however, only those between direct neighbors are
shown. While inside each basin we assume that each node
is connected to every other, transitions between basins are
only possible between nodes at the same energy level.

The connections between a given pair of basins j and k
have a minimum energy EG

j,k below which no transition is
possible. This energy is obtained from the observed tran-
sition rates: the lowest energy for which either rj,k or rk,j

is non-vanishing is chosen as EG
j,k.

3.2 Incorporating the system data

As mentioned in Section 2.2, in order to build up the dy-
namics, it is convenient to introduce three transition prob-
ability matrices H, L(�), and Q.

The matrix H is a transition matrix which describes
only horizontal transitions between the nodes of different
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basins j and k at levels i = n, but not those inside a basin.
This leads to a special structure of H :

H(j,i),(k,n) =
{

Hi
j,k if j �= k and i = n,

0 otherwise. (3)

The non-zero entries Hi
j,k are as yet unknown, and it is

one of the aims of this work to show how they can be
determined.

The matrix L(�) is a transition matrix which estab-
lishes local equilibrium inside each basin j = k up to and
including level � in one step:

L�
(j,i),(k,n) =

{
d�
(j,i) if j = k and imin

j ≤ �,

0 otherwise,
(4)

where

d�
(j,i) =

d(j,i)

D�
j

(5)

is a renormalized DOS. The renormalization is such that
the DOS up to level � add up to one:

D�
j =

imin
j∑

i=�

d(j,i). (6)

Note that the entries of L(�) are taken from the observed
density of states data and are thus known. Matrix L(�)

presupposes transitions between all nodes within one basin
such that within one step local equilibrium in each basin
is obtained.

Also needed is a quenching matrix Q which represents
the action of a thermal quench on the probability in the
state space. In order to be compatible with the assumption
that local equilibrium in each basin j = k is established
on the time scale of one step, Q is chosen as

Q(j,i),(k,n) =
{

1 if j = k and i = imin
j ,

0 otherwise. (7)

Note that for both matrices, H and Q, the diagonal ele-
ments are reset such that the sums of the columns equal
one:

H(j,i),(k,n) = 1 −
∑

j′,i′
H(j′,i′),(k,n) if (j, i) = (k, n),

(8)

Q(j,i),(k,n) = 1 −
∑

j′,i′
Q(j′,i′),(k,n) if (j, i) = (k, n).

(9)

Finally we need initial probability distributions that de-
scribe starting the dynamics in the minimum state of
basin k

p̂k
(j,i) =

{
1 if j = k and i = imin

k ,
0 otherwise. (10)

In terms of the quantities introduced above, we are now
able to formulate the model equivalent to the observed

transition rates between basins rj,k(Eth
� ). First the sys-

tem is prepared in one minimum, then – very rapidly com-
pared to the typical transition times between basins – local
equilibrium is established inside that basin. Thereafter the
transitions between basins take place and finally a quench
collects the probability in the minima of the basins:

rmod
j,k (Eth

� ) =
∑

Q(j,imin
j ),(j′′′,i′′′)H(j′′′,i′′′),(j′′,i′′)L

�
(j′′,i′′),(j′,i′)p̂

k
(j′,i′),

(11)

or, in matrix notation

rmod
j,k (Eth

� ) =
(
Q · H · L� · p̂k

)

(j,i=imin
j )

. (12)

Inserting the above definitions of the quantities in (12) we
obtain the simplified relation

rmod
j,k (Eth

� ) =
imin
k∑

i′′=�

Hi′′
j,kd�

(k,i′′). (13)

The structure of the model was chosen such that in prin-
ciple there is now enough data to determine all the Hi

j,k.
However, if we were to replace rmod

j,k (Eth
� ) by rj,k(Eth

� ) and
solve for the Hi

j,k starting from the lowest level allowing
transitions between any two basins, we would obtain tran-
sition rates which might not, and indeed do not, obey de-
tailed balance. The reason for this are the fluctuations in
the observed rates due to their small values, which can
even lead to negative rates Hi

j,k not allowed within the
master equation dynamics.

But detailed balance is needed for a realistic consistent
master equation dynamics, and we must therefore ensure
that the transition rates and the densities of states ful-
fill this condition as closely as possible. Thus, in order to
avoid these artifacts, we use a different approach instead.
As a first step we determine the relative weights gj of the
DOS in each basin to combine them to the global DOS

d
(gl)
(k,n) = d(k,n)gk. (14)

As already stated above, we require that the horizontal
transition matrix H(j,i),(k,n) is modelled such that detailed
balance holds for the global DOS, i.e. d

(gl)
(k,n) = d(k,n)gk is

the stationary distribution for H(j,i),(k,n). This implies for
each triple (j, k, i):

Hi
j,kd

(gl)
(k,i) = Hi

j,kd(k,i)gk = Hi
k,jd

(gl)
(j,i) = Hi

k,jd(j,i)gj . (15)

Summing over all levels i energetically below or equal �
we obtain

imin
k∑

i=�

Hi
j,kd(k,i)gk =

imin
j∑

i=�

Hi
k,jd(j,i)gj . (16)

Starting from (13) and using (5) we find

rmod
j,k (Eth

� ) =
imin
k∑

i=�

Hi
j,k

d(k,i)

D�
k

. (17)
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Multiplication with D�
k results in

imin
k∑

i=�

Hi
j,kd(k,i) = rmod

j,k (Eth
� )D�

k, (18)

which by inserting into (16) leads to

rmod
j,k (Eth

� )D�
kgk = rmod

k,j (Eth
� )D�

jgj. (19)

While equation (19) holds for the model rates rmod
j,k (Eth

� ),
this is not the case if we use the observed rates rj,k(Eth

� )
instead. In general

εj,k,� = rk,j(Eth
� )D�

jgj − rj,k(Eth
� )D�

kgk (20)

will not be zero. Of course, we want the deviation from
detailed balance to be as small as possible, and thus we
determine the gj such that they minimize the deviation
from the overall detailed balance requirement:

O1 =
∑

j,k,�

wj,k,�ε
2
j,k,�

=
∑

j,k,�

wj,k,�

(
rk,j(Eth

� )D�
jgj − rj,k(Eth

� )D�
kgk

)2
. (21)

Here wj,k,� are weights which can be adjusted to the dif-
ferent size of the density of states.

After the fractions gj that characterize the contribu-
tion of the different basins to the global DOS have been
determined, we turn to the still unknown horizontal tran-
sition probabilities Hi

j,k of our model. Starting from the
detailed balance requirement (15) for the Hi

j,k, we see that
the ratio of the transition rates connecting two nodes is set
by that requirement. We thus enforce this detailed balance
requirement by setting

Hi
j,k =

f i
{j,k}

d(k,i)gk
, (22)

where f i
{j,k} ≡ f i

{k,j} is the kinetic factor controlling the
time scale of the transition rates between minima j and k
at level i. From (18) we find

rmod
j,k (Eth

� )D�
k =

imin
k∑

i=�

Hi
j,kd(k,i) =

imin
k∑

i=�

f i
{j,k}

d(k,i)gk
d(k,i)

=
imin
k∑

i=�

f i
{j,k}
gk

. (23)

While the above equation is valid for the model rates, it
will not be so for the observed rates. Thus in general

νj,k,� = rj,k(Eth
� )D�

kgk −
imin
k∑

i=�

f i
{j,k} (24)

will not be zero.

Again we want the deviations from these conditions to
be as small as possible, and thus for any pair {j, k} we
determine the f i

{j,k} such that they minimize the overall
deviation:

O{j,k} =
∑

�

ν2
j,k,� +

∑

�

ν2
k,j,�. (25)

Depending on the rj,k(Eth
� ), this procedure might lead for

some states to overall transition rates which exceed one. In
that case the kinetic factors are reduced at the respective
level and are increased in the level which is energetically
above to compensate for the change.

4 Optimal structure selection

4.1 Temperature-dependent transition rates

Based on the information obtained so far about the sys-
tem, we can now study the relaxation of an arbitrary ini-
tial distribution over the minima and their basins. The
dynamics is given by the master equation

Pj,i(tm+1) =
∑

k,n

G(j,i),(k,n)(T (tm+1))P(k,n)(tm), (26)

in which the time increases in discrete steps from tm
to tm+1. Here, the temperature dependent transition ma-
trix G(T ) is based on the matrix L(1). While L describes
the transitions at infinite temperature, the finite temper-
ature transition rates are obtained by a slight change: in
order to establish local equilibrium at finite temperature,
we introduce

L(j,i),(k,n)(T ) =
{

d(j,i)(T ) if j = k and i ≤ imin
j ,

0 otherwise, (27)

where

d(j,i)(T ) =
d(j,i)e

− Eth
i

kBT

Zj
(28)

with

Zj =
∑

i

d(j,i)e
− Eth

i
kBT (29)

is the local sum over states for basin j. Inserting the ki-
netic factors into the overall rates (22) we finally obtain
G(T ) = H L(T ).

As in each basin local equilibrium is established be-
fore the transitions to the neighboring states take place,
the overall transition probability from one basin to an-
other one is not dependent on how the probability is dis-
tributed on the levels. Thus one can introduce coarse-
grained transition probabilities between basins (which
then become synonymous with their minima). In Figure 2
these transition probabilities are shown as a function of
x = exp(−0.1/T ), where the temperature is measured in
units of the energy. In the remainder of this exposition, we
will use x instead of T , but will still refer to it as “temper-
ature”. In order to stay consistent with the data available,
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Fig. 2. The transition rates between different basins as obtained from the model are shown as a function of temperature. Here,
the temperature was constrained to be within 0 ≤ x ≤ 0.6, in order to ensure that the probability to be in a certain basin is
only distributed over energies which had been explored during the data acquisition process. Note that there are large variations
between forward and backward rates, which are in addition strongly temperature dependent. Thus they allow to control the
dynamics in the state space by temperature changes.

we restrict the range of allowed x such that the probability
is confined to energies below the maximum energy consid-
ered. Specifically, for all x ≤ 0.6 the probability at the top
level of the model is below 3%.

In the subplots of Figure 2, the transition probabilities
between pairs of selected minima are shown. One sees that
the transition probabilities are indeed temperature depen-
dent. For the desired structure selection, it is important,
of course, that the transition probabilities are of different
magnitude at different temperatures, such that by vary-
ing the temperature, transitions from one minimum to
another can be increased while others can be suppressed.
For instance, at x = 0.1 the transitions from minimum 5
to 3 are elevated considerably, while 5 to 1 is more or less
completely suppressed. Another example are the transi-
tion probabilities between 2 and 4, where for intermediate
temperatures 2 to 4 dominates the back transition while
at higher temperatures both transition probabilities are of
the same size.

4.2 Optimizing the annealing schedule

The goal of our structure selection is to bring the system
into one of its minima within a certain time horizon. Tech-
nically, the optimization is carried out by determining that

particular schedule which leads to the maximum probabil-
ity to be in one of the minima within a given number of
temperature steps.

The objective function Φ for this maximization is linear
in the final probabilities:

〈Φ〉M =
∑

j

ΦjPj(tM ), (30)

where M is the number of steps available. To maximize
the probability to be in minimum k, the objective Φk

j has
to be chosen as

Φk
j = δj,k. (31)

In all cases, the initial probability distribution P̂ (t0) was
either taken to be uniform on the minima or a thermal
equilibrium distribution at the maximum allowed temper-
ature, i.e. at x = 0.6, was chosen.

Starting from P̂ (t0), we determine the final probability
distribution P (tM ) from the master equation (26). The op-
timal schedule Topt(tm) is then computed by an iterative
algorithm based on control theory; for details see [46–48].
The algorithm proceeds by successive modifications of an
initial annealing schedule. For each schedule the proba-
bility distribution at every time step is calculated start-
ing from an initial distribution. Basically, 〈Φ〉M has to
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Fig. 3. Starting from a Tmax-distribution on the left from top to bottom the optimal temperature schedules to maximize
the likelihood to be in basins rutile (1), anatase (2), Mp1 (3), and 1/2Occp (4), respectively, are shown. On the right the
corresponding time evolution of the probability distributions are shown: rutile (1, open circle), anatase (2, filled circle), Mp1
(3, open square), and 1/2Occp (4, filled square).

be maximized as a function of the variables T (tm), where
〈Φ〉M depends on the T (tm) through the final distribu-
tion P (tM ). This maximization is constrained by equa-
tion (26). Introducing Lagrange parameters Λtr(tm) the
functional

F = 〈Φ〉M +
M−1∑

m=0

Λtr(tm+1)(G(T (tm+1))P (tm)−P (tm+1))

(32)
is maximized using the usual optimal control principles.
The number of iterations needed for the algorithm to con-
verge is rather small, on the order of ten.

4.3 Results

In this subsection, we consider a reduced system by taking
only the four basins with the lowest energy, i.e. rutile (1),
anatase (2), Mp1 (3), and 1/2Occp (4), into account.

For each of these basins we determined optimal an-
nealing schedules for the two different starting distribu-
tions discussed above. The number of available steps M
was chosen to be 15 and 30. The schedules for the Tmax-
distribution and the uniform distribution are shown in
Figures 3 and 4, respectively.

The figures show on the left from top to bottom the op-
timal schedule to maximize the probability to be in basin
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Fig. 4. Starting from a uniform distribution on the left from top to bottom the optimal temperature schedules to maximize
the likelihood to be in basins rutile (1), anatase (2), Mp1 (3), and 1/2Occp (4), respectively, are shown. On the right the
corresponding time evolution of the probability distributions are shown: rutile (1, open circle), anatase (2, filled circle), Mp1
(3, open square), and 1/2Occp (4, filled square).

rutile (1), anatase (2), Mp1 (3), and 1/2Occp (4), respec-
tively. The control shown is x = exp−0.1/T , where T is
measured in units of the energy (eV/atom). On the right
the corresponding time evolution of the probability dis-
tributions are shown: rutile (1, open circle), anatase (2,
filled circle), Mp1 (3, open square), and 1/2Occp (4, filled
square).

In both figures one can see a number of interesting
effects and partly unexpected features.

Let us first look at Figure 3 displaying the data for
starting with a Tmax-distribution. First of all we see
that the optimal schedules are different for the respec-
tive minima. While anatase requires a quench, i.e. zero

temperature annealing, to collect as much probability as
possible, 1/2Occp, a rather high lying minimum, needs an
intermediate schedule of low moderate temperatures. Mp1
needs a schedule at intermediate temperatures, which rises
at the end of the schedule towards the maximum allowed
temperature.

The most surprising is the schedule for rutile. Here
we start with slightly falling intermediate temperatures,
which at step 18 are suddenly reduced to less than half of
the temperature. The effect is clearly seen in the probabil-
ity distribution: while the target probability to be in the
rutile basin first increases at a moderate rate, at step 18
the increase is jumping up. The probability is drained
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Table 1. The final population probabilities for the basins after
optimal annealing with M = 15 and M = 30 steps, starting
from a uniform distribution. For M = 0 the initial distribution
is shown.

M Rutile Anatase Mp1 0.5Occp

0 0.25 0.25 0.25 0.25
15 0.539979 0.253529 0.231165 0.276389
30 0.652078 0.253529 0.213749 0.291088

from the anatase basin, while the probabilities in Mp1 and
1/2Occp seem to be more or less unaffected. We note that
this might be related to the different trapping tempera-
tures Ttrap(1) and Ttrap(2) of the rutile and anatase basins,
respectively, [24] in the energy region of the landscape
where the transition between these two basins takes place:
since Ttrap(2) < Ttrap(1), we expect to observe a flow of
probability from the anatase basin to the rutile basin for
in-between temperatures, Ttrap(2) < T < Ttrap(1).

Similar results can be seen in Figure 4. Again the
schedule for maximizing the probability to be in the ru-
tile basin shows the jump with equivalent results, and the
schedule for anatase remains nearly unchanged. Very dif-
ferent is the schedule to maximize the chance to find the
Mp1 configuration: now a T = 0 schedule is required.
Nonetheless, the Mp1 probability decays during the time
evolution. An explanation for that behavior will follow
below. The 1/2Occp schedule remains more or less un-
changed. This is certainly partly explained by the fact that
for both starting distributions the 1/2Occp-values are not
too far apart.

From the probabilities in Table 1 one can see that for
rutile, anatase, and 1/2Occp the optimal annealing leads
to an increase in the final probabilities, while Mp1 is los-
ing against its initial start value of 0.25. That seems as-
tonishing as Mp1 has its minimum at an energy lower
than 1/2Occp. But on closer inspection one sees that
Mp1 has non-vanishing transitions into rutile at the en-
ergy of its minimum, which makes it unstable within our
model even at zero temperature. The reason for this is
the tiny energy barrier separating the Mp1 and the rutile
basins [24], which during the model construction described
here (based on energy levels spaced by 0.1 eV) results in a
non-zero transition probability already in the first discrete
energy level bin. Thus starting from a uniform distribu-
tion, the best a zero temperature schedule can do is to
slow down the decay of the probability to be in Mp1.

When starting from the Tmax-distribution, the results
are different: here, a schedule as shown can even increase
the probability to be in the Mp1 configuration as can be
seen from Table 2.

5 Discussion and summary

In this study, we addressed the problem whether it is pos-
sible to increase the yield of a specified configuration of
a chemical compound by controlling the dynamics on the

Table 2. The final population probabilities for the basins after
optimal annealing with M = 15 and M = 30 steps, starting
from a distribution at maximum temperature. For M = 0 the
initial distribution is shown.

M Rutile Anatase Mp1 0.5Occp

0 0.386089 0.22364 0.208031 0.18224
15 0.58667 0.22364 0.225918 0.212332
30 0.677186 0.22364 0.237732 0.227075

energy landscape of the system. We presented a road map
to achieve that goal, using a particular solid compound,
MgF2, as an example. In a first step, a coarse-grained
landscape model based on the energies of the minima, the
local densities of states and the transition probabilities
among the basins as function of energy is developed. The
data needed for this model is extracted from the results
of dynamical test runs performed by the so-called thresh-
old algorithm, which explores the regions of the landscape
that are accessible from a given set of starting minima
without crossing a sequence of fixed energy lids. Next, we
use this information to construct a transition probability
matrix as function of temperature, which reflects the ener-
getic, entropic and kinetic barriers separating the basins,
and allows a complete description of the dynamics on the
coarse-grained model of the energy landscape. Finally, we
use standard optimal control procedures to design optimal
schedules that maximize the probability to reach a partic-
ular basin on the landscape for a given initial probability
distribution on the various minima of the landscape.

In the example system, this translated into finding the
temperature schedule for which the system has the highest
likelihood to reach a specified modification of MgF2. For
each of the possible modifications we determined optimal
annealing schedules for two different starting distributions
on the minima: a uniform distribution, where the proba-
bility to be in a basin initially was 0.25, and the thermal
equilibrium distribution at the highest allowed tempera-
ture. For concreteness, the number of available temper-
ature steps M was chosen to be 15 and 30. By this ap-
proach we were able to show that the control of annealing
procedures can significantly increase the probability to be
in certain regions of the state space of MgF2. For exam-
ple, the final occupation probability for the energetically
high-lying minimum structure 1/2Occp can be increased
by more than 20% compared to a uniform starting dis-
tribution or the thermally equilibrated distribution, and
similarly the probability to reach the global minimum ru-
tile already within the very short finite time available can
be more than doubled.

Of course, for technical reasons, the example land-
scape chosen was highly simplified compared to the much
more complex landscape of real MgF2. Nevertheless, it re-
flects many of the qualitative if not quantitative features
of the real system, and the procedure we have presented
can be transferred essentially one-to-one to more complex
systems and applications. Thus, one would expect that
by combining optimal control methods with information
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gained from global landscape explorations, both on the
theoretical and experimental side, it will be possible to
design temperature schedules that will assist the experi-
mental solid state chemist and physicist in improving the
yield of their syntheses of particular modifications of solid
compounds [49,50]. Besides applying our approach to the
study of more complex landscapes, further research will
be directed towards a deeper understanding of the in-
tricate relation of the temperature dependent transition
rates between basins. In this context, it seems worth-
while to study and improve the data acquisition proce-
dures to save on the computational investment needed
for constructing the coarse-grained transition probability
matrix. Here, one possible extension may be to use the
ParQ-methods [51] that should allow for a more efficient
scanning of the landscape.
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