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ABSTRACT: Magnetization curves of two rectangular metal−
organic coordination networks formed by the organic ligand
TCNQ (7,7,8,8-tetracyanoquinodimethane) and two different
(Mn and Ni) 3d transition metal atoms [M(3d)] show marked
differences that are explained using first-principles density
functional theory and model calculations. We find that the
existence of a weakly dispersive hybrid band with M(3d) and
TCNQ character crossing the Fermi level is determinant for
the appearance of ferromagnetic coupling between metal
centers, as it is the case of the metallic system Ni-TCNQ but
not of the insulating system Mn-TCNQ. The spin magnetic
moment localized at the Ni atoms induces a significant spin
polarization in the organic molecule; the corresponding spin
density being delocalized along the whole system. The exchange interaction between localized spins at Ni centers and the
itinerant spin density is ferromagnetic. On the basis of two different model Hamiltonians, we estimate the strength of exchange
couplings between magnetic atoms for both Ni- and Mn-TCNQ networks that results in weak ferromagnetic and very weak
antiferromagnetic correlations for Ni- and Mn-TCNQ networks, respectively.

■ INTRODUCTION

Understanding the magnetic behavior of low dimensional
systems is a challenge that has recently given rise to a number
of works.1−4 Additionally, several studies have proposed
systems showing high temperature ferromagnetism.5−10 How-
ever, in general, it is hard to predict the type, strength and range
of magnetic interactions responsible for the existence of
magnetic order. The kind of systems that have been explored
in recent years is rather vast, ranging from substitutional
magnetic impurities in graphene,11 dilute magnetic semi-
conductor nanocrystals,12 hydrogenated epitaxial graphene6 to
molecular magnets.13 In particular, bulk molecular crystals14 are
especially attractive to us because two-dimensional (2D)
metal−organic coordination networks (MOCN) on surfaces

can be considered their analogues, as coordination chemistry
compounds.
Of special interest is the growth of monolayer films on single

crystal surfaces using self-assembly techniques to form 2D
coordination networks made of 3d transition metal atoms and
organic ligands.15−17 This permits to achieve a relatively high
surface density of magnetic moments, localized at the 3d
transition metal atom centers and forming a regular 2D
structure with the organic ligands. In this way, metal atom
cluster formation is avoided. However, critical temperatures in
low dimensional systems are known to be much lower than in
bulk three-dimensional crystals.14,18 Indeed, 2D isotropic
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systems with finite range exchange interaction cannot show
long-range ferromagnetic order at finite temperatures.19,20

In this work, we study the low temperature magnetic
behavior of MOCNs formed by self-assembly of 3d transition
metal atoms and strong acceptor molecules on surfaces. In
particular, we focus on the case of rectangular lattices with 1:1
stoichiometry and 4-fold coordination, that are known to form
on metal surfaces, like Ag(100) or Au(111).21 Those structures
represent easily accessible and tunable experimental realizations
of electronic correlated systems and are, therefore, also
interesting from a fundamental point of view.
Previous studies21,22 suggest that, in the case of nonreactive

surfaces like Au(111), the underlaying substrate on top of
which the metal−organic coordination network is grown plays
only a minor role in determining the overlayer electronic
properties, such as the type of bonding and coordination
between the 3d metal centers and the organic ligands. This is
due to the formation of strong lateral bonds between the metal
atoms and the organic molecules, which lift up the metal atoms
from the surface and reduce, consequently, the surface to metal
interaction.21,23 However, there are other metal surfaces, such
as Cu(100), in which a significant charge transfer between the
surface and the metal−organic network takes place.24

We specifically wonder whether this minor role of the
substrate still holds for the magnetic interaction between the 3d
transition metal atom spins when they are embedded in a 2D
MOCN, including the sign, strength, and range of the spin−
spin coupling, as compared to the case of 3d transition metal
impurities on metals, where metal surface electrons mediate
RKKY-type interactions.25 In principle, for the same organic
ligand, stoichiometry and coordination, one could expect that
the particular 3d transition metal atom center in the 2D
MOCN is determinant in the type of magnetic interaction (FM
or AFM) depending on the 3d manifold energy level structure

close to the Fermi level. As shown below, our results based on
density functional theory (DFT) calculations at T = 0 confirm
that this is indeed the case because they permit to explain the
observed trends in the measured X-ray magnetic circular
dichroism (XMCD) data with the help of two model
Hamiltonians.

■ RESULTS AND DISCUSSION

Figure 1a and b shows STM topographical images of Ni- and
Mn-TCNQ networks with a stoichiometry of 1:1 on Au(111),
respectively. Each molecule forms four bonds to metal atoms
via its cyano groups. Details of the structures can be found in
refs 21 and 22. Figure 1c and d shows X-ray absorption (XAS)
spectra recorded at the metal L2,3-edge for parallel (I+) and
antiparallel (I−) alignment of the photon helicity with the
magnetic field B at normal (∼0°) and grazing (∼70°) X-ray
incidence. The corresponding XMCD spectra, defined as I− −
I+, are shown at the bottom of the panels. Note that because of
the low coverage the data is superposed to a temperature
dependent extended X-ray absorption fine structure back-
ground of the substrates. Background data is exemplarily shown
for normal incidence. The metal coverage is estimated to 0.03
monolayers for the networks, one monolayer being one metal
atom per site in the Au(111) topmost layer. Both metal centers
show pronounced fine structure of the white lines which
originate from atomic multiplets of the final state config-
urations. This signifies electronic decoupling from the metal
substrate and the formation of well-defined coordination bonds
to the TCNQ molecules. The anisotropy in the XAS line shape
between normal and grazing incidence reflects the low
symmetry environment of the metal centers. The XAS
lineshapes of the Ni and Mn centers are compatible with d8

and d5 electronic configurations, respectively.21,26,27 Thus, we

Figure 1. (a, b) STM images of (a) Ni-TCNQ and (b) Mn-TCNQ networks self-assembled on Au(111). The model for the unit cell structure is
superposed to the images. (Scale bar in both images = 1 nm.) (c,d) XAS and corresponding XMCD spectra for Ni-TCNQ and (d) Mn-TCNQ
networks for normal (0°) and grazing (70°) X-ray incidence angles. Note that because of the low coverage the metal L-edges are superposed to the
XAS background of the substrate (shown for normal incidence). (T = 8 K, B = 5 T; XMCD: 0° = blue and 70° = black.) (e, f) Magnetization curves
for (e) Ni-TCNQ and (f) Mn-TCNQ obtained as the L3 peak height vs magnetic field (T = 8 K) at normal (squares) and grazing incidence (solid
triangles). For comparison the magnetization curves were normalized to 1 at B = 5 T.). The curves labeled Brillouin in panels e and f correspond to
the paramagnetic behavior for S = 1 (e) and S = 5/2 (f), respectively, at T = 8 K (see the text).
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expect unquenched spin moments of S = 1 and S = 5/2 for Ni
and Mn, respectively, as evidenced also by the sizable XMCD
intensity.
The possible magnetic interaction between the individual

metal centers is revealed in the magnetization curves obtained
as the XMCD L3 peak

28 intensity (T = 8 K) normalized to 1 at
B = 5 T for comparison (see Figure 1e, f). For both structures
the magnetic susceptibility shows no strong apparent
anisotropy. However, for the Ni-TCNQ network the curves
show a stronger S-shape compared to Mn-TCNQ. This
indicates ferromagnetic coupling between the Ni atoms, since
we expect a smaller spin moment of S = 1 for Ni compared to S
= 5/2 for Mn. Further insight can be drawn from the analysis of
the shape of the magnetization curves by comparing them to
the Brillouin function29 of the respective spin moment. The
curves labeled Brillouin have been added to the panels e and f
with S = 1 and S = 5/2, respectively, assuming an isotropic g = 2
factor. This approximation is based on the fact that in our
systems the orbital moment is either isotropic (Ni) or very
small (Mn). In neither case, can the g-factor account for the
observed shape in the magnetization curves. The Ni magnet-
ization curves differ clearly from the paramagnetic S = 1
susceptibility, whereas the Mn ions follow more closely the
expected S = 5/2 behavior. Our first-principles and calculations
and subsequent estimates of the exchange coupling constants
using model Hamiltonians are consistent with this observations.
Next we discuss the results from DFT calculations for both

systems: Ni-TCNQ and Mn-TCNQ free-standing overlayers
excluding the Au(111) metal substrate. The free-standing-
overlayer approximation, i.e., the neglect of Au(111) in our
first-principles calculations, is based on our previous finding22

of weak coupling between Mn-TCNQ overlayers to Au(111),
whose direct fingerprint is the observation of the herringbone
reconstruction after the Mn-TCNQ network is grown on
Au(111). We focus first on the projected density of states
(PDOS) onto different 3d metal atom orbitals, as well as onto
TCNQ(pz) that permit to identify molecular orbitals close to
the Fermi level, like the lowest unoccupied molecular orbital
(LUMO). The 2D planar structure is located in the XY plane.
Figure 2a shows the calculated PDOS for Ni-TCNQ. All the
Ni(3d) majority spin states are occupied, while one minority
spin state remains completely empty [Ni(3dxy)]. Two other
minority spin states [Ni(3dxz) and Ni(3dyz)] are partially
occupied and hybridize with the TCNQ LUMO, the
corresponding dispersive band crosses the Fermi level [see eq
3]. There is also a significant charge transfer from the Ni atom
to the TCNQ LUMO of about one electron yielding a spin-
polarized molecular state. As a consequence, there is a localized
S = 1/2 spin magnetic moment on the Ni atom and a
somewhat smaller magnetic moment delocalized on the whole
Ni and TCNQ system, as shown in Figure 3. The inset in
Figure 2a illustrates the hybridization between the TCNQ
LUMO and Ni(3dxz) orbitals. Therefore, for the Ni-TCNQ
network our DFT calculations show that (i) the system is
metallic; it has a finite DOS at the Fermi level, (ii) there is a
significant amount of hybridization between minority Ni(3d)
states and the TCNQ LUMO [a dispersive hybrid band crosses
the Fermi level], and (iii) the TCNQ LUMO is spin polarized.
This is a first hint for the existence of ferromagnetism in this
system but it requires a further analysis (see Model for Ni-
TCNQ Ferromagnetism section).
However, the situation is completely different in Mn-TCNQ.

As shown in Figure 2b, all the Mn (3d) majority spin states are

occupied, while all the minority spin states remain empty, and
none of them hybridize appreciable with the TCNQ LUMO
[see the inset]. Additionally, the TCNQ LUMO is fully
occupied because of a large electron transfer from the Mn
atoms of practically two electrons and, therefore, the DOS at
the Fermi level is negligible, that is, the system is insulating.
The spin magnetic moments are localized on the Mn atoms, as
shown in Figure 3b, and are very close to S = 5/2. Therefore,
the argument mentioned above as a hint for the existence of
ferromagnetism in Ni-TCNQ does not apply for Mn-TCNQ.
The reason for the different charge transfer to TCNQ LUMO
from Mn and Ni metal centers, higher (and close to two
electrons) in Mn-TCNQ than in Ni-TCNQ (about 1.3
electrons), is that in Ni-TCNQ there is an important
hybridization between the minority spin Ni (3dxz) and the
TCNQ LUMO states, absent in the case of Mn-TCNQ.
Now we turn to the analysis of the coupling between the

magnetic moments of the Ni and Mn atoms in their
corresponding networks. We start by doing DFT calculations

Figure 2. Projected density of states [states/eV] onto metal atom
centers (3d) [purple (3dz2), red (3dxy and 3dx2−y2), and blue lines (3dxz
and 3dyz) and TCNQ (pz) [black line] orbitals for the (a) Ni-TCNQ
and (b) Mn-TCNQ networks. The insets in panels a and b show
isocontours of constant electronic charge in a narrow energy range
around the Fermi level (partial charge), showing two different
situations for Ni-TCNQ and Mn-TCNQ. The TCNQ LUMO is
clearly seen in both cases, while only for Ni-TCNQ the minority spin
3dxz orbital can be identified.
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in a double size (2 × 1) supercell that contains two metal atoms
in a checkerboard configuration, so that we can treat both
parallel (FM) and antiparallel (AFM) alignment of spins. For
the Ni-TCNQ network we find that the FM configuration is
energetically favored by 105.7 meV, while for the Mn-TCNQ
network the AFM configuration is more favorable by 8.75 meV,
per surface unit cell (2 × 1). Taking into account that the Mn
atoms spin magnetic moment is five times larger than that of
the Ni atoms, we see that the coupling in the Mn-TCNQ
system is 2 orders of magnitude smaller, and of opposite sign,
as compared with Ni-TCNQ. The corresponding spin densities
are shown in Figure 3a and b for Ni-TCNQ and Mn-TCNQ,
respectively, exhibiting rather different behavior. The spin
density is delocalized all along the Ni atoms and TCNQ
molecule (a), while it is localized at the Mn atoms sites (b). To
understand the correlation between magnetic coupling and
chemical bonding in the two systems, next we describe two
models that explain the mechanism for ferromagnetism in Ni-
TCNQ and antiferromagnetism in Mn-TCNQ.

Being aware that our DFT calculations underestimate the
HOMO−LUMO gap of the TCNQ molecules,30 it is worth to
mention that our estimated values for the exchange coupling
constants (J) below are only an order of magnitude estimate.
This is due to the approximation of considering Kohn−Sham
(K−S) eigenvalues as true eigenvalues with physical meaning.
Strictly speaking, only the last occupied K−S orbital has
physical meaning, which in our systems is the minority LUMO
that is hybridized to a minor or greater extent with 3d atomic
orbitals of the Mn or Ni transition metal atoms, respectively. In
practice, this approximation affects more the value of the
hoppings (t) than the energy denominators in our second and
fourth order perturbative models described in the next sections
to estimate J for Ni-TCNQ and Mn-TCNQ. Therefore, we
insist in the limited validity of our accuracy in determining the
values of J, the important point being that they differ by 2
orders of magnitude and in their sign that corresponds to FM
coupling in Ni-TCNQ and very weak AFM coupling in Mn-
TCNQ.

■ MODEL FOR NI-TCNQ FERROMAGNETISM
The mechanism of ferromagnetism in Ni-TCNQ is similar to
the one described by Zener in 1951.31 Localized spins and
itinerant spin density are coupled via the Heisenberg exchange
interaction, which assumes the ferromagnetic sign if the
hybridization of the conduction electrons (dispersive LUMO
band) with a doubly occupied or empty d orbital of the
magnetic center (3dxz and 3dyz) is sufficiently strong. Indeed,
owing to Hund’s rule in the d shell, it is energetically favorable
to induce a spin polarization parallel to the d-shell spin. The
itinerant spin density, however, forms at an energy penalty
determined by the dispersion of the conduction band; the
larger the density of states at the Fermi level, the easier is for
the itinerant spin density to form.
From the DFT results, we learn that each Ni atom in the Ni-

TCNQ network hosts a local spin S = 1/2, localized in its dxy
orbital, whereas the LUMOs of the TCNQ molecules couple
together to form a band of itinerant electrons. To describe the
magnetic properties of the Ni-TCNQ network, we employ the
model Hamiltonian

∑ ∑ ε= − · + +
σ

σ σ
⟨ ⟩

†S s rH J c c H( )
k

k k k
ij

i j Z
(1)

where J is the exchange coupling constant between the Ni spin
Si and the itinerant spin density s(rj) at the TCNQ site rj. For

Figure 3. Spatial distribution of the spin density in a rectangular
checkerboard 2 × 1 supercell of (a) Ni-TCNQ showing FM coupling
between Ni atoms and spin polarization of the TCNQ LUMO and (b)
Mn-TCNQ showing AFM coupling between Mn atoms and no spin
polarization of the TCNQ LUMO.

Figure 4. Mechanism of ferromagnetic interaction in Ni-TCNQ. (a) Schematic top view of the coordination network, showing tunnel coupling
between relevant orbitals. Each Ni atom is represented by its dx′z and dy′z orbitals chosen in the coordinate frame (x′, y′). Each dx′z (or dy′z) orbital
couples, with the tunneling amplitude t, to its two neighboring LUMOs on one of the two sublattices distinguished by blue and red colors. The
tunneling amplitudes tx and ty give the coupling between the two intercalated sublattices. (b) Energy diagram illustrating the origin of the exchange
coupling in the hole representation. The local spin is due to a hole residing in the dxy orbital. The LUMO hole hybridizes with the dx′z (or dy′z)
orbital because of the tunnel coupling with the amplitude t. Owing to Hund’s rule, dx′z/dy′z is closer in energy to the LUMO when the two holes
form a triplet state (position T) than when they form a singlet (position S). The difference in energies gained by hybridization in the triplet and
singlet sectors gives the exchange constant J.
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each Ni site i, the sum over j runs over its 4 neighboring TCNQ
molecules. The spin density operator reads

∑ τ= ′
σσ

σσ σ σ
′ ′

′
− · †

′ ′s r
N

e c c( )
1

2 kk

k k
k kj

i r( ) j

(2)

where ckσ
† creates an electron with wave vector k = (kx, ky) and

spin σ = ↑,↓ in the conduction band, N is the number of lattice
sites, and τ = (τx, τy, τz) is a set of Pauli matrices. The
conduction band has dispersion

ε = − −

− ′

k k t k a t k a

t k a k a

( , ) 2 cos( ) 2 cos( )

4 cos( )cos( )

x y x x x y y y

x x y y (3)

where tx and ty are the tunneling amplitudes between LUMOs
of neighboring molecules along x and along y, respectively. The
last term in eq 3 arises due to the next-to-nearest-neighbor
coupling, such as the coupling mediated by the dxz and dyz
orbitals of the Ni atoms (see further). We emphasize that,
because of symmetry constraints, among the Ni d orbitals, only
dxz and dyz hybridize appreciably to the TCNQ LUMO
(essentially, atomic pz orbitals) and, therefore, play an
important role in determining the strength of magnetism.
The last term in eq 1 stands for the Zeeman interaction, for
which we take Hz = gμB∑iSi·B + gμB∑js(rj)·B, with the g factor
g = 2 and the magnetic field B = (0, 0, −B).
To keep our discussion simple, we dispense with the splitting

between the dxz and dyz orbitals induced by the ligand field.32

We thus adopt π/4-rotated orbitals, dx′z = (dxz − dyz)/√2 and
dy′z = (dxz + dyz)/√2, and show the origin of the coupling
constants J and t′ in Figure 4a and b. In Figure 4a, we represent
schematically each magnetic center by its dx′z and dy′z orbitals
and each TCNQ molecule by its LUMO. Neighboring
molecule LUMOs are tunnel coupled both directly, with the
tunneling amplitudes tx and ty, and indirectly, via the magnetic
center. In the latter case, the tunneling amplitude between dx′z
(or dy′z) and LUMO is denoted by t. The simplest situation
arises when the direct coupling is absent (tx = ty = 0) and the
itinerant electrons fall into two independent Fermi seas, formed
by two intercalated sublattices, as differentiated by the blue and
red colors in Figure 4a. The two Fermi seas interact with the
lattice of local spins, hosted by the dxy orbitals of the Ni atoms,
not shown. In Figure 4b, we show the origin of this exchange
interaction, using the language of holes. The coupling constant
J arises from virtual hops of the LUMO hole onto the dx′z (or
dy′z) orbital. Because of Hund’s rule, the energy denominator
for the virtual transition depends on whether a triplet (T) or a
singlet (S) is formed on the magnetic center. By perturbation
theory, the exchange constant reads J = t2(1/ΔT − 1/ΔS),
where ΔT and ΔS are the energies depicted in Figure 4b.
Similarly, the tunneling across the magnetic center, mediated by
the dx′z (or dy′z) orbital, has amplitude t′ = −t2(3/4ΔT + 1/
4ΔS), where the minus sign signifies an antibonding coupling.
In addition to the exchange coupling and the mediated
tunneling, other terms arise in perturbation theory, but are
not present in eq 1. Although those terms33 may account for
some finer features seen in the DFT results, such as the spin
dependence of the width of the LUMO band, they are generally
unimportant for explaining the experiment.
In the Methods section, we describe two different methods

for extracting the value of J for this model of ferromagnetism,
one uses parameters extracted from the DFT calculations and
the other is based on the fitting of measured magnetization

curves using the Weiss theory. Both methods yield different J
values but they are of the same order of magnitude. However, J
values extracted from Monte Carlo simulations assuming an
ensemble of localized spins are typically an order of magnitude
smaller21 and, thus, reflect that the physical meaning of J is
different in our model with itinerant spin density. The value of J
extracted from the DFT calculation (J = 22 meV) is several
times larger than the one obtained from fitting the magnet-
ization curve with the help of the Weiss theory (J = 6−11
meV). While there are many possible reasons for this
discrepancy, we would like to emphasize that the Weiss theory
tends to exaggerate the strength of ferromagnetic effects, since
it does not account for the possibility of exciting spin waves.25

Indeed, the spin flip−flop terms in eq 1, −J[Sixsx(rj) + Si
ysy(rj)],

are disregarded in the Weiss theory, making, thus, effectively no
distinction between the Heisenberg and Ising types of spin−
spin interaction. In 2D, the presence/absence of the flip-flop
terms makes a qualitative difference at low temperatures,
resulting in absence/presence of magnetic order. As a result, Tc
= 0 for the model in eq 1, whereas Tc > 0 for its Ising-type
version, in which the flip−flop terms are absent.
Furthermore, we remark that the flip−flop terms are

accounted for in the spin-wave theory. In 2D, however, the
spin-wave expansion works only in the presence of a sufficiently
strong magnetic field and at low temperatures, such that the
average spin Sz is close to 1/2. In this region of B, the
magnetization curve is nearly flat and the accuracy of such a
fitting (by spin-wave theory) is poor. Note that the
experimental data, that is, the XMCD intensities, are only
proportional to the magnetization; the fitting procedure uses,
thus, an arbitrary scaling factor to rescale the measured curve as
desired.
One might envision that the magnetization curve calculated

within a more accurate theory agrees well with the one
obtained using the Weiss theory, if J is replaced in the latter by
a running coupling constant J(T). Then, this effective coupling
J(T) should tend to J at high temperatures and to zero at low
temperatures. While this is only a conjecture, we remark that
such a running coupling constant readily occurs in this model
due to the buildup of Kondo correlations. Since J is
ferromagnetic, the scaling because of the Kondo correlations
acts to reduce the magnitude of J.34 However, this reduction is
rather weak (a factor of 2 at most) and cannot validate the use
of the Weiss theory at arbitrary low temperature. Nevertheless,
the agreement between the Weiss theory and the measured
data is very good at T = 8 K (see Figure 6)

■ MODEL FOR MN-TCNQ ANTIFERROMAGNETISM
The mechanism of antiferromagnetism in Mn-TCNQ is similar
to the one described by Anderson in 1950.35 Localized spins in
Mn d shells interact between one another via a superexchange
mechanism, in which a d-shell electron (or hole) of a Mn atom
tunnels in a virtual transition onto the ligand, whereon it
experiences the correlation energy with the d-shell of another
Mn atom adjacent to the ligand. To explain the basic
mechanism that we take into account, we simplify the problem
by retaining only one orbital per Mn atom, considering, thus,
the case of S = 1/2 at each magnetic center. As for the ligand,
we retain only its LUMO. The energy diagram for the
interaction of two localized spins via the LUMO of the ligand is
shown in Figure 5. Since the LUMO is doubly occupied with
electrons, the superexchange occurs as a result of virtual
transitions of the LUMO electrons onto the d-shell orbitals.
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The coupling between the two localized spins at Mn atom sites
has the form of the Heisenberg exchange interaction

= − ·S SH J L R (4)

where J is the coupling constant obtained from superexchange.
To estimate J, we assume that the Coulomb interaction

between electrons is local, that is, electrons interact via an
onsite Coulomb repulsion, such as in the Hubbard model. This
assumption is motivated by the fact that the ligand is a relatively
large molecule, for which the principal source of exchange
comes from tunneling rather than Coulomb exchange matrix
elements. Indeed, the matrix elements of the Coulomb
exchange taken between the Mn d-shell and the LUMO
decrease with the size of the ligand. Furthermore, the presence
of the underlying substrate effectively screens the Coulomb
interaction, making it local. Thus, we estimate J to be

= −
− Δ − Δ

+⎜ ⎟⎛
⎝

⎞
⎠J

t
U U U

4
( )

1 14

2 (5)

where Δ is the energy distance shown in Figure 5 and U is the
Coulomb repulsion on the site of the d orbital. To generalize eq
5 to the case of Mn-TCNQ, we need to introduce a factor 1/
(2S)2 on the right-hand side, where S = 5/2 is the spin of the
Mn atom. We remark that the tunnel coupling between the Mn
d-shell and the TCNQ-LUMO takes place only via one of the
dzx′ or dxy′ orbitals, as illustrated in the diagram in Figure 4a; the
diagram applies also for the Mn case. Additionally, we remark
that the superexchange between two neighboring Mn spins on
the lattice differs from the one illustrated in Figure 5 by the
possibility of involving two (and not one) LUMO orbitals.
Thus, superexchange via the red and blue sublattices in Figure
4a are both possible. However, this difference amounts only to
a factor of 2 in the end result, since the two paths do not
interfere. By analyzing the DFT data, we deduce Δ ≈ 4.0 eV
and U = 7.5 eV and estimate J = 0.04 meV for the nearest
neighbors and J′ = 0.02 meV for the next-to-nearest neighbors.

■ CONCLUSION
In conclusion, our XMCD data for Ni-TCNQ and Mn-TCNQ
networks on Au(111) with the same 1:1 stoichiometry and 4-
fold coordination show very distinct magnetic behavior: only
the Ni-TCNQ network shows ferromagnetic coupling between
the Ni spin magnetic moments.
With the help of first-principles DFT+U calculations we have

been able to explain the qualitative differences between the two
systems and extract parameters for the perturbative model
Hamiltonians. These permit an order of magnitude estimate of
the exchange coupling constants (J), no matter whether DFT
+U calculations have limitations because of the underestimation
of the HOMO−LUMO gap and the choice of the U parameter
value.

The assumption of S = 1 magnetic moments localized at Ni
sites21 or S = 1/2 magnetic moments at Ni and TCNQ sites
coupled through a Heisenberg exchange permits a fit of the
measured magnetization curve for Ni-TCNQ which gives J
values an order of magnitude smaller than our J estimates and,
thus, reflects that the physical meaning of J is different in our
model with itinerant spin density. However, in the Mn-TCNQ
case the assumption of S = 5/2 spin magnetic moments
localized at the Mn sites seems to be well justified and,
therefore, also the meaning of the corresponding value of J.
More importantly, we have found that the reason for the

appearance of ferromagnetism in Ni-TCNQ is the existence of
Heisenberg exchange coupling between spins localized at Ni
sites and the itinerant spin density that appears due to the spin
polarization of the LUMO band, hybridized with Ni(3d) states
close to the Fermi level. Additionally, we have found that in
Mn-TCNQ, the spin magnetic moments are localized at the
Mn sites and, furthermore, they are very weakly antiferromag-
netically coupled, in agreement with the observed behavior
(essentially, paramagnetic at 8 K).
These two cases can be considered as two opposite limiting

cases showing FM and weak AFM coupling but, in principle,
there would exist other situations that may give rise to different
magnetic phases, for example, ferrimagnetic coupling, in which
spin magnetic moments at the metal atoms have different
magnitude and direction than the spins of the organic ligands.14

Further studies of this sort of systems, in which transition metal
atoms form long-range order two-dimensional networks with
different size and shape organic ligands, would allow to explore
the role of different coordination and stoichiometry.

■ METHODS
The STM experiments were carried out in an ultrahigh vacuum
chamber with a base pressure of better than 2 × 10−10 mbar in
the preparation chamber and lower than 1 × 10−11 mbar in the
STM. The Au(111) surface was cleaned by repeated cycles of
Ar+ sputtering and subsequent annealing to 800 K. TCNQ
(98% purity, Aldrich) was deposited by organic molecular-beam
epitaxy (OMBE) from a resistively heated quartz crucible at a
sublimation temperature of 408 K onto the clean Au(111)
surface kept at room temperature. The coverage of molecules
was controlled to be below one monolayer. Ni and Mn were
subsequently deposited by an electron-beam heating evaporator
at a flux of ∼0.01 ML/min on top of the TCNQ adlayer held at
350 K to promote the network formation. The substrate was
subsequently transferred to the low-temperature STM and
cooled to 5 K. STM images were acquired with typical
parameters of I = 0.1−1 nA and U = ± 0.5−1.2 V. Polarization-
dependent XAS experiments were performed at the beamline
ID08 of the European Synchrotron Radiation Facility using
total electron yield detection. Magnetic fields were applied
collinear with the photon beam at sample temperatures
between 8 and 300 K. A linear background was subtracted
for clarity. The metal substrates were prepared by sputter−
anneal cycles. The preparation of the metal−organic networks
followed the protocols established in the STM lab. The sample
preparation was verified by STM before transferring the
samples to the XMCD chamber without breaking the vacuum.
Calculations for Ni-TCNQ and Mn-TCNQ were performed

with the Vienna Ab Initio Simulation Package (VASP).36,37

These systems were modeled with a periodic supercell, the ion-
electron interaction was described with the Projector
Augmented-Wave (PAW) method,38 whereas the exchange

Figure 5. Energy diagram illustrating the origin of the AFM exchange
coupling.
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and correlation potential was taken into account by the
Generalized Gradient Approximation(GGA).39 In both systems
the plane wave expansion considers a kinetic energy cutoff of
280 eV. To satisfy the summations in the reciprocal space for
the Brillouin zone a mesh of 4 × 6 k points in the 1 × 1 unit
cell was chosen. Two planar (XY-plane) geometries were
considered for each system, (a) the rectangular 1 × 1 cell, from
where the PDOS was extracted and (b) the checkerboard
geometry in a 2 × 1 cell that allowed to estimate the FM or
AFM coupling on each system. Ni-TCNQ and Mn-TCNQ
networks were optimized both in lattice constants and atomic
positions, assuming a convergence criterion of 0.01 eV/Å in the
rectangular 1 × 1 cell and 0.05 eV/Å in the 2 × 1 cell with
checkerboard geometry. For all calculations the electronic
convergence criterion was 1 × 10−6 eV. With the aim to
describe properly the d electrons in Ni and Mn metal centers,
spin polarized calculations in the DFT + U approach40 with a
value of U=4 eV were performed. We have checked that varying
the value of U in the range of 3−5 eV does not change the
values of the Ni and Mn magnetic moments appreciably neither
the corresponding 3d level occupations, in particular that of the
Ni(3dxz) orbital that crosses the Fermi level. Therefore, our
conclusions do not depend on the choice of the particular value
of U in this range.
Extraction of J Fitting Magnetization Curves. We

consider the Weiss theory41 for the model in eq 1. Under the
assumption that the magnetization is homogeneous, the average
magnetic moment per unit cell is mz = Sz + sz, where Sz  ⟨Si

z⟩
and sz  ⟨sz(rj)⟩ are found by solving two coupled equations
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Here, ϵz = (1/2)gμBB is the Zeeman energy, f(ε) is the Fermi−
Dirac distribution function, and ν↑/↓(ε) = ν(ε ± εZ ± 2JSz),
with ν(ε) being the density of states of the itinerant carriers.
For simplicity, we approximate the integral in eq 6 by the
mean-value theorem, assuming that ν(ε) changes weakly on the
scale of ϵZ + 2JSz. The resulting effective bandwidth is then
approximated by the density of states at the Fermi level, W ≈
1/ν(μ), and the chemical potential μ is assumed to be
independent of B.42 With the help of this simple theory, which
has J and W as unknown parameters, we obtain magnetization
curves similar to those measured for Ni-TCNQ. An example is
shown in Figure 6, where, for J = 5.55 meV and W = 100 meV,
we reproduce the shape of the XMCD curve measured for

normal X-ray incidence (same data set as in Figure 1e). The
XMCD signal is multiplied by a constant factor, which is
regarded as a fitting parameter. Furthermore, similar fits to the
same data set can be obtained for different combinations of
values of J and W. For instance, we swept W from 20 to 500
meV and for each value of W we could find a value of J for
which a fit as good as the one in Figure 4 was produced. The
value of J extracted from the fitting procedure scales as J ∝
√W. On the other hand, one finds from eq 6 that the critical
temperature in the Weiss theory is Tc = 2J2/W. Thus, the best-
fit procedure allows us to determine only Tc rather than J and
W separately. We find that the extracted value of Tc depends
weakly on W, varying from 0.61 to 0.62 meV during the sweep.
It should be noted, however, that the Weiss theory is at verge of
its applicability, since the temperature in the experiment is close
to the extracted value for the critical temperature, Tc ≈ 7 K. For
lower temperatures, 0 < T < Tc, the Weiss theory predicts a
nonzero average magnetization at B = 0, which is incorrect for
the model in eq 1. A more accurate theory lowers this critical
temperature down to Tc = 0. Nevertheless, the Weiss theory
produces a scale for the bending of the magnetization curve, ϵ
≈ (T − Tc)/(1 + 2J/W), that is lower than the scale at which
the spin-1/2 Brillouin function bends, ϵz ≈ T.

Extraction of J from DFT Calculations. To give an
independent estimate for J and W, we analyze the results of the
DFT calculations performed for the Ni-TCNQ network. We
find that already the simplest DFT calculation, in which the
Brillouin zone is spanned by a single k-point (Γ-only
calculation), suffices to estimate the values of t, ΔS, and ΔT.
From the level positions and the hybridization strength of the
LUMO with the dxz and dyz orbitals, we deduce t ≈ 0.2 eV, ΔS
≳ 2.8 eV, and ΔT ≈ 1.1 eV. It should be noted here that a 1-k
point DFT calculation features an enhanced hybridization
strength for some of the orbitals as compared to a multi-k point
calculation. We have accounted for this enhancement by
dividing the tunneling amplitude between the LUMO and the
dxz orbital by 2; the dyz orbital does not couple to the LUMO in
the Γ-only calculation. This doubling of tunnel amplitude has
its origin in the fact that the dxz orbital couples at its both ends
to one and the same LUMO, resulting in an enhanced
coherence, i.e. constructive interference. The fact that the dyz
orbital decouples can be attributed in a similar way to
destructive interference. Furthermore, the transition from
{dxz, dyz} to {dx′z, dy′z} introduces an additional factor of 1/
√2. Thus, the estimate for t was obtained by dividing the
tunnel amplitude between the LUMO and dxz by 2√2.
We performed also multi-k point DFT calculations, although

they are, per se, more difficult to analyze. We note only that, if
one averages the projected DOS over the Brillouin zone in a
multi-k point calculation, then the interference terms cancel out
up to terms of order 1/Nk, where Nk is the number of k points
used in the DFT calculation. Thus, for Nk ≫ 1, the coupling of
the dxz orbital to its 4 nearest-neighbor LUMOs can be added
incoherently, yielding an admixture strength of 4(t/√2)2/Δ2,
where Δ is the energy distance between the LUMO and the dxz
orbital. This is to be contrasted with the 1-k point case
discussed above, for which one has an admixture strength of
(4t/√2)2/Δ2 arising from coherent addition. In practice, we
performed a 24-k point DFT calculation and found that the
values of t extracted by both methods coincide within expected
accuracy.
Having extracted t, ΔS, and ΔT from the projected DOS, we

estimate J ≈ 22 meV and t′ ≈ −31 meV using the expressions

Figure 6. Data set of Figure 1e (squares) fitted with the help of the
Weiss theory in eq 6. The total magnetization mz = Sz + sz (solid line),
as well as its itinerant component sz (dashed line), are plotted versus B
for the parameter values J = 5.55 meV and W = 100 meV.
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for J and t′: J = t2(1/ΔT − 1/ΔS) and t′ = −t2(3/4ΔT + 1/4ΔS).
To determine the remaining unknown parameters, tx and ty, we
compare the spectrum of the majority LUMO band computed
in DFT and the expression in eq 3. The two spectra agree well
for tx ≈ −32 meV, ty ≈ 42 meV, and t′ ≈ −26 meV. Note that
the difference between the two values estimated for t′ is about
J/4 and may be attributed to the fact that we dispensed with
some terms33 when deriving eq 1. A more rigorous calculation
shows that the spectrum of the majority LUMO band is given
by the expression in eq 3 with t′→ t↑′ = −t2(1/2ΔT + 1/2ΔS) ≈
−25 meV. Similarly, for the minority LUMO band, one expects
t′ → t′↓ = −t2/ΔT ≈ −36 meV, that is, the minority LUMO
band is somewhat wider than its majority counterpart.
However, the DFT calculation shows also that the minority
LUMO band mixes strongly with the dxz orbital, since the dxz
orbital lies close in energy to the LUMO. Therefore, our results
derived with the help of perturbation theory are only
qualitatively correct in this case. Nevertheless, a rough estimate
for W can be given either from the projected DOS or from the
DOS evaluated for the dispersion relation in eq 3. The latter
method yields W ≈ 113 meV, whereas the former W ≲ 400
meV.
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