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Abstract

In recent years inelastic spin-flip spectroscopy using a low-temperature scanning tunneling
microscope has been a very successful tool for studying not only individual spins but also complex
coupled systems. When these systems interact with the electrons of the supporting substrate correlated
many-particle states can emerge, making them ideal prototypical quantum systems. The spin systems,
which can be constructed by arranging individual atoms on appropriate surfaces or embedded in
synthesized molecular structures, can reveal very rich spectral features. Up to now the spectral
complexity has only been partly described. This manuscript shows that perturbation theory enables
one to describe the tunneling transport, reproducing the differential conductance with surprisingly
high accuracy. Well established scattering models, which include Kondo-like spin—spin and potential
interactions, are expanded to enable calculation of arbitrary complex spin systems in reasonable time
scale and the extraction of important physical properties. The emergence of correlations between
spins and, in particular, between the localized spins and the supporting bath electrons are discussed
and related to experimentally tunable parameters. These results might stimulate new experiments by
providing experimentalists with an easily applicable modeling tool.

1. Introduction

With low-temperature scanning tunneling microscopes (STM) scientist have developed a tool that has the
ability to detect and manipulate individual magnetic spin systems on the atomic and molecular level by an
externally controlled probe with sub-nm precision. These instruments have opened a new field of research
envisioning not only a deeper understanding of the origin of molecular magnetism by studying the interactions
between nanoscale spins but also of the many-particle effects between the localized spins and the itinerant
electrons of the supporting substrate. The progress in this field is best demonstrated by the recently achieved
ability to build stable magnetic bits by cleverly arranging only a handful of Fe atoms on either a thin insulating
[1] or on anonmagnetic Cu(111) surface [2]. While in these experiments the transition from quantum-
mechanical to classical magnetic behavior is explored [3], other applications might be envisioned ranging from
spin-based logic circuits [4] to entangled systems in which the quantum mechanical nature is crucial for
computational purposes [5].

At the basis of all these experiments lies the spectroscopic capability of the STM. About ten years ago
Heinrich and his co-workers showed in a hallmark experiment that it is possible to detect inelastic spin-flip
excitations on Mn atoms adsorbed on patches of Al,O3 on a NiAl surface [6]. Since then many experiments have
focused on transition metal atoms on a thin layer of Cu,N on Cu(100) [1, 7-20]. In these experiments, patches
of Cu,N are formed by sputtering a clean Cu(100) surface with N" ions and subsequent annealing. This leads to
amonolayer of Cu,N on the surface on which the desired metal atoms are deposited (figure 1(a)).
Experimentally, every 3d transition metal atom adsorbed on this surface reveals its fingerprint when a spectrum
is taken by placing the tunneling tip of an STM over the atom (figure 1(b)). The spectra are measured by varying
the bias voltage applied between tip and sample and recording the differential conductance dI/dV. All spectra
show characteristic features that can be classified into two groups: (1) step-like increases in the differential

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Some examples of inelastic spin-flip spectroscopy on single atoms and molecules. (a) Constant current topography of the
Cu,N surface on Cu(100) with co-adsorbed 3d metal atoms. (size approx.: 15 X 40 nm? V=10 mV,I=1nA). (b) Differential
conductance dI/dV spectra measured on top of Mn, Fe, Ti, and Co adatoms (from top to bottom) at zero magnetic field and

T = 0.6 K. Each atom reveals a characteristic fingerprint in the dI/dV signal. (c) Constant current topography of a Mn;,Ac;¢
molecular magnet adsorbed on --BN on Rh(111) (V = —1V,I1=45 pA). (d) Typical dI/dV and d’[/dV? spectraat T = 1.5 Kand
zero magnetic field on Mn;,Ac;¢. (€) Constant current topography of an organic radical molecule (C,3H,50,N,) adsorbed on Au
(111) (V=100 mV, I = 33 pA, contour line distances 50 pm). (f) dI/dV spectra at different temperatures (I' = 1.5, 3, 4.4, 6.7 K,
bottom to top, upper panel) and magnetic fields (B = 14, 10, 6, 2 T, bottom to top, lower panel) on the radical. Spectra are vertically
offset for clarity. Data adapted from [8,9, 21, 22].

conductance, positioned symmetrically around zero bias, and (2) peaks of the differential conductance at
zero bias.

The number of distinguishable conductance steps varies for different spin systems and the precise form of
the steps often shows some asymmetry with respect to the applied bias direction and can exhibit some overshoot
of the conductance at the step-energy. As we will see in detail, the steps are due to the opening of additional
conductance channels precisely governed by the magnetic properties of the spin system. These excitations can be
present even at zero magnetic field due to the magneto-crystalline anisotropy. The anisotropy is caused by the
reduction of the geometric symmetry at the surface and by spin—orbit coupling [23-25], which have the effect of
lifting the inherent degeneracy of the spin states. For single atoms the maximum anisotropy is limited to a few
tens of meV [26], whereby the magnetic excitation energies usually range from less than one meV up to a few
meV requiring experimental setups operating at temperatures T' < 4 K. Here, it is worth to note that one has to
be aware that not all energetically low lying step-like increases in the differential conductance must originate
from magnetic excitations. The tunneling electrons can also excite low-energy mechanical vibrations which can
produce similar strong spectroscopic features [12, 27-31] and which can interact with the spin excitations
[32,33]. Thus, to clearly distinguish magnetic excitations their behavior in external applied magnetic fields is
often crucial.

The peaks at zero bias are due to the Kondo effect in which itinerant electrons from the substrate coherently
scatter with the localized magnetic moment of the adatom [34—36]. This effect has first been detected by
scanning tunneling spectroscopy on single metal atoms adsorbed on noble metal substrates [37—46]. In these
early experiments the metal atoms are relatively strongly coupled to the substrate leading to a characteristic
Kondo temperature in the range of Ty &~ 30—300 K, as determined by the full-width at half-maximum of the
peak, and in most cases to a strongly asymmetric Fano lineshape due to interference effects with a potential
scattering channel [47-49]. A decoupling layer, such as Cu,N, significantly reduces the Kondo temperature
suggesting the possibility of influencing this many-body state with experimentally accessible magnetic fields and
temperatures [9, 18, 50, 51]. This enables the study of the interplay between Kondo screening, the magnetic
anisotropy, and nearby spins [10, 20].
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Apart from Cu,N, other decoupling substrates have been exploited to study spin excitations. For example,
low-lying excitations associated with a spin § = 1 of the magnetic atom have been found for single Fe atoms
embedded into the semiconducting InSb(110) surface [52, 53], which exhibits a two-dimensional electron gas
confined to the surface. Other experiments used two-dimensional materials, such as graphene and hexagonal
boron nitride (h-BN), as substrates for metal adatoms or magnetic molecules. For example, the Kondo state was
observed for individual Co atoms adsorbed on a graphene sheet on top of a Ru(0001) surface with different
Kondo temperatures and effective g-factors depending on the adsorption site with respect to the underlying
metal [50]. In a different experiment Co and CoH,, (x = 1-3) complexes on graphene on top of Pt(111) have
been investigated revealing a S = 1 for Co and CoHj; and a high magnetic anisotropy of ~8.1 meV for the Co
adsorbate [54]. On the highly corrugated and insulating #-BN adlayer on top of a Rh(111) substrate, CoH and
CoH, complexes showed both, spin-flip excitations and the Kondo effect, pointing to two different spin states of
S=1and S = 1/2, respectively [51]. Interestingly, the CoH complex revealed a dependence of the effective
anisotropy on the coupling to the underlying substrate, similarly as observed for Co atoms on large patches of
Cu,N [16].

Spin excitations can also be observed for spin systems adsorbed on bare metal substrates, even though
lifetime, anisotropy energies, and intensities are in general reduced due to the strong coupling with the substrate.
For example, spin-excitations of Co and Fe on Pt(111) have been measured [55, 56], where the measurements of
reference [55] were performed at T = 6 K and showed an approximately ten-times higher apparent magnetic
anisotropy as the latter measurement [56] that was performed at T'= 0.3 K. This discrepancy stems from the
strong temperature dependent broadening of the spectrum, which leads to this gross overestimation and
illustrates the need for low-temperature measurements [57]. Additionally, spin excitations have been detected
for Fe atoms adsorbed on Cu(111) [58] and on Ag(111) [59]. Apart from the 3d transition metal atoms, 4f
lanthanide atoms also show low-energy magnetic signals. For example, the Kondo effect was measured on small
Ce clusters on Cu,N [12] and spin-flip signals were observed for Gd adsorbed on Pt(111) and Cu(111) [60] and
HoonPt(111) [61], even though the intensities of the spin-flip excitations are unclear but presumably very small
due to the strong localization of the 4f wavefunctions close to the nuclei and their small spacial extension [62].

In addition to these, metal-organic complexes, such as M-phthalocyanine with M= Mn, Fe, Co, Ni, and Cu,
have been studied on different surfaces [63—70]. Many of them showed Kondo screening with alower Kondo
temperature enabling the tuning by dehydrogenation [63, 70] or the splitting of the peak by an externally applied
magnetic field [64, 68] or by coupling to a ferromagnetic substrate [71]. Interestingly, FePc adsorbed on Au
(111) showed a clear Kondo signature [69], while the same molecule adsorbed on top of a CuO decoupling layer
showed a double-step in the differential conductance pointingto S =1 [65].

The electronic decoupling can also be created by using a substrate in the superconducting state in which the
creation of Cooper pairs leads to a strongly reduced density of unpaired electrons around the Fermi energy. This
results in a significant increase of the spin lifetime of the metal-organic complex [72]. Furthermore, such a
substrate allows one to study the competition between superconducting phenomena and Kondo screening as
observed on MnPcadsorbed on Pb(111) [67, 73].

Apart from metal atoms and metal-organic complexes spin-flip excitations were detected in complex
molecules in which several spin centers are coupled forming a giant spin, as it has been shown at the example of
the prototypical molecular magnet manganese-12-acetate-16 which has a ground state with a total spin of S= 10
[21] (figures 1(c) and (d)). Here, the h-BN decoupling layer is crucial as the magnetism is strongly quenched
when the molecule is adsorbed upon a Au(111) surface. Furthermore, fully organic molecules including the
charge-transfer complexes TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) [32] and an organic
radical molecule [22], have shown the Kondo effect, whereby for the latter molecule the temperature and
magnetic field dependence was fully understood and simulated in a perturbative approach (figures 1(e) and (f)).

To describe the inelastic spin-flip excitation spectra, scattering models have been developed that treat the
interaction of the tunneling electron with the localized spin system effectively as a one-electron second-order
perturbation [74-77]. Additionally, similar models allowed rationalization of the change in the spectrawhen a
spin-polarized tip is employed [ 78] and the dynamics at increased coupling between tip and sample [79-81]. To
address the experimentally observed bias asymmetry, co-tunneling models in the strong Coulomb-blockade
regime have been proposed [82] and many-electron effects using the non-crossing approximation have been
included [83]. Furthermore, third-order scattering models similar to the ones used here were employed to well
describe the observed bias overshooting at certain inelastic excitation steps [84, 85]. Nevertheless, these models
were restricted to Kondo-like interactions and did not include potential scattering.

In this paper, I plan to review the straightforward model of the exchange-interaction between an isolated
spin system and the tunneling electrons and use a perturbative tunneling approach to simulate experimental
data with unprecedented accuracy. The basic idea of the model goes back 50 years to the hallmark discovery of
Juan Kondo that higher order scattering of bulk electrons on a magnetic impurity leads to logarithmic
divergences [34, 35]. We will see that such a model enables the determination of physical properties like the

3
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Figure 2. Comparison of the Kondo scattering and the single-impurity Anderson model. (a) Schematic view of the Kondo model
where electrons scatter via spin-flip or the potential interaction with a localized spin system. (b) Schematic view of the single orbital
Anderson impurity model. An occupied 3d orbital located at an energy &, below the Fermi energy hybridize with the substrate
electrons leading to a state broadening A. The occupation of this orbital with a second electron is prohibited by the Coulomb repulsion
energy Uj.

magnetocrystalline anisotropy, the coupling strength to the substrate, the state lifetimes, and the magnetization
directly by comparing the differential conductance measurements with simulations. Furthermore, it allows one
to grasp some of the correlations and entanglements that are formed by the many-particle interactions due to the
large electron bath of the substrate. The model, even though inherently limited due to its perturbative approach,
has the advantage that we can develop it straightforwardly using simple matrix algebra. Due to this simplicity it is
computationally very fast and can thus help us to understand future experimental observations. In these
calculations the magnetic anisotropies, gyromagnetic factors, and coupling strengths to the substrate enter as
experimentally determined parameters. Note however, that in particular for transition metal atoms adsorbed on
metallic substrates the magnetic anisotropy have been successfully determined from first principle by, for
example, time-dependent density functional theory [56, 86—88] or density functional theory which includes
spin—orbit coupling [89, 90].

The basic idea of the model is to treat the tunneling as a scattering event of an incoming electron with the
localized spin system (figure 2(a)). Postponing the exact meaning for later, it is amazing that only two
parameters govern these interactions: the Kondo scattering parameter J and the potential scattering parameter
U. These two parameters are crucial for the understanding of the low-energy excitations. One is tempted to ask
‘What is the origin of these?’ To find an answer it is helpful to step back from the scattering picture and look at
the single-impurity Anderson model, which describes one half-filled atomic orbital (for example from a 3d
transition metal atom) interacting with the continuous states of a host metal (figure 2(b)) [91]. In this picture all
energies are in the eV range and it is not per se clear how this relates to the scattering model with low-energy
excitations in the meV range. These relations were found by Schrieffer and Wolf, who were able to relate the high
energies of the Anderson model with the scattering parameters [92]:

]:zAz(L - ;)@, U:zAz[;;). 0

T €4 es + Uy T €4 e; + Uy

Here it is crucial for the understanding of the forthcoming model that the Kondo spin—spin exchange scattering J
isfor S = 1/2 systems always negative, which means that the localized spin and the substrate electrons couple
antiferromagnetically, while the potential scattering U" can have both signs, either positive or negative. However,
this result can be different for higher spins.

The manuscript is organized as follows: in section 2 the basic model in the zero-current approximation is
introduced and discussed for the example spin S = 1/2. In section 3 high-spin systems are discussed.
Experimentally observed examples are given and compared to the model calculations. Section 4 discusses the
limitations of the model, in particular, its inability to cover all correlation effects that occur when a system enters
the strong Kondo regime using experimental data obtained on the Co/Cu,N system as an example. In section 5
the initial model is extended by including rate equations and tested against experimental data. Here, we will
observe that the tunneling current too can lead to the appearance of a non-equilibrium Kondo effect. Finally,
section 6 summarizes the manuscript and outlines possible routes for future extensions.

2. The model

To describe the experimental observations we use a simplified model in which the Hamiltonian of the total
quantum mechanical system is divided into the ones of the subsystems of the two electron reservoirs in tip and
sample, the one of the localized spin system, and an interaction Hamiltonian that enables the exchange of charge

4



10P Publishing

NewJ. Phys. 17 (2015) 063016 M Ternes

carriers between the reservoirs:
H=H+H+H +H. (2)

The Hamiltonian of the tip H, and sample Hj, respectively, can be described in the framework of second
quantization using creation and annihilation operators 4" and 4:

H, = Zetkﬁﬁt-;m&tkm (3)
k,o

H, = Zesko’&s‘i}méskw (4)
k,o

with ey, and €4, as the energy of the electrons with momentum k and spin ¢ in the tip and sample, respectively.
These two many-particle systems are the source and sink for the tunneling electrons in the STM experiment.
Instead of using creation and annihilation operators in the momentum space k, we assume in the small energy
range of interest, i.e. to some tens of meV around the Fermi energy, for tip and sample a continuous and
energetically flat density of states p (¢) = ka k(@) Sk < él,jaélk/6> = p, with ( - ) as the time averaged
expectation value.
In general, the electronic states | ) in these electrodes might be spin-polarized in an arbitrary direction

. . . . . | N
which we account for by the corresponding spin density matrices ¢ = |@) (¢ | = E(I + # - 6).Here, ii

describes the directionand —1 < |7i| < 1the amplitude of the polarization in the chosen coordinate system,
6 = (6, 6, 6,)arethe standard Pauli matrices, and [isthe (2 x 2) identity matrix. With this convention the
spin polarization is identical to the relative imbalance between majority and minority spin densities
Py — Py
/st
quantization axis. This description via density matrices allows arbitrary polarization directions in tip and sample
which obey the quantum statistics (see appendix).

The impurity spin system may either contain only a single spin or a finite number of coupled spins. We
describe this system by a model Hamiltonian H, that includes Zeeman and magnetic anisotropy energy and—in

n =il = ,where 1 and | account for the two different spin directions along the chosen

the case of more than one spin—the Heisenberg coupling terms jijl and the non-collinear Dzyaloshinskii—

Moriya coupling ﬁij between individual spins:
A N ~i\2 ~i\2 ~i\2
A=Y gusB -8+ D,—(SZ> +E (sx) - (sy>

i i

+ 278 -8 + Y D8 x §. (5)
ij ij
In this equation jj is the Bohr magneton and g;, D;, and E; are the gyromagnetic factor, the axial and the
transversal magnetic anisotropy for the ith spin in the reference coordinate frame, respectively”. The externally

applied magnetic field is B and the total spin operators §= (§;, Syl, Szl ) are built from operators of the form

SA;,},,Z = fl R Q® SA;%Z R ® fn,which only act on the ith spin and where I denotes the identity matrix and
i

® the Kronecker matrix product. The spin operators S x,2 €an be easily constructed remembering that

S, ly,,) = 7img |y, ) withm, = S, S — 1, ..., —S as the magnetic quantum number along our chosen z-axis and

. . 1 .
Sily,) = ﬁ\/(S F m)(m £ S+ 1) |y, ). These then enable calculation of S, = E(S+ + S_)and

. 1. 4 .
S, = —Ei(SJr — S_), respectively. For simplicity we will set 7 = 1 from now on.

Diagonalizing the Hamiltonian of the localized spin system (equation (5)) leads to discrete energy
eigenvalues €, and eigenstates |y ),. For a single spin there are 2S + 1 eigenstates, while for complex spin
structures that consist of several spins the number of eigenstates increases quickly as [, (2S; + 1). Because we
neglect direct interactions between the electron baths in tip, sample and the localized spin system, we describe
the total state as a product of the continuous electron states | @) and the discrete spin states |y), i.e. |@"5, w)

=|¢"*) |y ). Note, however, that the coupling of the spin-system with the substrate will lead to an entanglement
between sample electrons and the spin system (see section 4) and to a renormalization of the parameters in

1 . . . . . . .
We write Jj; as vector to enable also anisotropic Heisenberg or Ising-like couplings.

2 Note, that instead of using the rather phenomenological D and E values the model can be easily adapted to more physical operators that
connect to the spin—orbit couplings [15] or to the symmetries of the system [61].
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Figure 3. Model of the tunneling process between tip and sample. (a) Electrons originating from the tip interact with the localized spin
system either via spin—spin (blue arrow) or potential scattering (red arrow). Additionally, we allow for spin—spin exchange scattering
between sample electrons and the localized spin (yellow arrow). (b) Scheme of the first order Born approximation: in the tunneling
process of an electron from the initial state i to the final state fit exchanges angular momentum and energy with the localized spin
system. (c) In second order Born approximation the system additionally occupies an intermediate state 1. This process produces
characteristic logarithmic features in the tunneling spectrum.

equation (5) [16, 51,93, 94]. Here we assume that the renormalization is already included in the anisotropies
and gyromagnetic factors and omit for the moment the entanglement.

The interaction Hamiltonian H' of equation (2) allows for tunneling of electrons from tip to sample or
vice versa only via Kondo-like spin-flip or potential scattering processes with the impurity (figure 3(a)):

A

Hl = Vt—»s + Vs—»t + Viss,

Vt—»s = Z Ttla]i asTl' at/l(zo' : Sl + UiIi): (6)
(V)

Viee= ) TiJi ﬂsz(zo' -8+ Uili), (7)
3,44

with T as the coupling constants between tip and the ith adsorbate spin, and U; = U}/J; as the unitless ratio
between Kondo and potential scattering. While we assume that the impurity is much more strongly coupled to
the sample than to the tip, spin—spin scattering between the impurity and substrate electrons are additionally
considered:

1

0om

Dby a6 8. (8)
i,

With the above assumptions the model is largely identical to the ones studied by Appelbaum and Anderson
already in the 70s for mesoscopic tunnel junctions [95-97].

2.1. Current and conductance in second order

We will now briefly review the calculation of the tunneling current using Fermi’s golden rule. In STM
experiments the bias eV applied between tip and sample shifts the Fermilevel ef of the tip with respect to the one
of the sample. At positive electrons from occupied tip states can cross the tunnel-barrier and interact with the
localized spin system under exchange of angular momentum and energy (figure 3(b)). To obey energy
conservation, the energy difference €;; = €; — ¢; between initial and final state of the spin system has to be

accounted for by the energy of the tunneling electron. The current flowing between tip and sample is then given
by:

Tfle—en[1-fe-ep]de,

2me +oo s
It (eV) = 7TOZ Z‘Dl / ‘M,tf
if et

I~ eV) = zﬁﬂTo2 ZPi /_Zn ‘ ffﬁt|2f(€ + eV)[l —fle— €if):|d€)
if
I — It—»s _ Is—»t, (9)

where we have dropped the additional summation that would account for current through the different sites in
coupled spin systems, i.e. we restrict our calculation to single spin systems.

6
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The unitless tunnel barrier transmission coefficient T; = |T;,Jp |? contains all experimental parameters that
will determine the strength of the tunneling current. In particular, T, strongly depends on the distance between
tip and adsorbate, and on the spin independent local densities of states in tip and sample. For the moment we
want to assume that T; << 10 that the influence of the tip on the spin system is negligible and the time between
consecutive tunneling events is much longer than the relaxation time of the spin system, e.g. via processes such
as described by equation (8). Such conditions are usually easy to provide in STM experiments where the tip—
sample separation can be adjusted to give tunneling currents in the pA range or below so that the tip can be seen
as alocal probe of the spin system that leaves the spins always in thermal equilibrium with the substrate (zero-
current approximation).

Under this assumption the average state occupation p;(T) of the spin system is only governed by the effective
temperature T and follows the Boltzmann distribution,

exp[—€i/(kgT))]
21‘ exp[ —e€i/(kgT)] ’

with kg as the Boltzmann constant. Furthermore, we assume a flat density of states in tip and sample so that the
electron occupation is given by the Fermi-Dirac distribution f (¢) = [1 + exp(e/kgT) ™%

While most STM experiments do not record the tunneling current directly, we are interested in its derivative
with respect to the bias voltage. With the energy independent matrix elements the derivative of the current is easy
to evaluate. Integrating the Fermi—Dirac distributions of equation (9) and calculating the derivative results in a
temperature broadened step function [98]:

p;(T) = (10)

_ 14+ (x— 1Dexp(x)

O(x) = (11)
exp (x)?
with x = ¢/(kgT), so that equation (9) becomes:
oI t=s — 2ﬂez 2 tos [2
a_V(ev) == Tg izf:pi i @(eV— €1f)~ (12)

The main goal of this paper lies in deriving the transition matrix elements M to be able to solve the
equation (12). First, we start with second order processes, neglecting scattering that involves electrons which
originate and end in the substrate bath, i.e. we concentrate on tunneling processes which consist of only one
scattering event as depicted in figure 3(b) and described by the transport Hamiltonian of equations (6) and (7):

1. ., A
MY = <¢,f, Wf‘ S6-8+ Ul |00 wi) = My + Usy. (13)

This matrix is energy independent and connects the initial states in the electron baths | ¢, ) and spin system |y, )
with their final states |¢ ) and |y ). It contains the spin-exchange scattering term Mjrand a potential scattering
term that has non-zero matrix-elements only when initial and final spin state are the same (6 is the delta
distribution). Computing the absolute square of ME}) results in three terms that contribute to the tunneling
conductance:

2 2
\Mgf“\ = |My| +|UPSy + 2% (U x My )5y, (14)
where 2R (A) denotes the real part of the matrix A. The first term consist of the operators
LA .o oA LA 1, 1, & LA
68 =06:5:+6,S,+6.5; = > +S-+ 55—5+ + 6.5, (15)

which connect the initial and final state and accounts for spin-exchange processes in which angular momentum
between the tunneling electron and the localized spin system can be exchanged. The second term accounts for
potential scattering between the tunneling electron and the localized spin system and does not change the spin
state. The third term results from the interference between potential and spin-exchange scattering and depends,
as we will see, strongly on the angular momentum of the localized spin and is the origin of magneto-resistive
tunneling [13, 99].

Due to the product-state of the total quantum-mechanical system, it is worth mentioning that the matrix
elements have to be independently evaluated for the localized spin and for the tunneling electron. For an
electron tunneling between a spin-average tip and sample the non-zero matrix elements are:

(11541 1) = +1, (16a)
(L] 1) = +1, (16b)
(P51 1) = +1/2, (16¢)
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Figure 4. Tunneling spectrafora S = 1/2 system at a temperature of T= 1 Kand g= 2 evaluated in second order perturbation theory.
(a) Atapplied magnetic field temperature broadened symmetric steps are visible. The different contributions to the conductance are
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voltage conductance depends strongly on the potential scattering U and the tip polarization.

(L1511 )=~-1/2, (16d)
(PII1) = +1, (16e)
(L) = +1, (16f)

where, for completeness, we have additionally included the probability amplitudes for interacting with the unity
operator [. Since 6 = 25, these matrix elements enable us to rewrite the spin-exchange scattering term in
equation (14) for a spin-average tip and sample to [8, 99]:

2:%‘<"’f §—|"’f>2+§|<‘/’f

Note, that (16¢) and (164) do not cancel out because the two different spin directions in the initial (tip or sample)
and final (sample or tip) bath are incoherent ensemble states and therefore cannot interfere with each other.

2

A

S, . (17)

vi)

2
+‘<"’f

52 w)

| My

For a tip with spin polarization n = ZT ;Zl along the z-axis, the transition matrix elements are tunnel-
1 1
direction dependent because either the initial or the final electron bath has now a spin imbalance in the density of
states [99]:
2 l+7 . 2 1-p \ 2 \ 2
\M,-} ’ = |<l//f S- \l//,} +— |<v/f S+ |1//1-> + |<t//f S, t//l-> ,
w2 l=n A 2 147 5 2 A 2
‘sz‘t| =T ‘<Wf S—“l/i> + 5 ’<V/f S+|Wi> +‘<Wf S, ’I/i> (18)

As an example figure 4 shows the spectrum for a single spin with S = 1/2. When applying the magnetic field, the
conductance increases step-like at bias energies above the Zeeman-energy |eV' | > gu|B|. These steps are
symmetrical around zero voltage and thermally smeared out by about 5k T [98]. When the electrons in the tip
are spin-polarized the step heights at positive and negative bias are different. For a paramagnetic tip with a spin
polarization in direction of the applied field ( > 0) the conductance step at positive bias decreases, while it
increases by the same amount at negative bias (figure 4(b)).

With a spin-polarized tip the interference between the potential and Kondo-scattering shows a very
particular effect [13, 99]. Depending on the sign of U the zero-bias conductance is either increased or reduced

1 .. . .
and can become evenzeroat = land U = —ES (figures 4(c)—(d)). This magneto-resistive elastic tunneling

[99] arises from the third term in equation (14) and scales with the expectation value (S, ) of the impurity. At
non-equilibrium the strength and sign of this term can change; this allows to read-out of the z-projection of the
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Figure 5. (a) Scheme of the third order processes. Full (dashed) vertical arrows illustrate real (virtual) transitions between intermediate
and final state (m — f) of electron-like (full circles) and hole-like (empty circles) carriers. (b) and (c) The temperature broadened
logarithmic function F (eV — ¢,,, T) atdifferent temperatures T'with @y = 200 meV and I = 5 peV. (b) linear, (c) linear-log plot.

spin without exciting it, as has been shown in spin-pumping (see section 5) [13, 99] and pump-probe
experiments [14].

2.2. Expansion to third order

We now turn our attention to the next higher order of interaction. We want to consider processes in which,
during the transport of an electron from tip to sample (or vice versa), the spin system additionally interacts with
an electron from the sample bath (figure 3(c)). These processes involve an intermediate state (1) and are
expressed in second order Born approximation as:

(19)

Mmeim Mmeim
MP =1 Y + :

o\ € —€m €m — €F

Here, the tilde on the matrix M tags scattering processes between the localized spin and sample electrons only.
The order of the two different electron-spin interactions can be exchanged. Thus, we have also to account for
processes in which first an electron that originates and ends in the sample scatters the system into the
intermediate state and then the tunneling electron interacts with the system scattering it into its final state (right
fraction in equation (19)). Here, it is of fundamental importance to have in mind that, contrary to the initial and
final state of the total system, the intermediate state |y, ) can be virtual, i.e., must not necessarily obey angular
momentum and energy conservation. The integro-summation symbol in equation (19) indicates that we
perform both, a summation over all possible discrete intermediate states in the local spin system |y) and an
integration over the continuous states of the intermediate electron states | @) in the substrate. For the integration,
we consider states in an energy range of +®g around Eras possible scatterer leading to the following
characteristic function for electron-like processes [97, 100] :

E(e, T) = f de/ f(eeT)f( —e T), (20)

and for hole-like processes:

+wo f(é‘ T)
(e, T) = / / — —f' (" -€ T), (21)

respectively. Here, the Fermi—Dirac distributions in the numerator ensure an unoccupied (occupied) final state
and the integration over the derivative f’ accounts for the temperature broadening during the total process
(figure 5(a)). The switching from virtual to real processes at € = 0 leads to a logarithmic singularity that is
broadened by the temperature. Thus, aslong as the energy €,, of the intermediate state and the temperature kgT'
are small compared to the integration bandwidth @y, the equations (20) and (21) (with a change of sign) can be
rewritten as:

+00 + V_
F(eV—em)z—/ de'In[ otV =) ooy — e, e, T, (22)
— eV — ey + 1l
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Here, © (¢, T) = 00 (¢, T)/0e is the derivative of the temperature broadened step function (equation (11))
and a small 7 accounts for additional non-thermal (lifetime) broadening. Figure 5 shows the energy and
temperature dependence of Fwhich has first been experimentally observed on a radical molecule adsorbed on a
Au(111) surface (see figure 1(e) and f) [22]. Compared to the Lorentzian or Frota functions [101] normally used
for describing Kondo resonances in STM measurements [12], the behavior of this function is quite different,
even though—ifanalyzed only in a small energy range of a few kgT'around zero—, it has a similar shape [22].
The function shows a relatively flat top whose width is determined only by the temperature. For energies
kT < |e| < wqtheamplitude decays logarithmically as —In (|e/@,|) while the maximum peak height is
proportional to —In (kp T/@y ). Due to the restriction to states in an energy interval +w, the function remains
analytical even at ¢ — +oo0 where Fapproaches zero. Note, that the precise value of the cut-off energy @, is not
critical and mainly changes only the background offset. If not otherwise noted we use @, = 20 meV throughout
the paper.

When calculating the conductance we now have to consider both processes depicted in figures 3(b) and (¢)
and thus have to replace M, with M; + M, in equation (12) leading to:

2 2
Mg]}) + ME}})‘ — |M,§r])

+Jp Z[ (MﬁMmeim + MM,y Miy, )F( Emi)

m

+ (MﬁMmeim + Mg Myup Mipy )F(€im )] (23a)
+ ]/)SUZI: (IﬁMmeim + IﬁMmeim )F(Gmi)
m

+ (15 Moy Wiy + T5 Mg My ) F (€ )] (23b)
+ 0 ( In )2 .
The evaluation of the matrix elements up to third order yields two new terms due to the interference between the
processes described by M and M, which are absent in the second order perturbation calculation. The term
(23a) was first identified by Kondo [34] and can lead to temperature broadened logarithmic features in the
conductance at the energy of intermediate states. For a non-vanishing potential scattering amplitude (U # 0)
the term (230) will, in addition, produce a bias-asymmetry in the differential conductance even without spin-
polarized electrodes.

We start with the evaluation of the Kondo-like processes, that are described by the term (23a), using a spin
S = 1/2 system with only two states as an example. We assume that in thermal equilibrium only the ground state
| 1) = |y;)isoccupied, i.e. that the Zeeman-splitting induced by the external magnetic field is large compared
to the thermal energy: gug|B| > kpT. The Feynman diagrams of figure 6 depict all possible interaction
processes. First, we review the second order processes (figure 6(a)): a spin-up electron that tunnels from tip to
the sample cannot flip the spin (Jy;) — [y;)), while a spin-down electron can either scatter with exchange of
angular momentum (Jy;) — |y, )) leaving the system in the state| | ) = |y, ) or without exchange
(ly;) = |y)). Tothird order, there are a total of six diagrams to be accounted for, which we can label by the
states occupied in the initial (7), intermediate (1), and final (f) state. Here, we mark the exchange diagrams by
appendinga ‘R’. This results in the processes (112), (121), (122), and the reversed order scattering events (112R),
(121R), (122R).

To evaluate the conductance due to these processes we calculate the spin-flip matrix elements of
equation (15) for the electrons and the localized spin-system. For electrodes without spin-polarization this
results in conductances of:

sterr = e (] o) o] S ) (] )]
%
X F(eV = e T) X O( eV = e, T), (24)

oI R Axze? o p
eV =TI S e (w,
2% 41 e

7 Sy} (v S o) (v S5 [} |

[ES24]

X F(eV = e T) X O( eV = ey, T). (25)

Here, equation (24) accounts for the direct diagrams (normal order) and (25) for the exchange diagrams
(reversed order), respectively. In these equations &, is the usual Levi-Civita tensor of rank three, which is 1 (—1)
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Figure 6. Interaction diagrams of order two (a) and three (b) for an electron tunneling from tip to sample into a twolevel S = 1/2 spin
system. The large (small) spheres depict the state of localized spin (interaction electron) and the color their spin directions. Schematic
spectra show their contributions to the conductance at positive bias. The numbers label the processes with the state order of the
localized spin-system. An appended ‘R’ label processes in which the scattering into the intermediate state is performed before the
tunneling electron interacts (exchange diagrams). Note that the time order of the processes influences crucially the conductance
spectra as schematically displayed in the small graphs (vertical line is Ef; the s means multiplication).

if {jkI} is an even (odd) permutation of {xyz}, and zero otherwise [77]. The step-function @ ensures that energy
conservation at the final state of the scattering process is obeyed, while the function Fhas its peak at the
intermediate state energy and is mirrored at Er for the reversed tunneling process. Any spin-polarization in tip or
sample changes the transition matrix elements for the interacting electrons and equations (24) and (25) would
become more complex (see appendix).

Comparing the different contributions to the conductance (figures 6(b) and 7(a)) it is remarkable that all
third order scattering events start with a spin-down electron except the process 121R. Here, a spin-up electron
tunneling from tip to sample non-trivially interacts with the system because a substrate electron has flipped the
localized spin into the intermediate spin-down state before the interaction takes place.

Summing up the contributions to the conductance due to all second and third order scattering events results
in spectra similar to those exemplary given in figure 7(b) (cf figures 1(e) and (f) [22]). At zero field the
differential conductance shows a peak that splits with increasing magnetic field. While in this calculation we
assume to be in the weak-coupling Kondo limit and thus neglect any correlation energy due to the formation of a
Kondo singlet, the peak splits as soon as the Zeeman energy overcomes the thermal energy. Note, that the
resulting split-peak at small fields can lead to the deduction of an erroneously high g-factor when just evaluating
the peak positions due to the superposition of peak and step-structures.

If we consider now in addition that the scattering process between tip and sample or vice versa can also occur
via the potential interaction (term (230)), we observe an asymmetric line-shape as soon as the two eigenstates are
no longer degenerate and (S, ) # 0 (figures 7(c) and (d)). This direction-dependent asymmetry cannot
originate from the scattering matrix elements that involve only the localized spin site (the order of excitations
shall be the same) but derives from the matrix elements involving the interacting electrons. Physically, the
reason lies in the asymmetry of the tunnel-junction for which we assume that only the sample is coupled to the
spin-system and thus neglect any intermediate scattering process that originate and end in the tip.

As an example, we examine in detail the process (121) (see figure 6(b)) in both tunneling directions. For a
current to flow from tip to sample via this process, firsta | | ) electron originating from the tip is scattered into a
| 1) state in the sample exciting the spin system from |y;) — |y, ). Second, a| 1 ) electron in the sample is
scatteredinto| | ) bringing the spin system back to |y;). Third, the sample | | ) isscattered back into the tip as
| | )electron. The last step of this process can either take place via the &, or, in the case of potential scattering, via
the 6; term, respectively. For an electron tunneling in the reverse direction we firsthavea| | ) from the sample
being scattered into an electron | 1 ) state of the tip simultaneously exciting the spin system from |y;) — |y,).
Then, the second processflipsa| 1 ) sample electron into the | | ) hole from the first process. Finally,a| 1 ) tip
electron traverses the junction and fills the | 1 ) hole in the sample. Comparing both tunneling directions we see

11
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Figure 7. Tunneling spectra fora S = 1/2 system (a) The third order contributions for non-spin-polarized tip and sample with
kgT = 0.1 X guzBand wy = 20 X guyB. (b) Total conductance for Jp = —0.05, U=0, T=1K, and g =2 at different magnetic
fields. (c) Additional contributions to the conductance in third order due to a non-zero potential scattering term. (d) Total
conductance asin (b) but with U = 0.25. Dashed lines in (b) and (d) show the second order conductance onlyat B=10 T.

that it is the third process which differs in the initial and final state, i.e. the matrix elements are either { | |6,| | )
and( | |67] § Yor{( 1 |6;] T Yand{ 1 |67] 1 ). Rearranging the matrix elements so that all processes become
electron-like, the prefactors for calculating the tunneling conductance due to these four processes are for the two

without potential scattering:

(1217 Hp (1 o] By (B Lol 1) (15 ]| 1) >0,
o ~ AN ~- J
M M e
(121~ = (1|6 ] 1) (B 16l 1) (17 1é:] 1) >0, (26)
M ¥ e
and with potential scattering:
(1210)' 7% U (I 6] 1) (B 16| 1) (1 6| 1) <0,
T + Y
(1210~ =Jp U (1 [o| £ ) (B 161 19) (1% 16l 1Y) > 0, (27)
A I AN I J
R

where we assumed Jp < 0and U > 0. Note, that the preceding sign change at the tunneling direction from
sampleto tip (s — t) is due to the rearrangement of the interaction order together with the switching from hole-
like to electron-like scattering. The contribution to the conductance from the processes in which only Kondo-
like spin—spin interactions take place is positive for both tunneling directions, while the conductance for
processes that include potential scattering changes its sign when inverting the tunneling direction.

3. Some single spin examples

Up to here we have revised the relevant formalism to calculate the conductance in the third order of the matrix
elements quite closely following the work established by Appelbaum, Anderson, and Kondo [34, 95-97]. The

S = 1/2 system we used for illustration contained only two states and was not influenced by any magnetic
anisotropy or near-by spin systems. Recently, efforts have been made to expand this perturbative model to
higher spin systems, which also include magnetic anisotropy and couplings to neighboring spins [81, 83-85],
but the importance of the potential scattering was not taken into account up to now. In the following, the power
of this easily accessible model will be used to evaluate and describe the spectral features on more complex

systems.
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Figure 8. Tunneling spectra of a spin S = 1 system. (a) The anisotropy lifts all degeneracies (D = —5 meV, E=1 meV) at zero field.
The plot shows the state energy over the m, expectation value (m,) = tr (. [w;) (w;]) (blue: E = 0, black: E # 0) (b) The significant
third order processes (T = 1 K, B = 0 T). The dot dashed line show the additional contribution fora U = 0.125. (¢) The total spectrum
with Jp = 0 (dashed redline), 0.1 (full black line), and with additional U = 0.125 (dotted dashed blue line).

3.1. The smallest (S = 1) high-spin system

Regarding the spectra of the S = 1/2 system (figure 7), one could get the impression that the coupling to the
sample always results in some superimposed peak-like structures as soon as a spin flip transition is possible, and
which scales with the substrate coupling strength —Jp. In this section we will show that the situation is more
complex and depend not only on the transition matrix elements but also on the state energies.

To expand the complexity, we turn now to a magnetic system with S = 1 in which axial and transverse
magnetic anisotropy have broken the zero-field degeneracy of the three eigenstates. Assuming easy-axis
anisotropy (D < 0) the energetically lowest eigenstates have weights only for m, = +1. The additional
transverse anisotropy splits the remaining two-fold degeneracy forming an antisymmetric ground and a
symmetric first excited state (figure 8(a)). Thus, in the basis of the magnetic easy axis the three eigenstates can be

written as: [y ) = %(|+1> C =)l = %(m) + =1y, and [ys) = 0). Such situations have been

found for example for Fe(II)-phthalocyanine molecules adsorbed on the (2 X 1) oxygen terminated Cu(110)
surface [65], for Fe atoms adsorbed on InSb(110) [53], or for CoH complexes adsorbed on the h-BN/Rh(111)
surface [51].

By taking only second order spin-flip processes into account it is easy to calculate (using equation (17)) that
the transition probabilities from the groundstate to the two excited states at B=0 are equal, leadingto a
symmetric double step structure in the spectrum (figure 8). Expanding the calculation to third order, only the
processes which involve all states, i.e. (123) and (132), have non-zero matrix elements when the potential
scattering U= 0. Processes like (112), (121), or (131) cannot be interlinked using any combination of the
operators §+, S _,and §Z and are thus forbidden. Nevertheless, additional potential scattering enables transitions
involving the operators §+, S _,and Ior §z, §Z, and I which makes the aforementioned processes possible
resulting in an asymmetry of the spectrum with respect to tunneling direction.

Itis remarkable that the remaining third order processes at U = 0 change the spectrum in a quite different
fashion, even though they have the same strength. Process (123) produces its peaks at eV = +¢,, but due to
energy conservation it contributes to the spectrum onlyat|eV'| > €3, which efficiently cuts off the peak. In
contrast, the peak at higher energy due to process (132) is not as strongly cut off (figure 8(b)). Thus, the full
spectrum shows a peak-like increase of the conductance at the energy of the second step but not at the
energetically lower first transition step. Furthermore, the conductance has a curved form for tunneling voltages
between ¢, and ¢; (figure 8(c)). Note, the overall general behavior would not alter when changing from easy-axis
to easy-plane anisotropy (D > 0) as longas all degeneracies are lifted.

3.2. Single Mn and Fe atoms on Cu,N

After the, with only three eigenstates, rather easy S = 1 example, we now apply the model to the experimentally
and theoretically intensively studied single 3d transition metal atoms adsorbed on a monolayer of Cu,N on Cu
(100). When these atoms are placed on top of a Cu site they form strong covalent bonds with the neighboring N
atoms [8]. This highly anisotropic adsorption geometry leads to three distinct symmetry axes that are
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Figure 9. Comparison of experimental and calculated spectra on Fe and Mn atoms adsorbed on Cu,N. (a) Experimental data from [8]
measured on a single Fe atom at increasing field B, along the easy axis and at a temperature T'= 550 mK (red circles). The simulations
(black lines) for all plots are obtained with one set of parameters: g = 2.11, D = —1.57 meV, E = 0.31 meV, Jp = —0.087, U = 0.35,
and Tog = 740 mK. Additionally, a constant offset of #20% of the total conductance had to been added (black shaded area). For

B, = 0 the second (green shaded area) and third order (orange hatched area) contributions to the conductance are indicated. The
spectra at field are vertically shifted for better visibility. The inset shows the adsorption site of the 3d atoms (black circle) on the Cu,N
(Cuyellow, N blue circle) (b) and (c) schematic state diagrams and visualizations of the magnetic anisotropy (in meV) for Fe (b) and
Mn (¢) [89]. (d) Experimental data of two different Mn atoms at B, = 0 and B, = 7 T (colored circles). The fits (full lines) for the

B, = 0(7) T dataresultsin Jp = —0.029(—0.0091), U = 1.35(1.28), D = —51(—39) peV,g= 1.9,and Tog = 790(930) mK. The
dashed line simulates for the zero field data the absence of any anisotropy. The dotted line simulates with the 7 T parameters the
absence of a magnetic field. (¢) The 7 T atom as in (d) probed with tips of different spin polarizations 7' (data from [99]).

perpendicular to each other: The direction out-of-surface and two in-surface directions along the Cu-N bonds
and perpendicular to it, along the so called vacancy rows (figure 9(a) inset).

Single Fe atoms adsorbed on this surface have been found to be in the S = 2 state with a magnetic easy-axis
along the N rows (z-direction) and a magnetically hard-axis along the vacancy row (x-direction). In this
coordinate system anisotropy values of D = —1.55 mV and E=0.31 mV, and a gyromagnetic factor of g=2.11
described the experimental data well using a spin Hamiltonian like equation (5) and a second order tunneling
model [8, 75, 102]. The Hamiltonian has as solution five non-degenerate eigenstates and, dueto D < 0, favors,
at zero field, ground states with weights at high 1, values. Similar to the S = 1 system the transverse anisotropy
breaks the degeneracies leading to a symmetric and antisymmetric solution with the main weights at | +2) as
ground and first excited state and weights in | £1) for the second and third excited state (figure 9(b)). To visualize
the anisotropy we plot the total energy necessary to rotate the ground state into arbitrary directions showing the
favored easy axis (z) and the unfavored hard axis (x) (figure 9(b)) [89]. In second order, spin-flip scattering is
allowed between the groundstate and the three lowest excited states but a transition to the highest state is
forbidden because this would require an exchange of Am = +2.

Experimental dI/dV measurements on this system show, in addition to the conductance steps, peak-like
structures at the second and third step but not at the lowest one (figure 9(a)). Additionally, they show an
asymmetry between positive and negative bias. To rationalize these observations we can follow a similar
argumentation as in the S =1 case: in third order, transitions like (121) are not possible without additional
potential interaction and processes like (123) or (124) are strongly cut off due to the high energy difference
between €, and €3 or €4. In contrast, the processes (132) and (142) scale with Jj leading to the peak features in
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the differential conductance. The additional asymmetry hints at a non-negligible potential scattering. As the
computed curves in figure 9(a) reveal, our model almost perfectly fits the magnetic field data without any
adaption of the parameters’. We mention that similar good agreement between experimental data and
computation can be reached in the other two magnetic field directions (not shown). The coupling strength in
these simulations is Jp = —0.087, close to the —0.1 found in a similar perturbative approach [84]. A potential
scattering term of U= 0.35 is necessary to reproduce the asymmetry. This value is significantly smaller than the
U = 0.75 found in experiments where the magneto-resistive elastic tunneling was probed [99]. Part of this
discrepancy can be understood by an additional conductance term that does not coherently interact with the
spin-system and which would lead to an overestimation of U in magneto-resistive measurements. Indeed we
need a constant conductance offset of about 20%, which is added to the calculated conductance to reproduce the
spectra.

Switching from an integer to a half-integer spin system we now discuss individual Mn atoms on Cu,N, which
have aspin of S = 5/2 and only a small easy-axis anisotropy of D ~ —40 ueV along the out-of-plane direction
and a negligible transverse anisotropy [7, 8]. The easy-axis anisotropy prohibits the immediate formation of a
Kondo state due to a Kramer’s degenerate ground state doublet with m, = +5/2 (figure 9(c)). At zero field a
typical spectrum shows only one step, which belongs to the transition between the +5/2 and the +3/2 states that
have superimposed asymmetric peak structures (figure 9(d)). The fit to the model yields Jp = —0.029 and
resemblesa S = 1/2 split-Kondo peak at small magnetic fields (see figure 7(b)). A different Mn atom
investigated at B, =7 T shows a significantly reduced J = —0.0091. Interestingly, we find for both atoms a

potential scattering value of U & —S§, which allows one to describe the spectra without the need of any

additional conductance offset. This high U value that is the origin of the bias asymmetry has been independently
found in spin-pumping experiments [13] (see section 5) and by measuring the magneto-resistive elastic
tunneling contribution [99]. The extraordinary agreement between model and experiment can be seen in
measurements using different spin-polarized tips on the same atom (figure 9(e)). Here, the strong influence of
the tip-polarization on the inelastic conductance at bias voltages | V| < 1 mV is evident while the differential
conductance at V > 1.5 mV stays, for all tips, constant.

4. The limit of the perturbative approach: the Kondo system Co on Cu,N

When a half-integer spin with S > 1/2 has easy-plane anisotropy D > 0, its ground state at zero field is a doublet
with its main weights in m, = +1/2. This enables an effective scattering with the substrate electrons and leads at
low enough temperatures to the formation of a Kondo state. Experimentally this has been observed for Co atoms
on Cu,N [9, 11, 16-18] which have been found to have the total spin S = 3/2 and which enter the correlated
Kondo state with a characteristic Kondo temperature of Tx = 2.6 K in experiments performed on small patches
of Cu,N at temperatures down to T=550 mK [9]. Apart from D > 0 the system also has a small in-plane
anisotropy (E # 0) which creates an easy axis (x) along the nitrogen row and a hard axis (z) along the vacancy
rows (figure 10(a)).

Interestingly, in this system the coupling to the substrate ]y changes with the position of the Co atom on
larger Cu,N patches, concomitant with a change in the anisotropy energies which separates the | +1/2) states
from the | +3/2) ones [ 16, 94]. For us this allows the study of the transition from the weak coupling to the strong
coupling regime. In the case where the Co atom is relatively weakly coupled to the substrate (Jp ~ —0.1), the
model can be consistently fitted to the experimental data even at different field strengths along B, (figure 10(b)).
We observe a zero-energy peak that splits at applied fields similar to the S = 1/2 system of figure 7(d). But while
for S = 1/2 the field direction does not play a role, here the peak splitting depends strongly on the direction due
to the magnetic anisotropy [9]. For this high-spin system we furthermore observe inelastic steps due to the
transition to energetically higher excited states which arelocated at eV | = 2| D|for B=0and whose additional
peak structure is well described within the model.

For Co atoms adsorbed closer to the edges of the Cu,N patches, the coupling to the substrate increases and
the fit to the model worsens significantly (figure 10(c)). While the experimental data measured for non-zero
fields are reasonable well described with Jp ~ —0.25, at B=0 the experimentally detected peak at Eis stronger
than the peak created by the model. Additionally, the experimental peak-width appears to be smaller than the
temperature broadened logarithmic function, which was similarly observed for a radical molecule with § = 1/2
for temperatures presumably close to Tk [22]. Furthermore, we observe that the calculated spectrum no longer

? We note that all experimental data in this manuscript are unprocessed except for a slight slope adjustment of <2% which corresponds to
the compensation of an unavoidable small drift in the tip sample separation of less than 0.5 pm during the measurement time. The effective
temperature is always larger than the base temperature of the experiments due to additional broadening effects as for example modulation
voltages, electromagnetic noise, or additional lifetime broadening.
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Figure 10. The tunneling spectra of Co atoms (S = 3/2) on Cu,N. (a) Schematic state diagram and visualizations of the magnetic
anisotropy (in meV). At B =0 the states |y); and |y), are degenerated and differ by Am, = +1. (b) and (c) Experimental data from
[16] of two different Co atoms at B, = 0, 4, 6 T (colored circles, top to down, shifted for clarity). The best fits (full lines) results in
Ter = 4 K,D =33 meV,E=0.7 meV,g=2, Jp = —0.11for (b) and Ter = 3.8 K,D = 2.7 meV, E = 0.5 meV,g=2, Jp = —0.25 for

(), respectively.

well describes the steps at 2| D |. At this energy the third order contributions are less pronounced in the
experimental data, indicating that we reach the limit of the perturbative approach.

The full description of a spin system in the strong coupling regime requires complex theoretical methods like
numerical renormalization group theory [36, 103, 104] which are beyond the scope of this paper. Nevertheless,
we can discuss some of the physical consequences within the outlined perturbative model. In contrast to the
examples discussed in section 3, the two lowest degenerate ground states of the Co/Cu,N system have weights in
states that are separated by Am = 1. Thus, at zero field, electrons from the substrate can efficiently flip between
these two states. The computation of the transition rate between the two states |y;) and |y ) of the spin system
that have the energies ¢; and ey is Ijy := Ijs /e, i.e. the transition probability per time, is analogous to the
calculation of the current (equation (9)) given by:

S8 I;—)S 2 © 58
r; =7=7ﬂ(]/’s)2/_ood€ | My

Here we have set the bias to €V = 0 and replaced the coupling constant T, between adsorbate and tip with Jp, the
coupling between adsorbate and substrate. When we now consider only processes up to second order, the matrix
Mg isindependent of the energy and the integral can be evaluated to

f°° de f(e, [ 1= f (e~ ey, T)]=z—f (29)
® exp( ! )—1

*f (e, D[ 1-f(e-ep T)] (28)

kgT

Thus, the scattering rate between the two degenerate states (i.e. €1, = 0) is directly proportional to the
temperature (figure 11(a)):

§—S§ zﬂ v
r@ss = 7( Ja) 1M PRy T (30)

These scattering processes, which we have discussed in section 2 and displayed in figure 6(a), will tend to
change the spin polarization of the electronic states in the sample near the adsorbate to be correlated with the
localized spin. Nevertheless, this local correlation will be quickly destroyed by decoherent scattering processes
with the remaining electron bath, which we can assume to be large and dissipative. This decoherence rate is also
proportional to the temperature, Igecon & kg T [105], but usually stronger so that no highly correlated state can
form. This picture changes when we additionally consider third order scattering processes which yield, using
equation (23), the probability:

Iﬂi}?’)s_)s= 4771(]/)5)3‘/;0:0 d€ Z‘}{(MﬁMmeim)
x[Flem =& T) + Flem—e, D] fle. D[ 1= f(e ey T) . (31)

Due to the growing intensity of F (¢ = 0) at reduced temperatures (figure 5), for temperatures T — 0 the
scattering I"®) decreases significantly more slowly than I"? (see figure 11(b)) so that their ratio steadily

increases:
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Figure 11. Correlations induced by substrate electrons. (a) In second order the scattering probability of a substrate electron with
energy e is given by the overlap of the electron and hole-like Fermi-Dirac distributions (area underneath the curve) and is for
degenerated ground states directly proportional to the temperature. Third order scattering (b) gets logarithmically stronger than the
second order processes with decreasing temperature. (c) Schematics of the entangled state at temperatures below the characteristic
Kondo temperature. The scattering leads to a correlation between the spin state of the localized system and the sample electrons in the
vicinity. (d) Spectrum of a Co adatom on Cu,N in the Kondo regime (B =0 T, T = 0.55 K, data from [9]). The experimental dI/dV
curve (red dots) is well described by the sum (full line) of a Frota peak centered at Er (dotted dashed line) and a broadened step-
function at higher energy (dashed line).

r® kgT
@~ Jp In (w—o) (32)

In contrast to that, the decoherent scattering rate with the bath I'j..op, lacks localized scattering centers and
therefore has no significant third order contributions. Equation (32) leads to a characteristic temperature, the
Kondo temperature Ty, where I'® and higher order scattering terms become the dominant processes and
perturbation theory breaks down [34, 36, 106, 107]:
w 1
Ty =~ = exp| —|- (33)
ks J/3
Below this temperature the assumption used up to now, i.e. that the electronic states in the sample are not
influenced by the presence of the spin system, no longer applies. Using exact methods like the modified Bethe
ansatz [108, 109] or numerical renormalization group theory [ 104] reveals that the sample electrons in the
vicinity rather form an entangled state with the impurity, i.e.
1 1
Y/total - Ts ‘ __> , (34)
)=

s 1
V2 l>‘+2>
asillustrated in figure 11(c). This combined state is quite complicated because the electronic states in the sample
are continuous in energy and extend spatially, and therefore strongly alter the excitation spectrum of the
adsorbate [110,111].

Figure 11(d) shows the impact of the formation of the correlated state on the experimentally detected
spectrum of the Co/Cu,N system. At temperatures T' < Tk, the peak at the Fermi energy can no longer be well
reproduced by a temperature broadened logarithmic function (which in any case must diverge for T — 0). The
peak is much better described by an asymmetric Lorentzian, i.e. a Fano line-shape [47], or the Frota function
[101, 112, 113] which has a finite amplitude and a half-width of A = kp T, corresponding to the correlation
energy of the Kondo state. Superimposed on this zero-energy peak we detect conductance steps at voltages that
enable scattering of the spin system into the m, = +3/2 state. These steps are well described using only a second
order perturbation spin-flip model [9] and do not show any third order logarithmic contributions. This means
that the probability of the third order scattering channels must be closed due to the ground-state correlation
between the localized spin and the substrate electrons. Here we see that the simple perturbative approach of the
model is no longer valid and fails to capture the full physics in this strongly coupled Kondo regime. Nevertheless,
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the model still gives valuable information because it enables us to identify the conditions under which
correlations can evolve and is due to its computational simplicity also applicable for larger and more complex
spin systems where the calculation of the exact solution might not be feasible or very time consuming.

5. Spin dynamics and rate equations

In the preceding section we discussed the appearance of correlations due to higher order scattering between the
substrate electrons and the localized spin system. Now we want to evaluate how the tunneling of electrons
between the biased tip and the sample influences the state populations and the observable spectroscopic features
in local conductance measurements. This is equivalent to dropping the zero-current approximation we have
assumed until now. We will see that the change of time-averaged system properties results in characteristic
fingerprints in the dI/dV signal which can become crucial for a deeper understanding of the system’s response
and dynamics.

To describe the transition rate between the localized spin states |y; ) and |y, ) due to the tunneling current
flowing between tip and sample we can again use equation (9) and the relation 7 HS (eV) := HS (eV) / e, which
leads, in first order Born approx1mat10n to:

I—vi(fZ)t—>s (eV) = ~ TO / de ‘Mt—m

fle—eV, T)[l—f(e—eif, T)] (35)

The integral can be solved using equation (29) resulting in:

eif — eV

eif — eV ’
exp(ﬁ)‘l
B

Aslongas eV — €; > kpT, equation (36) can be further simplified to an equation that is linear in the energy
difference:

(36)

I—;}Z)t—»s (eV) TO ‘Mt—w

I (ev) = Qa/n) 1§ | M

(eV— e,-f). (37)

This linear dependence of the scattering rate on the energy difference is equivalent to the assumptions that in
second order perturbation the matrix elements and the coupling constant T; between tip and sample are energy
independent. Under these assumptions the rate is given by the energy window between the available energetically
hot electrons and the energy needed to change the localized state [79]. However, one should keep in mind that at
large energy differences the intrinsic variation of the local density of electronic states in tip and sample p (¢)*
might alter the results.

Furthermore, we additionally include third order contributions to the tunneling transition rates. This can be
archived by integrating the interference terms between M, and M, of equation (23) and leads to an additional
contribution to the scattering rate of:

I—~(3)t—>5(ev) Tojps/ de Zf(e — eV, T)[l —f(€ = €if, T)]

X [m(MﬁMmeim JE(ewi — €, T)
+ D‘i(MﬁMmeim )F(Eim -6 T)
+ Um(IﬁMmeim)F(€mi -6 T1)

+ UR(15Mos My ) F (€ = €, 7). (38)

For tunneling currents flowing in the opposite direction, i.e. for electrons which are scattered at the spin
system when tunneling from sample to tip, equations (36) and (38) can be adapted straightforwardly.

The total transition rates I} = I;7*™* 4+ I[V*"*and I};7" = I?)°"" + I}""" have to be evaluated for all
possible initial and final locahzed spin states and, together w1th the d15s1pat1ve substrate to substrate scattering
rates discussed in section 4 (equations (28) and (31)), can be brought together to the characteristic master
equation for the state populations:

pl( )= DI+ T + 1) = p, (0 Y (T + T+ 1)
j#i i
= X;(t)p; (0). (39)
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This set of first order differential equations describes the time-development of an initial state of the spin
system, which might be a superposition state |y (¢) ) = Zi p; (1) | 1//1->, at the time tunder the influence of all
possible, bias dependent, scattering events. The first summation in equation (39) accounts for all the
probabilities to scatter into the ith eigenstate from any other eigenstate. These probabilities have to be weighted
with the time-dependent state probability p; of the originating state. The second summation accounts for all
scattering events which reduces the ith state probability by scattering it into other eigenstates. It is important to
note, that we use three crucial premisses in this approach:

(i) We assume that the future of the localized quantum state depends only on the actual state and not on any
interactions which happened in the past. This Markovian limit means that we assume that the timescales at
which this approximation breaks down, in particular where higher than two-time correlations are
dominant, can be neglected [114].

(ii) We do notaccount for any phase coherences between the eigenstates of the spin system. This means that the
phase coherence time is short compared to the state’s lifetime 7 and the time between successive tunneling
events. Under these assumptions all off-diagonal elements of the density matrix in the rotating frame with
the eigenstates y’ are zero and thus the density matrix can be described as a state mixture

DA

(iii) Because we treat the total system as the product state between the continuous electronic states in tip and
sample and the discrete spin states, a correlated state between substrate electrons and the localized spin as
discussed in section 4 (equation (34)) can not be developed directly within the limitations of our model.

In the following, we further want to limit our evaluation to steady-state conditions, which means that the
change of any external parameter, like the tunneling bias voltage, occurs adiabatically slowly, much more slowly
than any relaxation times in the system. The steady-state condition is reached, when all p; are static, i.e.

T p; (t = co) = 0. Thisis equivalent to finding of the algebraic kernel of the rate matrix ¥, which additionally

has to be normalized to account for the conservation of probabilities Zl_ p =1

P (eV) = M‘ (40)
| kerY (eV)|
From these p** (eV') the current I(eV) and the differential conductance dI (eV)/d (eV') can be calculated:
I(eV) = e Y p ™ (eV) (I} (eV) = I (eV)). (41)

i,]

To show the influence of a non-zero tip—sample coupling strength T, on the tunneling spectra we are
returning to the spin S = 1 example from section 3.1. In figures 12(a) and (c) we show the development of the
dI/dV spectraat B=0and B, = 10 T for different coupling strengths between sample and tip, respectively. The
coupling constants correspond to a tunneling resistance between R &~ 130 and ~2.6 M2, which is equivalent
toa tunneling current of I &~ 150 pA-8 nA atabias of V=20 mV. Note, that these are quite typical parameters
for STM experiments.

Without magnetic field and at small couplings we observe a spectrum which does not differ significantly
from the one calculated in the zero-current approximation. The average occupation of the two excited states
increases only slowly for voltages above the threshold for these transitions and reachesat V = +10 mV only
about 4% for p, and less than 0.4% for p; (dashed lines in figure 12(b)). This situation changes when the tip—
sample coupling is increased. At larger T; an additional feature appears in the spectrum at about £4 mV, which is
due to transitions from the state [y) to |y;). These transitions are only possible because the probabilities p; are
driven far from thermal equilibrium and p, has already a significant weight at |V | = 4 mV. Similar current
induced pumping to higher excitation states has been observed for example for Mn-dimers adsorbed on Cu,N
[13], for small Fe clusters containing only a few atoms on Cu(111) [2], or for Fe-OEP-CI (Fe-
octaethylporphyrin-chloride) molecules adsorbed on Pb(111) [115]. Interestingly, the latter experiment was
performed on a superconducting surface and with a superconducting Pb-tip which made it necessary to account
for the gap around the Fermi energy in the quasi-particle density of states of tip and sample.

If we now add a magnetic field of B, = 10 T to our simulation, the situation changes: the energy differences
€1, and €3 between the first and second, and second and third eigenstate, respectively, are almost identical (see
figure 12(c) inset) masking the additional step-like feature when pumping into energetically higher states.
Nevertheless, also here a clear change of the spectrum occurs at high tip—sample couplings. We observe an
increased relative conductance between ¢, and ¢; and a stronger third order peak at eV = +¢;. This feature is
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Figure 12. Tunneling spectra of a spin S = 1 system at different coupling strengths Tg between tip and sample. The simulation
parameters are identical to the ones used in figure 8: ¢=2, D = =5 meV,E=1meV,U=0, Jp = —0.1, T=1 K. (a) Normalized zero
field spectra for To2 ranging from 1 x 107 (dashed redline) to 5 x 1073 (full red line). At increased T, a featureat eV = +|e3 — €, |
~ +4 meV appears and the apparent strength of the peaks at eV = +e; increase. (b) State occupancy in steady-state for the smallest
(dashed lines) and highest (full lines) coupling strengths. (c) and (d) Same as (a) and (b) but at an applied field of B, = 10 T. The
dashed—dotted line in (¢) is the relative difference between the spectra at highest and lowest coupling strength. The inset in (c) shows
the evaluation of the state energy ¢; with field.

mainly due to the third order scattering process (232) now possible, as apparently visible when taking the relative
difference between the spectra at strongest and weakest coupling strength (dashed dotted line in figure 12(c)).

As long as the tip is not spin-polarized, the current induced pumping into higher states cannot lead to an
inversion of the state occupancy. The state’s lifetime 7; for the eigenstate |y;) is inversely proportional to the sum
of all scattering processes which leaves the state:

it = Y (I (V) + T (V) + T (eV)). (42)
J#i
While for spin-averaged electrodes the scattering matrix elements do not change when inverting the initial and
final state, the energetically higher states must have always a shorter lifetime.

This behavior changes drastically when a spin-polarized tip is used. We have seen that, in particular for spin
systems with a potential scattering U = S/2, the tunneling conductance and thereby the scattering rate depends
strongly on the bias polarity (figure 4). Experimentally, this was first detected for Mn adatoms adsorbed on
Cu,N [13] and successfully discussed theoretically in a second order perturbative scattering model [79, 80].
Figure 13 shows the simulated spectra of a Mn spin system at high field which—due to the small magnetic
anisotropy—leads to an almost equidistant energy difference between the five eigenstates. These eigenstates are
well described by pure states with the magnetic quantum numbers m, = —5/2, —=3/2, ..., +5/2.

Atlow tip sample couplings the dI/dV spectrum is similar to the ones simulated without rate-equations
(figures 9(d) and (e)), but at higher coupling we observe a drastic reduction of the differential conductance at
negative bias. This decrease is concomitant with the reduction of the average magnetization

(m,) =tr ( S, Zi p; ;) (wil ) For the highest T, the average magnetization becomes even negative at negative

bias showing clearly the inversion of the state populations. Interestingly, the strong bias asymmetry in the dI/dV/
spectrum is only due to the potential scattering. Simulating the system with U= 0 results in a much less
asymmetric spectrum, even though the bias dependence of the state populations and average magnetization are
unaltered.

Finally, we have to remark that experimentally an effective interaction of the substrate conduction electrons
with the Mn spin of Gs = 2.7 uS was found [13]. This is much higher than the spin-substrate scattering
determined solely by the spectroscopically estimated Jp, ~ —0.02 which results to Gs = 2e*/hx(Jp)*S
(S + 1) = 0.3 uS. This means that in this particular system roughly 90% of the spin relaxations with the
substrate electrons must originate from scattering processes which do not directly leave their fingerprint in the
observable differential conductance spectrum. In this context, ab inito density functional calculations have
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Figure 13. Simulated tunneling spectra of a Mn atom on Cu,N with spin § = 5/2 at different coupling strengths Tg between tip and
sample and at a magnetic field of B, = 7 T. Simulation parametersareg = 1.9, D = —40 peV,E=0,U= 1.3, Jp = —0.02, T=1K,
and a tip polarization of 4 = 0.3. (a) Normalized spectra, and (b) averaged magnetic moment {1, ) in units of 7 for T¢ ranging from
5 X 10™°to 2 x 1074, corresponding to a tunneling resistance of Ry ~ 270 to ~6.8 M2 or a stabilization current of I ~ 35 pA—

1.5 nAatabiasof eV = 410 meV. The dashed lines in (a) and (b) are calculated with U=0at T¢ = 2 X 107, (c) Occupancy of the
six eigenstates at steady-state conditions for T? = 2 x 107*.

found an about 3.1 times higher coupling to the substrate via the 3d,. and 3d,2_,2 orbitals than experimentally
observed [116], while the approach discussed here neglect any orbital symmetry.

5.1. Current induced correlations

Comparing the dynamical model outlined above with experimental data that require the evaluation up to third
order scattering is a very intriguing test of the capability, as well as the limitations, of this approach. Thus, we will
now analyze spectroscopic data that have been measured for Fe adatoms on Cu, N using spin-averaged and spin-
polarized tips [99]. Figure 14 shows the experimental data obtained for two different magnetic field directions;
along the main anisotropy axis (easy axis, B,) which leads to a strong polarization of the eigenstates along the
magnetic field (figure 14(a)) and, perpendicular to it, along the hard axis (B,) which produces only a small
polarization of the lowest eigenstates (figure 14(d)).

In this experiment the spin polarization was deliberately changed by vertical manipulation (‘picking-up’)
[13,117] of aMn atom onto the apex of the tip, changing its polarization from 7' ~ 0 to ' &~ 0.4 and enabling
the study of the identical atom with and without a polarized tip. The experimental data for the spin-average and
for the spin-polarized measurements along the hard axis can be well simulated within one set of parameters
(figure 14(c)). Surprisingly, the spectra are almost identical to simulations using only the zero-current
approximation. Thus, the moderate coupling between tip and sample does not disturb significantly the state
populations. This is also evident by plotting the average magnetic moment along the applied field (lower panels
in figures 14(b) and (c)). The small magnetic field (compared to the anisotropy energy) of only B, =3 T along
the magnetically hard-axis cannot polarize the Fe atom significantly (figure 14(d)). This means, that the spin
imbalance produced by a spin-polarized current has only little influence on the dI/dV spectrum. However, note
that the small shift toward higher energies of the step at | V| & 4 mV, which has its origin in transitions between
the states |y;) and |y;), might be due to an interaction between the spin system on the surface and the spin
polarized electrode of the tip [118, 119].

The situation changes quite drastically when the magnetic field is applied along the easy axis and the
spectrum is taken with the spin-polarized tip (figure 14(b)). A strong peak at V ~ —5 mV appears concomitant
with the apparent disappearance of the step at precisely the same energy, that was clearly visible in the spectrum
measured with the spin-averaging tip. Fortunately, the model describes this spectrum quite well, too and thus
allows us to discuss the physical origin of these differences.

Comparing the spectrum with the one calculated in the zero-current-approximation reveals that the
disappearance of the step is indeed due to the increased coupling between tip and sample. The origin lies in the
finite U, quite similar to the differential conductance reduction observed at negative bias for the Mn system
(figure 13). Indeed, we see that the spectrum calculated with the same set of parameters except U= 0leadsto a
spectrum in which the step-like increase of the dI/dV at V < —4 mV is maintained. Furthermore, we notice
that the calculated magnetization (m,) decreased abruptly below this tunneling bias voltage, much faster than
for the spin-averaging tip, due to the increased population of the states |y,) and |y;) (figure 14(b) lower panel).

While the effects discussed above give a plausible explanation for the overall shape of the spectrum, there is
still a noticeable discrepancy between experiment and simulation. In particular, the experimental dI/dV data
show asignificantly stronger peak at V ~ —5 mV than one would expect based on the simulation, resembling of
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Figure 14. Correlations induced by tunneling substrate electrons. (a) Schematic state diagram for an Fe atom on Cu,N at B,=3 T. The
blue arrows illustrate the third order transition (131). (b) and (c) Top panels: experimental data from reference [99] of a Fe atom on
Cu,N measured with a spin averaging tip (7' = 0) and a spin polarized tip (' ~ 0.4) atapplied field in z (a) and x (b) direction
(colored circles). The best fits (full lines) resultsin g=2.11, D = —1.6 meV, E=0.31meV, U=0.35, Jp = —0.1, Tex = 1 K,and

T¢ = 3.2 x 107, Spectra obtained and simulated with spin-polarized tips are shifted vertically by 0.5 x 10~3(2¢2/h). The dashed
(dotted dashed) line in (b) is calculated with U =0 (in zero-current approximation). Bottom panels: corresponding average magnetic
moment in field direction in units of 7 (full lines: spin-polarized tip, dashed lines: spin-average tip). (d) Schematic state diagram for an

Featomat B, = 3 T. (e) and (f) Schematic illustration (e) and Feyman-like diagram (f) of the third order scattering process (131)
which leads to the peak at V & —5 mV in panel (a).

the effects of strong correlations discussed in section 4 (which are not covered by the model). Thus, it is worth to
dissect the characteristic peak which has its origin in the third order process (131) in which the spin system is
scattered from |y;) — |y;) — ;). With the spin-polarized tip this transition has a significantly higher
probability to occur when the electrons tunnel from sample to tip. The process is illustrated in figures 14(d) and
(f). Itstartswithan| | ) electron in the sample which scatters on the spin system changing its grounstate from
[ys) to Jy;) and then tunnels, with increased probability, as | 1 ) electron into the majority states of the tip. The
spin-down hole in the sample will lead to a slightly higher spin-up electron density close to the Fe atom. Next, a

| 1 )electron from the sample fills the| | )hole together with changing the localized spin-state from [y;) back
to |y) (figure 14(d)). During this process the substrate electrons are correlated with the spin state. While the
magnetic moment for |y ) is approximately m, ~ +2 and for |y;) m, = +1, respectively, atlow enough
temperature and at sufficiently negative bias and tunneling current, a correlated out-of-equilibrium Kondo-
state develops which has the total wavefunction

?/total - %( ls> |+2> -

1) 1+1). (43)

Even though the experimental data only give hints that this correlated state has formed, a similar non-
equilibrium Kondo formation has been found in transport measurements on carbon nanotubes [120]. The
physical properties of such a non-equilibrium correlated state are very intriguing [ 121, 122]. Entering this state,
the substrate electrons partly screen the magnetic moment of the Fe spin reducingitto S — 1/2. Such an
underscreened Kondo state should show a very particular temperature and energy dependence [123-129].
Interestingly, in a system like the one discussed here, the transition between weak and strong coupling is not only
governed by a characteristic temperature Ty [130], but the formation of this correlated state is deliberately tuned
by drastically increasing the probability of its creation when applying a spin-polarized current of sufficient
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energy by the probing tip. This enables us to envision for example pump-probe experiments [14] in which the
time-evolution of the formation and the decay of this correlated state is measured in detail.

6. Summary

In this manuscript [ have shown that applying perturbation theory to quantum spin systems enables one to
describe experimentally measured differential conductance spectra with very high accuracy. This enables one to
obtain a profound understanding of the physical processes on play and to separate single- as well as many-
electron effects.

The versatility of low-temperature scanning tunneling measurements on single and complexly coupled spin
systems led me to believe that we should expect a multitude of exciting new experiments for the future, which
will further deepening our fundamental knowledge on quantum systems in general and, in particular, quantum
magnetism. Perturbative models, like the one outlined here, might be of help in such systems. For that, the
supplemental material to this manuscript include an easy usable software package that allows not only to
simulate the differential conductance spectra of arbitrary complex spin systems, but additionally allows one to fit
experimental data to the model.

In this manuscript we have restricted ourselves to the adiabatic limit and neglected any time dependence in
the parameters. However, it is straightforward to expand this model to capture also time dependent pump-
probe measurements. In such a framework, coherent state superpositions could be accounted for by using, for
example, a Bloch—Redfield approach in which the spin system is coupled to an open quantum-system
[114,131,132] and in which interactions up to third order are included to account not only for the decay but
also for the creation of coherences.

Additionally, the study of the coupling between the spin-system and other (quasi)-particles, like phonons,
photons, or magnons would be very interesting. Furthermore, while the perturbative approach fails when the
system enters the strong-coupling Kondo-regime, it would be very intriguing to combine the simple model
outlined here, with exact quantum impurity models.
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Appendix. Matrix elements for arbitrary spin polarization

The two arbitrary spin density matrices ¢' and ¢° are a full description of the ensemble states in the tip and
sample electron bath close to the Fermi energy. The eigenvectors ‘ (pit> and ‘ q)is> of ¢*and @® are representative
eigenstates of these incoherent ensembles and enables one to calculate the interaction transition intensities

between them as:
51-),;}),/’2’1 = 4 ﬂlt’/?v;’ <§0fs‘" 6x,y,z,[ |§0,t’>) (A1)

with 1;' and 1; as the eigenvalues of the corresponding eigenvectors. Note, that due to the in general incoherent
spin ensembles in tip and sample equation (A.1) has to be evaluated independently for all combinations of
i"=1,2and f' =1, 2.

For the localized spin system we can write similarly the transition intensities between the eigenstates:

A

= X052 S
— X,)»2

= <ll’f Wi>> (A-2)

so that the absolute square of the matrix element in equation (13) calculates to:

2

| M5y (A3)

2 1 - = z = I
=2 ‘ (&5 + & 2] + i Zi) + Vel oy
i'f

The interference term between M, and M, (equation (23)) can be evaluated in an analogous way leading
to:
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~ Bl =1, £k =k i =
MﬁMme,m = z f'i":’ﬁ X ém’ ":’mf X zjljm’:’tJm 5 (A4)

and for the reversed order processes:

MﬁMmezm = Z _}’i/E;i X ém’f“:’ f X gigm’Esz (AS)
jok = i'm',f’
{xpszd}

The tilde (§) andbar (£ = &) account for processes which starts and ends in the sample, and for processes in
which tunneling electrons traverse the junction in the opposite direction, i.e. which starts in the sample and ends
in the tip, respectively. They can be calculated in an analogous way with equation (A.1).
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