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Abstract
In recent years inelastic spin-flip spectroscopy using a low-temperature scanning tunneling
microscope has been a very successful tool for studying not only individual spins but also complex
coupled systems.When these systems interact with the electrons of the supporting substrate correlated
many-particle states can emerge,making them ideal prototypical quantum systems. The spin systems,
which can be constructed by arranging individual atoms on appropriate surfaces or embedded in
synthesizedmolecular structures, can reveal very rich spectral features. Up to now the spectral
complexity has only been partly described. Thismanuscript shows that perturbation theory enables
one to describe the tunneling transport, reproducing the differential conductancewith surprisingly
high accuracy.Well established scatteringmodels, which includeKondo-like spin–spin and potential
interactions, are expanded to enable calculation of arbitrary complex spin systems in reasonable time
scale and the extraction of important physical properties. The emergence of correlations between
spins and, in particular, between the localized spins and the supporting bath electrons are discussed
and related to experimentally tunable parameters. These resultsmight stimulate new experiments by
providing experimentalists with an easily applicablemodeling tool.

1. Introduction

With low-temperature scanning tunnelingmicroscopes (STM) scientist have developed a tool that has the
ability to detect andmanipulate individualmagnetic spin systems on the atomic andmolecular level by an
externally controlled probewith sub-nmprecision. These instruments have opened a newfield of research
envisioning not only a deeper understanding of the origin ofmolecularmagnetismby studying the interactions
between nanoscale spins but also of themany-particle effects between the localized spins and the itinerant
electrons of the supporting substrate. The progress in thisfield is best demonstrated by the recently achieved
ability to build stablemagnetic bits by cleverly arranging only a handful of Fe atoms on either a thin insulating
[1] or on a nonmagnetic Cu(111) surface [2].While in these experiments the transition fromquantum-
mechanical to classicalmagnetic behavior is explored [3], other applicationsmight be envisioned ranging from
spin-based logic circuits [4] to entangled systems inwhich the quantummechanical nature is crucial for
computational purposes [5].

At the basis of all these experiments lies the spectroscopic capability of the STM.About ten years ago
Heinrich and his co-workers showed in a hallmark experiment that it is possible to detect inelastic spin-flip
excitations onMnatoms adsorbed on patches of Al2O3 on aNiAl surface [6]. Since thenmany experiments have
focused on transitionmetal atoms on a thin layer of Cu2NonCu(100) [1, 7–20]. In these experiments, patches
of Cu2N are formed by sputtering a cleanCu(100) surface withN+ ions and subsequent annealing. This leads to
amonolayer of Cu2Non the surface onwhich the desiredmetal atoms are deposited (figure 1(a)).
Experimentally, every 3d transitionmetal atom adsorbed on this surface reveals its fingerprint when a spectrum
is taken by placing the tunneling tip of an STMover the atom (figure 1(b)). The spectra aremeasured by varying
the bias voltage applied between tip and sample and recording the differential conductance I Vd d . All spectra
show characteristic features that can be classified into two groups: (1) step-like increases in the differential

OPEN ACCESS

RECEIVED

17 February 2015

REVISED

28April 2015

ACCEPTED FOR PUBLICATION

6May 2015

PUBLISHED

15 June 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/6/063016
mailto:m.ternes@fkf.mpg.de
http://dx.doi.org/10.1088/1367-2630/17/6/063016
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/6/063016&domain=pdf&date_stamp=2015-06-15
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/6/063016&domain=pdf&date_stamp=2015-06-15
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


conductance, positioned symmetrically around zero bias, and (2) peaks of the differential conductance at
zero bias.

The number of distinguishable conductance steps varies for different spin systems and the precise formof
the steps often shows some asymmetry with respect to the applied bias direction and can exhibit some overshoot
of the conductance at the step-energy. Aswewill see in detail, the steps are due to the opening of additional
conductance channels precisely governed by themagnetic properties of the spin system. These excitations can be
present even at zeromagnetic field due to themagneto-crystalline anisotropy. The anisotropy is caused by the
reduction of the geometric symmetry at the surface and by spin–orbit coupling [23–25], which have the effect of
lifting the inherent degeneracy of the spin states. For single atoms themaximumanisotropy is limited to a few
tens ofmeV [26], whereby themagnetic excitation energies usually range from less than onemeVup to a few
meV requiring experimental setups operating at temperaturesT 4⩽ K.Here, it is worth to note that one has to
be aware that not all energetically low lying step-like increases in the differential conductancemust originate
frommagnetic excitations. The tunneling electrons can also excite low-energymechanical vibrations which can
produce similar strong spectroscopic features [12, 27–31] andwhich can interact with the spin excitations
[32, 33]. Thus, to clearly distinguishmagnetic excitations their behavior in external appliedmagnetic fields is
often crucial.

The peaks at zero bias are due to theKondo effect inwhich itinerant electrons from the substrate coherently
scatter with the localizedmagneticmoment of the adatom [34–36]. This effect hasfirst been detected by
scanning tunneling spectroscopy on singlemetal atoms adsorbed on noblemetal substrates [37–46]. In these
early experiments themetal atoms are relatively strongly coupled to the substrate leading to a characteristic
Kondo temperature in the range ofT 30 300K ≈ − K, as determined by the full-width at half-maximumof the
peak, and inmost cases to a strongly asymmetric Fano lineshape due to interference effects with a potential
scattering channel [47–49]. A decoupling layer, such as Cu2N, significantly reduces theKondo temperature
suggesting the possibility of influencing thismany-body state with experimentally accessiblemagnetic fields and
temperatures [9, 18, 50, 51]. This enables the study of the interplay betweenKondo screening, themagnetic
anisotropy, and nearby spins [10, 20].

Figure 1. Some examples of inelastic spin-flip spectroscopy on single atoms andmolecules. (a) Constant current topography of the
Cu2N surface onCu(100)with co-adsorbed 3dmetal atoms. (size approx.: 15 × 40 nm2,V = 10 mV, I = 1 nA). (b)Differential
conductance I Vd d spectrameasured on top ofMn, Fe, Ti, andCo adatoms (from top to bottom) at zeromagneticfield and
T = 0.6 K. Each atom reveals a characteristic fingerprint in the I Vd d signal. (c) Constant current topography of aMn12Ac16
molecularmagnet adsorbed on h-BNonRh(111) (V 1= − V, I=45 pA). (d) Typical I Vd d and I Vd d2 2 spectra atT = 1.5 K and
zeromagneticfield onMn12Ac16. (e) Constant current topography of an organic radicalmolecule (C28H25O2N4) adsorbed onAu
(111) (V = 100 mV, I = 33 pA, contour line distances 50 pm). (f) I Vd d spectra at different temperatures (T 1.5, 3, 4.4, 6.7= K,
bottom to top, upper panel) andmagnetic fields (B 14, 10, 6, 2= T, bottom to top, lower panel) on the radical. Spectra are vertically
offset for clarity. Data adapted from [8, 9, 21, 22].
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Apart fromCu2N, other decoupling substrates have been exploited to study spin excitations. For example,
low-lying excitations associatedwith a spin S=1of themagnetic atomhave been found for single Fe atoms
embedded into the semiconducting InSb(110) surface [52, 53], which exhibits a two-dimensional electron gas
confined to the surface. Other experiments used two-dimensionalmaterials, such as graphene and hexagonal
boron nitride (h-BN), as substrates formetal adatoms ormagneticmolecules. For example, the Kondo statewas
observed for individual Co atoms adsorbed on a graphene sheet on top of a Ru(0001) surface with different
Kondo temperatures and effective g-factors depending on the adsorption site with respect to the underlying
metal [50]. In a different experiment Co andCoHx (x = 1–3) complexes on graphene on top of Pt(111) have
been investigated revealing a S= 1 for Co andCoH3 and a highmagnetic anisotropy of 8.1≈ meV for theCo
adsorbate [54]. On the highly corrugated and insulating h-BN adlayer on top of a Rh(111) substrate, CoH and
CoH2 complexes showed both, spin-flip excitations and theKondo effect, pointing to two different spin states of
S=1 and S 1 2= , respectively [51]. Interestingly, theCoH complex revealed a dependence of the effective
anisotropy on the coupling to the underlying substrate, similarly as observed for Co atoms on large patches of
Cu2N [16].

Spin excitations can also be observed for spin systems adsorbed on baremetal substrates, even though
lifetime, anisotropy energies, and intensities are in general reduced due to the strong couplingwith the substrate.
For example, spin-excitations of Co and Fe on Pt(111) have beenmeasured [55, 56], where themeasurements of
reference [55]were performed atT 6≈ K and showed an approximately ten-times higher apparentmagnetic
anisotropy as the lattermeasurement [56] that was performed atT=0.3K. This discrepancy stems from the
strong temperature dependent broadening of the spectrum, which leads to this gross overestimation and
illustrates the need for low-temperaturemeasurements [57]. Additionally, spin excitations have been detected
for Fe atoms adsorbed onCu(111) [58] and onAg(111) [59]. Apart from the 3d transitionmetal atoms, 4f
lanthanide atoms also show low-energymagnetic signals. For example, theKondo effect wasmeasured on small
Ce clusters onCu2N [12] and spin-flip signals were observed forGd adsorbed on Pt(111) andCu(111) [60] and
HoonPt(111) [61], even though the intensities of the spin-flip excitations are unclear but presumably very small
due to the strong localization of the 4f wavefunctions close to the nuclei and their small spacial extension [62].

In addition to these,metal-organic complexes, such asM-phthalocyaninewith M=Mn, Fe, Co,Ni, andCu,
have been studied on different surfaces [63–70].Many of them showedKondo screeningwith a lowerKondo
temperature enabling the tuning by dehydrogenation [63, 70] or the splitting of the peak by an externally applied
magnetic field [64, 68] or by coupling to a ferromagnetic substrate [71]. Interestingly, FePc adsorbed onAu
(111) showed a clear Kondo signature [69], while the samemolecule adsorbed on top of aCuOdecoupling layer
showed a double-step in the differential conductance pointing to S= 1 [65].

The electronic decoupling can also be created by using a substrate in the superconducting state inwhich the
creation of Cooper pairs leads to a strongly reduced density of unpaired electrons around the Fermi energy. This
results in a significant increase of the spin lifetime of themetal-organic complex [72]. Furthermore, such a
substrate allows one to study the competition between superconducting phenomena andKondo screening as
observed onMnPc adsorbed on Pb(111) [67, 73].

Apart frommetal atoms andmetal-organic complexes spin-flip excitationswere detected in complex
molecules inwhich several spin centers are coupled forming a giant spin, as it has been shown at the example of
the prototypicalmolecularmagnetmanganese-12-acetate-16 which has a ground state with a total spin of S=10
[21] (figures 1(c) and (d)). Here, the h-BNdecoupling layer is crucial as themagnetism is strongly quenched
when themolecule is adsorbed upon aAu(111) surface. Furthermore, fully organicmolecules including the
charge-transfer complexes TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) [32] and an organic
radicalmolecule [22], have shown theKondo effect, whereby for the lattermolecule the temperature and
magnetic field dependencewas fully understood and simulated in a perturbative approach (figures 1(e) and (f)).

To describe the inelastic spin-flip excitation spectra, scatteringmodels have been developed that treat the
interaction of the tunneling electronwith the localized spin system effectively as a one-electron second-order
perturbation [74–77]. Additionally, similarmodels allowed rationalization of the change in the spectrawhen a
spin-polarized tip is employed [78] and the dynamics at increased coupling between tip and sample [79–81]. To
address the experimentally observed bias asymmetry, co-tunnelingmodels in the strongCoulomb-blockade
regime have been proposed [82] andmany-electron effects using the non-crossing approximation have been
included [83]. Furthermore, third-order scatteringmodels similar to the ones used herewere employed towell
describe the observed bias overshooting at certain inelastic excitation steps [84, 85]. Nevertheless, thesemodels
were restricted toKondo-like interactions and did not include potential scattering.

In this paper, I plan to review the straightforwardmodel of the exchange-interaction between an isolated
spin system and the tunneling electrons and use a perturbative tunneling approach to simulate experimental
data with unprecedented accuracy. The basic idea of themodel goes back 50 years to the hallmark discovery of
JuanKondo that higher order scattering of bulk electrons on amagnetic impurity leads to logarithmic
divergences [34, 35].Wewill see that such amodel enables the determination of physical properties like the
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magnetocrystalline anisotropy, the coupling strength to the substrate, the state lifetimes, and themagnetization
directly by comparing the differential conductancemeasurements with simulations. Furthermore, it allows one
to grasp some of the correlations and entanglements that are formed by themany-particle interactions due to the
large electron bath of the substrate. Themodel, even though inherently limited due to its perturbative approach,
has the advantage that we can develop it straightforwardly using simplematrix algebra. Due to this simplicity it is
computationally very fast and can thus help us to understand future experimental observations. In these
calculations themagnetic anisotropies, gyromagnetic factors, and coupling strengths to the substrate enter as
experimentally determined parameters. Note however, that in particular for transitionmetal atoms adsorbed on
metallic substrates themagnetic anisotropy have been successfully determined fromfirst principle by, for
example, time-dependent density functional theory [56, 86–88] or density functional theorywhich includes
spin–orbit coupling [89, 90].

The basic idea of themodel is to treat the tunneling as a scattering event of an incoming electronwith the
localized spin system (figure 2(a)). Postponing the exactmeaning for later, it is amazing that only two
parameters govern these interactions: theKondo scattering parameter J and the potential scattering parameter
U. These two parameters are crucial for the understanding of the low-energy excitations. One is tempted to ask
‘What is the origin of these?’Tofind an answer it is helpful to step back from the scattering picture and look at
the single-impurity Andersonmodel, which describes one half-filled atomic orbital (for example from a 3d
transitionmetal atom) interactingwith the continuous states of a hostmetal (figure 2(b)) [91]. In this picture all
energies are in the eV range and it is not per se clear how this relates to the scatteringmodel with low-energy
excitations in themeV range. These relations were found by Schrieffer andWolf, whowere able to relate the high
energies of theAndersonmodel with the scattering parameters [92]:

J
U U

2 1 1
0,

2 1 1
. (1)

d d d d d d

2 2
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π
Δ

ϵ ϵ π
Δ

ϵ ϵ
= −

+
< = +

+

Here it is crucial for the understanding of the forthcomingmodel that the Kondo spin–spin exchange scattering J
is for S 1 2= systems always negative, whichmeans that the localized spin and the substrate electrons couple
antiferromagnetically, while the potential scattering  can have both signs, either positive or negative.However,
this result can be different for higher spins.

Themanuscript is organized as follows: in section 2 the basicmodel in the zero-current approximation is
introduced and discussed for the example spin S 1 2= . In section 3 high-spin systems are discussed.
Experimentally observed examples are given and compared to themodel calculations. Section 4 discusses the
limitations of themodel, in particular, its inability to cover all correlation effects that occurwhen a system enters
the strongKondo regime using experimental data obtained on theCo/Cu2N system as an example. In section 5
the initialmodel is extended by including rate equations and tested against experimental data. Here, wewill
observe that the tunneling current too can lead to the appearance of a non-equilibriumKondo effect. Finally,
section 6 summarizes themanuscript and outlines possible routes for future extensions.

2. Themodel

Todescribe the experimental observations we use a simplifiedmodel inwhich theHamiltonian of the total
quantummechanical system is divided into the ones of the subsystems of the two electron reservoirs in tip and
sample, the one of the localized spin system, and an interactionHamiltonian that enables the exchange of charge

Figure 2.Comparison of theKondo scattering and the single-impurity Andersonmodel. (a) Schematic view of theKondomodel
where electrons scatter via spin-flip or the potential interactionwith a localized spin system. (b) Schematic view of the single orbital
Anderson impuritymodel. An occupied 3d orbital located at an energy dε below the Fermi energy hybridize with the substrate
electrons leading to a state broadeningΔ. The occupation of this orbital with a second electron is prohibited by theCoulomb repulsion
energyUd.

4

New J. Phys. 17 (2015) 063016 MTernes



carriers between the reservoirs:

H H H H Hˆ ˆ ˆ ˆ ˆ . (2)t s a= + + + ′

TheHamiltonian of the tip Ĥt and sample Ĥs, respectively, can be described in the framework of second
quantization using creation and annihilation operators â† and â:

H a aˆ ˆ ˆ , (3)
k

k k kt

,

t t
†

t∑ϵ=
σ

σ σ σ

H a aˆ ˆ ˆ , (4)
k

k k ks

,

s s
†

s∑ϵ=
σ

σ σ σ

with ktϵ σ and ksϵ σ as the energy of the electronswithmomentum k and spin σ in the tip and sample, respectively.
These twomany-particle systems are the source and sink for the tunneling electrons in the STMexperiment.

Instead of using creation and annihilation operators in themomentum space k, we assume in the small energy
range of interest, i.e. to some tens ofmeV around the Fermi energy, for tip and sample a continuous and

energetically flat density of states a a( ) ˆ ˆ
k k k k k k, ( ), ( ) ,

†∑ρ ϵ δ ρ= ≡σ ϵ ϵ σ σ′ ′ ′ , with ·〈 〉 as the time averaged

expectation value.
In general, the electronic states φ∣ 〉 in these electrodesmight be spin-polarized in an arbitrary direction

whichwe account for by the corresponding spin densitymatrices I n
1

2
(ˆ · ˆ)σϱ φ φ= ∣ 〉〈 ∣ = + ⃗ . Here, n ⃗

describes the direction and n1 1− ⩽ ∣ ⃗ ∣ ⩽ the amplitude of the polarization in the chosen coordinate system,
ˆ ( ˆ , ˆ , ˆ )x y zσ σ σ σ= are the standard Paulimatrices, and Î is the (2 2)× identitymatrix.With this convention the
spin polarization is identical to the relative imbalance betweenmajority andminority spin densities

nη
ρ ρ

ρ ρ
= ∣ ⃗ ∣ =

−

+
↑ ↓

↑ ↓
, where ↑ and ↓ account for the two different spin directions along the chosen

quantization axis. This description via densitymatrices allows arbitrary polarization directions in tip and sample
which obey the quantum statistics (see appendix).

The impurity spin systemmay either contain only a single spin or afinite number of coupled spins.We
describe this systemby amodelHamiltonian Ĥa that includes Zeeman andmagnetic anisotropy energy and—in

the case ofmore than one spin—theHeisenberg coupling terms ij⃗ 1 and the non-collinearDzyaloshinskii–

Moriya coupling ij⃗ between individual spins:

( ) ( ) ( )H g B D S E S SS

S S S S
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In this equation Bμ is the Bohrmagneton and gi,Di, andEi are the gyromagnetic factor, the axial and the
transversalmagnetic anisotropy for the ith spin in the reference coordinate frame, respectively2. The externally

appliedmagnetic field is B ⃗ and the total spin operators S S SŜ ( ˆ , ˆ , ˆ )
i

x
i

y
i

z
i= are built fromoperators of the form

S I S Iˆ ˆ ˆ ˆ
x y z
i

x y z
i

n, , 1 , ,= ⊗ ⋯ ⊗ ⊗ ⋯ ⊗ , which only act on the ith spin andwhere Î denotes the identitymatrix and

⊗ the Kroneckermatrix product. The spin operators Ŝx y z
i
, , can be easily constructed remembering that

S mˆ
z m z mψ ψ∣ 〉 = ∣ 〉 with m S S S, 1, ,z = − … − as themagnetic quantumnumber along our chosen z-axis and

S S m m Sˆ ( )( 1)m m 1ψ ψ∣ 〉 = ∓ ± + ∣ 〉± ± . These then enable calculation of S S Sˆ 1

2
( ˆ ˆ )x = ++ − and

S S Sˆ 1

2
i( ˆ ˆ )y = − −+ − , respectively. For simplicity wewill set 1= fromnowon.

Diagonalizing theHamiltonian of the localized spin system (equation (5)) leads to discrete energy
eigenvalues nϵ and eigenstates nψ∣ 〉 . For a single spin there are S2 1+ eigenstates, while for complex spin
structures that consist of several spins the number of eigenstates increases quickly as S(2 1)i i∏ + . Becausewe
neglect direct interactions between the electron baths in tip, sample and the localized spin system,we describe
the total state as a product of the continuous electron states φ∣ 〉 and the discrete spin states ψ∣ 〉, i.e. ,t,sφ ψ∣ 〉

t,sφ ψ=∣ 〉∣ 〉. Note, however, that the coupling of the spin-systemwith the substrate will lead to an entanglement
between sample electrons and the spin system (see section 4) and to a renormalization of the parameters in

1
Wewrite ij⃗ as vector to enable also anisotropicHeisenberg or Ising-like couplings.

2
Note, that instead of using the rather phenomenologicalD andE values themodel can be easily adapted tomore physical operators that

connect to the spin–orbit couplings [15] or to the symmetries of the system [61].
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equation (5) [16, 51, 93, 94].Herewe assume that the renormalization is already included in the anisotropies
and gyromagnetic factors and omit for themoment the entanglement.

The interactionHamiltonianH′ of equation (2) allows for tunneling of electrons from tip to sample or
vice versa only via Kondo-like spin-flip or potential scattering processes with the impurity (figure 3(a)):

H V V V

V T J a a U IS

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ
1

2
ˆ · ˆ ˆ , (6)
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i
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′ = + +

= +
λ λ

λ λ

→ → →

→
′

′
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2
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i

i
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, ,
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λ λ
λ λ→

′
′

withTta
i as the coupling constants between tip and the ith adsorbate spin, andU Ji i i= as the unitless ratio

betweenKondo and potential scattering.While we assume that the impurity ismuchmore strongly coupled to
the sample than to the tip, spin–spin scattering between the impurity and substrate electrons are additionally
considered:

V J a a Sˆ 1

2
ˆ ˆ ˆ · ˆ . (8)
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i
i

s s

, ,

s s
†∑ σ=

λ λ
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′

With the above assumptions themodel is largely identical to the ones studied byAppelbaum andAnderson
already in the 70s formesoscopic tunnel junctions [95–97].

2.1. Current and conductance in second order
Wewill nowbriefly review the calculation of the tunneling current using Fermi’s golden rule. In STM
experiments the bias eV applied between tip and sample shifts the Fermi level Fϵ of the tipwith respect to the one
of the sample. At positive electrons fromoccupied tip states can cross the tunnel-barrier and interact with the
localized spin systemunder exchange of angularmomentum and energy (figure 3(b)). To obey energy
conservation, the energy difference if f iϵ ϵ ϵ= − between initial andfinal state of the spin systemhas to be
accounted for by the energy of the tunneling electron. The currentflowing between tip and sample is then given
by:

I eV
e

T p f eV f
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I I I
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

wherewe have dropped the additional summation that would account for current through the different sites in
coupled spin systems, i.e. we restrict our calculation to single spin systems.

Figure 3.Model of the tunneling process between tip and sample. (a) Electrons originating from the tip interact with the localized spin
system either via spin–spin (blue arrow) or potential scattering (red arrow). Additionally, we allow for spin–spin exchange scattering
between sample electrons and the localized spin (yellow arrow). (b) Scheme of the first order Born approximation: in the tunneling
process of an electron from the initial state i to thefinal state f it exchanges angularmomentum and energy with the localized spin
system. (c) In second order Born approximation the system additionally occupies an intermediate statem. This process produces
characteristic logarithmic features in the tunneling spectrum.
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The unitless tunnel barrier transmission coefficientT T J0
2

ta s
2ρ= ∣ ∣ contains all experimental parameters that

will determine the strength of the tunneling current. In particular,T0 strongly depends on the distance between
tip and adsorbate, and on the spin independent local densities of states in tip and sample. For themoment we
want to assume thatT 10

2 ≪ so that the influence of the tip on the spin system is negligible and the time between
consecutive tunneling events ismuch longer than the relaxation time of the spin system, e.g. via processes such
as described by equation (8). Such conditions are usually easy to provide in STMexperiments where the tip–
sample separation can be adjusted to give tunneling currents in the pA range or below so that the tip can be seen
as a local probe of the spin system that leaves the spins always in thermal equilibriumwith the substrate (zero-
current approximation).

Under this assumption the average state occupation pi(T) of the spin system is only governed by the effective
temperatureT and follows the Boltzmann distribution,

p T
k T

k T
( )

exp[ ( )]

exp[ ( )]
, (10)i

i B

i i B∑
ϵ

ϵ
=

−
−

with kB as the Boltzmann constant. Furthermore, we assume aflat density of states in tip and sample so that the
electron occupation is given by the Fermi–Dirac distribution f k T( ) [1 exp( )]B

1ϵ ϵ= + − .
Whilemost STMexperiments do not record the tunneling current directly, we are interested in its derivative

with respect to the bias voltage.With the energy independentmatrix elements the derivative of the current is easy
to evaluate. Integrating the Fermi–Dirac distributions of equation (9) and calculating the derivative results in a
temperature broadened step function [98]:

x
x x

x
( )

1 ( 1)exp( )

exp( )
, (11)

2
Θ = + −

with x k T( )Bϵ= , so that equation (9) becomes:

( )I

V
eV

e
T p eV( )

2
. (12)

i f
i if if

t s
2

0
2

,

t s 2∑π Θ ϵ∂
∂

= −→ →



Themain goal of this paper lies in deriving the transitionmatrix elements if to be able to solve the
equation (12). First, we start with second order processes, neglecting scattering that involves electronswhich
originate and end in the substrate bath, i.e. we concentrate on tunneling processes which consist of only one
scattering event as depicted infigure 3(b) and described by the transportHamiltonian of equations (6) and (7):

UI M US,
1

2
ˆ · ˆ ˆ , . (13)if f f i i if if

(1) σφ ψ φ ψ δ= + = +

Thismatrix is energy independent and connects the initial states in the electron baths iφ∣ 〉 and spin system iψ∣ 〉
with their final states fφ∣ 〉 and fψ∣ 〉. It contains the spin-exchange scattering termMif and a potential scattering

term that has non-zeromatrix-elements only when initial and final spin state are the same ( ifδ is the delta

distribution). Computing the absolute square of if
(1) results in three terms that contribute to the tunneling

conductance:

( )M U U M2 , (14)if if if if if
(1) 2 2 2 R δ δ= + + ×

where A( )R denotes the real part of thematrixA. Thefirst term consist of the operators

S S S S S SSˆ · ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1

2
ˆ ˆ 1

2
ˆ ˆ ˆ ˆ , (15)x x y y z z z zσ σ σ σ σ σ σ= + + = + ++ − − +

which connect the initial and final state and accounts for spin-exchange processes inwhich angularmomentum
between the tunneling electron and the localized spin system can be exchanged. The second term accounts for
potential scattering between the tunneling electron and the localized spin system and does not change the spin
state. The third term results from the interference between potential and spin-exchange scattering and depends,
as wewill see, strongly on the angularmomentumof the localized spin and is the origin ofmagneto-resistive
tunneling [13, 99].

Due to the product-state of the total quantum-mechanical system, it is worthmentioning that thematrix
elements have to be independently evaluated for the localized spin and for the tunneling electron. For an
electron tunneling between a spin-average tip and sample the non-zeromatrix elements are:

s aˆ 1, (16 )〈 ↑ ∣ ∣ ↓ 〉 = ++

s bˆ 1, (16 )↓ ↑ = +−

s cˆ 1 2, (16 )z↑ ↑ = +
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s dˆ 1 2, (16 )z↓ ↓ = −

I eˆ 1, (16 )↑ ↑ = +

I fˆ 1, (16 )↓ ↓ = +

where, for completeness, we have additionally included the probability amplitudes for interacting with the unity
operator Î . Since sˆ 2ˆσ = , thesematrix elements enable us to rewrite the spin-exchange scattering term in
equation (14) for a spin-average tip and sample to [8, 99]:

M S S S
1

2
ˆ 1

2
ˆ ˆ . (17)if f i f i f z i

2 2 2 2
ψ ψ ψ ψ ψ ψ= + +− +

Note, that (16c) and (16d) do not cancel out because the two different spin directions in the initial (tip or sample)
andfinal (sample or tip) bath are incoherent ensemble states and therefore cannot interfere with each other.

For a tip with spin polarization η =
ρ ρ

ρ ρ

−

+
↑ ↓

↑ ↓
along the z-axis, the transitionmatrix elements are tunnel-

direction dependent because either the initial or the final electron bath has now a spin imbalance in the density of
states [99]:

M S S S

M S S S

1

2
ˆ 1

2
ˆ ˆ ,

1

2
ˆ 1

2
ˆ ˆ . (18)

if f i f i f z i

if f i f i f z i

t s 2 2 2 2

s t 2 2 2 2

η ψ ψ η ψ ψ ψ ψ

η ψ ψ η ψ ψ ψ ψ

= + + − +

= − + + +

→
− +

→
− +

As an example figure 4 shows the spectrum for a single spinwith S 1 2= .When applying themagnetic field, the
conductance increases step-like at bias energies above the Zeeman-energy eV g BBμ∣ ∣ > ∣ ∣. These steps are
symmetrical around zero voltage and thermally smeared out by about k T5 B [98].When the electrons in the tip
are spin-polarized the step heights at positive and negative bias are different. For a paramagnetic tipwith a spin
polarization in direction of the appliedfield ( 0η > ) the conductance step at positive bias decreases, while it
increases by the same amount at negative bias (figure 4(b)).

With a spin-polarized tip the interference between the potential andKondo-scattering shows a very
particular effect [13, 99]. Depending on the sign ofU the zero-bias conductance is either increased or reduced

and can become even zero at 1η = andU S
1

2
= − (figures 4(c)–(d)). Thismagneto-resistive elastic tunneling

[99] arises from the third term in equation (14) and scales with the expectation value Ŝz〈 〉of the impurity. At
non-equilibrium the strength and sign of this term can change; this allows to read-out of the z-projection of the

Figure 4.Tunneling spectra for a S 1 2= system at a temperature ofT=1 K and g=2 evaluated in second order perturbation theory.
(a) At appliedmagnetic field temperature broadened symmetric steps are visible. The different contributions to the conductance are
labeled. Gray: conductance due to potential scattering ( U 0.25∣ ∣ = ), green: due to spin–spin scatteringwithout changing the localized
spin, yellow: spin–spin scattering with changing the spin. (b)–(d) A spin polarized tip produces asymmetric steps. Here, the zero
voltage conductance depends strongly on the potential scatteringU and the tip polarization.

8

New J. Phys. 17 (2015) 063016 MTernes



spinwithout exciting it, as has been shown in spin-pumping (see section 5) [13, 99] and pump-probe
experiments [14].

2.2. Expansion to third order
Wenow turn our attention to the next higher order of interaction.Wewant to consider processes inwhich,
during the transport of an electron from tip to sample (or vice versa), the spin system additionally interacts with
an electron from the sample bath (figure 3(c)). These processes involve an intermediate state (m) and are
expressed in second order Born approximation as:

J
M M M M˜ ˜

. (19)if
m

mf im

i m

mf im

m f

(2)
s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⨋ρ

ϵ ϵ ϵ ϵ
=

−
+

−

Here, the tilde on thematrix M̃ tags scattering processes between the localized spin and sample electrons only.
The order of the two different electron-spin interactions can be exchanged. Thus, we have also to account for
processes inwhichfirst an electron that originates and ends in the sample scatters the system into the
intermediate state and then the tunneling electron interacts with the system scattering it into itsfinal state (right
fraction in equation (19)).Here, it is of fundamental importance to have inmind that, contrary to the initial and
final state of the total system, the intermediate state mψ∣ 〉 can be virtual, i.e., must not necessarily obey angular
momentum and energy conservation. The integro-summation symbol in equation (19) indicates that we
performboth, a summation over all possible discrete intermediate states in the local spin system ψ∣ 〉 and an
integration over the continuous states of the intermediate electron states φ∣ 〉 in the substrate. For the integration,
we consider states in an energy range of 0ω± around EF as possible scatterer leading to the following
characteristic function for electron-like processes [97, 100]:

F T
f T

f T( , ) d d
1 ( , )

( , ), (20)e
0

0∫ ∫ϵ ϵ ϵ
ϵ

ϵ ϵ
ϵ ϵ= − ″ ′ − ′

′ − ″
′ ″ −

ω

ω

−∞

+∞

−

+

and for hole-like processes:

F T
f T

f T( , ) d d
( , )

( , ), (21)h
0

0∫ ∫ϵ ϵ ϵ
ϵ

ϵ ϵ
ϵ ϵ= − ″ ′

′
′ − ″

′ ″ −
ω

ω

−∞

+∞

−

+

respectively. Here, the Fermi–Dirac distributions in the numerator ensure an unoccupied (occupied) final state
and the integration over the derivative f ′ accounts for the temperature broadening during the total process
(figure 5(a)). The switching from virtual to real processes at 0ϵ = leads to a logarithmic singularity that is
broadened by the temperature. Thus, as long as the energy mϵ of the intermediate state and the temperature kBT
are small compared to the integration bandwidth 0ω , the equations (20) and (21) (with a change of sign) can be
rewritten as:

F eV
eV

eV
eV T( ) d ln

i
( , ). (22)m

m

m
m

0

0

⎛
⎝⎜

⎞
⎠⎟∫ϵ ϵ

ω ϵ
ϵ Γ

Θ ϵ ϵ− ≈ − ′ + −
− +

× ′ − + ′
−∞

+∞

Figure 5. (a) Scheme of the third order processes. Full (dashed) vertical arrows illustrate real (virtual) transitions between intermediate
andfinal state (m f→ ) of electron-like (full circles) and hole-like (empty circles) carriers. (b) and (c) The temperature broadened
logarithmic function F eV T( , )mϵ− at different temperaturesTwith 2000ω = meVand 50Γ = μeV. (b) linear, (c) linear-log plot.
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Here, T T( , ) ( , )Θ ϵ Θ ϵ ϵ′ = ∂ ∂ is the derivative of the temperature broadened step function (equation (11))
and a small 0Γ accounts for additional non-thermal (lifetime) broadening. Figure 5 shows the energy and
temperature dependence of Fwhich hasfirst been experimentally observed on a radicalmolecule adsorbed on a
Au(111) surface (see figure 1(e) and f) [22]. Compared to the Lorentzian or Frota functions [101] normally used
for describingKondo resonances in STMmeasurements [12], the behavior of this function is quite different,
even though—if analyzed only in a small energy range of a few kBT around zero—, it has a similar shape [22].
The function shows a relatively flat topwhosewidth is determined only by the temperature. For energies
k TB 0ϵ ω< ∣ ∣ < the amplitude decays logarithmically as ln( )0ϵ ω− ∣ ∣ while themaximumpeak height is
proportional to k Tln( )B 0ω− . Due to the restriction to states in an energy interval 0ω± the function remains
analytical even at ϵ → ±∞where F approaches zero.Note, that the precise value of the cut-off energy 0ω is not
critical andmainly changes only the background offset. If not otherwise notedwe use 200ω = meV throughout
the paper.

When calculating the conductancewe nowhave to consider both processes depicted infigures 3(b) and (c)
and thus have to replace 1 with 1 2 + in equation (12) leading to:

( )

( )

M

J M M M M M M F

M M M M M M F a

˜ ˜ ( )

˜ ˜ ( ) (23 )

if if if

m

fi mf im fi mf im mi

fi mf im fi mf im im

(1) (2) 2 (1) 2

s
⎡⎣

⎤⎦

 
∑ρ ϵ

ϵ

+ =

+ +

+ +

( )

( )

J U I M M I M M F

I M M I M M F b

˜ ˜ ( )

˜ ˜ ( ) (23 )

m

fi mf im fi mf im mi

fi mf im fi mf im im

s
⎡⎣

⎤⎦

∑ρ ϵ

ϵ

+ +

+ +

( )O J .s

2
ρ+

The evaluation of thematrix elements up to third order yields two new terms due to the interference between the
processes described by 1 and 2 which are absent in the second order perturbation calculation. The term
(23a) wasfirst identified byKondo [34] and can lead to temperature broadened logarithmic features in the
conductance at the energy of intermediate states. For a non-vanishing potential scattering amplitude U( 0)≠
the term (23b) will, in addition, produce a bias-asymmetry in the differential conductance evenwithout spin-
polarized electrodes.

We start with the evaluation of theKondo-like processes, that are described by the term (23a), using a spin
S 1 2= systemwith only two states as an example.We assume that in thermal equilibriumonly the ground state

1ψ∣ ↑ 〉 = ∣ 〉 is occupied, i.e. that the Zeeman-splitting induced by the externalmagnetic field is large compared
to the thermal energy: g B k TB Bμ ∣ ∣ ≫ . The Feynman diagrams offigure 6 depict all possible interaction
processes. First, we review the second order processes (figure 6(a)): a spin-up electron that tunnels from tip to
the sample cannot flip the spin ( 1 1ψ ψ∣ 〉 → ∣ 〉), while a spin-down electron can either scatter with exchange of
angularmomentum ( 1 2ψ ψ∣ 〉 → ∣ 〉) leaving the system in the state 2ψ∣ ↓ 〉 = ∣ 〉orwithout exchange
( 1 1ψ ψ∣ 〉 → ∣ 〉). To third order, there are a total of six diagrams to be accounted for, whichwe can label by the
states occupied in the initial (i), intermediate (m), andfinal (f) state. Here, wemark the exchange diagrams by
appending a ‘R’. This results in the processes (112), (121), (122), and the reversed order scattering events (112R),
(121R), (122R).

To evaluate the conductance due to these processes we calculate the spin-flipmatrix elements of
equation (15) for the electrons and the localized spin-system. For electrodes without spin-polarization this
results in conductances of:

( )

I

V
eV

e
T

J
S S S

F eV T eV T

( )
4

4i
ˆ ˆ ˆ

( , ) , , (24)

j k l

jkl i l f f k m m j i

im if

t s
2

0
2 s

, ,
x y z{ , , }

⎡⎣ ⎤⎦R∑π ρ
ε ψ ψ ψ ψ ψ ψ

ϵ Θ ϵ

∂
∂

=

× − × −

→

=

( )

I

V
eV

e
T

J
S S S

F eV T eV T

( )
4

4i
ˆ ˆ ˆ

( , ) , . (25)

j k l

jkl i l f f k m m j i

mi if

t s
2

0
2 s

, ,
x y z

R

{ , , }

⎡⎣ ⎤⎦R∑π ρ
ε ψ ψ ψ ψ ψ ψ

ϵ Θ ϵ

∂
∂

=

× − × −

→

=

Here, equation (24) accounts for the direct diagrams (normal order) and (25) for the exchange diagrams
(reversed order), respectively. In these equations jklε is the usual Levi-Civita tensor of rank three, which is 1 (−1)
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if jkl{ } is an even (odd) permutation of xyz{ }, and zero otherwise [77]. The step-functionΘ ensures that energy
conservation at the final state of the scattering process is obeyed, while the function F has its peak at the
intermediate state energy and ismirrored atEF for the reversed tunneling process. Any spin-polarization in tip or
sample changes the transitionmatrix elements for the interacting electrons and equations (24) and (25)would
becomemore complex (see appendix).

Comparing the different contributions to the conductance (figures 6(b) and 7(a)) it is remarkable that all
third order scattering events start with a spin-down electron except the process 121R.Here, a spin-up electron
tunneling from tip to sample non-trivially interacts with the systembecause a substrate electron has flipped the
localized spin into the intermediate spin-down state before the interaction takes place.

Summing up the contributions to the conductance due to all second and third order scattering events results
in spectra similar to those exemplary given infigure 7(b) (cf figures 1(e) and (f) [22]). At zero field the
differential conductance shows a peak that splits with increasingmagnetic field.While in this calculationwe
assume to be in theweak-coupling Kondo limit and thus neglect any correlation energy due to the formation of a
Kondo singlet, the peak splits as soon as the Zeeman energy overcomes the thermal energy. Note, that the
resulting split-peak at smallfields can lead to the deduction of an erroneously high g-factorwhen just evaluating
the peak positions due to the superposition of peak and step-structures.

If we consider now in addition that the scattering process between tip and sample or vice versa can also occur
via the potential interaction (term (23b)), we observe an asymmetric line-shape as soon as the two eigenstates are
no longer degenerate and Ŝ 0z〈 〉 ≠ (figures 7(c) and (d)). This direction-dependent asymmetry cannot
originate from the scatteringmatrix elements that involve only the localized spin site (the order of excitations
shall be the same) but derives from thematrix elements involving the interacting electrons. Physically, the
reason lies in the asymmetry of the tunnel-junction forwhichwe assume that only the sample is coupled to the
spin-system and thus neglect any intermediate scattering process that originate and end in the tip.

As an example, we examine in detail the process (121) (see figure 6(b)) in both tunneling directions. For a
current toflow from tip to sample via this process,first a ∣ ↓ 〉 electron originating from the tip is scattered into a
∣ ↑ 〉 state in the sample exciting the spin system from 1 2ψ ψ∣ 〉 → ∣ 〉. Second, a ∣ ↑ 〉 electron in the sample is
scattered into ∣ ↓ 〉bringing the spin systemback to 1ψ∣ 〉. Third, the sample ∣ ↓ 〉 is scattered back into the tip as
∣ ↓ 〉 electron. The last step of this process can either take place via the ˆzσ or, in the case of potential scattering, via
the ˆIσ term, respectively. For an electron tunneling in the reverse directionwefirst have a ∣ ↓ 〉 from the sample
being scattered into an electron ∣ ↑ 〉 state of the tip simultaneously exciting the spin system from 1 2ψ ψ∣ 〉 → ∣ 〉.
Then, the second processflips a ∣ ↑ 〉 sample electron into the ∣ ↓ 〉hole from thefirst process. Finally, a ∣ ↑ 〉 tip
electron traverses the junction and fills the ∣ ↑ 〉hole in the sample. Comparing both tunneling directionswe see

Figure 6. Interaction diagrams of order two (a) and three (b) for an electron tunneling from tip to sample into a two level S 1 2= spin
system. The large (small) spheres depict the state of localized spin (interaction electron) and the color their spin directions. Schematic
spectra show their contributions to the conductance at positive bias. The numbers label the processes with the state order of the
localized spin-system. An appended ‘R’ label processes inwhich the scattering into the intermediate state is performed before the
tunneling electron interacts (exchange diagrams). Note that the time order of the processes influences crucially the conductance
spectra as schematically displayed in the small graphs (vertical line isEF; the ∗meansmultiplication).
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that it is the third process which differs in the initial and final state, i.e. thematrix elements are either ˆzσ〈 ↓ ∣ ∣ ↓ 〉
and ˆIσ〈 ↓ ∣ ∣ ↓ 〉or ˆzσ〈 ↑ ∣ ∣ ↑ 〉 and ˆIσ〈 ↑ ∣ ∣ ↑ 〉. Rearranging thematrix elements so that all processes become
electron-like, the prefactors for calculating the tunneling conductance due to these four processes are for the two
without potential scattering:

J

J

(121) : ˆ ˆ ˆ 0,

(121) : ˆ ˆ ˆ 0, (26)

z

z

t s
s

t s s s s t
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andwith potential scattering:

u J U

u J U

(121 ) : ˆ ˆ ˆ 0,

(121 ) : ˆ ˆ ˆ 0, (27)

I

I

t s
s

t s s s s t

s t
s

t s s s s t

        

        

ρ σ σ σ

ρ σ σ σ

+ ↓ ↓ ↓ ↑ ↑ ↓ <

− ↑ ↓ ↓ ↑ ↑ ↑ >

→

+

−

+

+

+
→

+

+

−

+ +

wherewe assumed J 0sρ < andU 0> . Note, that the preceding sign change at the tunneling direction from
sample to tip (s t→ ) is due to the rearrangement of the interaction order togetherwith the switching fromhole-
like to electron-like scattering. The contribution to the conductance from the processes inwhich only Kondo-
like spin–spin interactions take place is positive for both tunneling directions, while the conductance for
processes that include potential scattering changes its signwhen inverting the tunneling direction.

3. Some single spin examples

Up to herewe have revised the relevant formalism to calculate the conductance in the third order of thematrix
elements quite closely following thework established byAppelbaum, Anderson, andKondo [34, 95–97]. The
S 1 2= systemwe used for illustration contained only two states andwas not influenced by anymagnetic
anisotropy or near-by spin systems. Recently, efforts have beenmade to expand this perturbativemodel to
higher spin systems, which also includemagnetic anisotropy and couplings to neighboring spins [81, 83–85],
but the importance of the potential scatteringwas not taken into account up to now. In the following, the power
of this easily accessiblemodel will be used to evaluate and describe the spectral features onmore complex
systems.

Figure 7.Tunneling spectra for a S 1 2= system (a) The third order contributions for non-spin-polarized tip and samplewith
k T g B0.1B Bμ= × and g B20 B0ω μ= × . (b) Total conductance for J 0.05sρ = − ,U=0,T=1K, and g=2 at differentmagnetic
fields. (c) Additional contributions to the conductance in third order due to a non-zero potential scattering term. (d) Total
conductance as in (b) butwithU = 0.25. Dashed lines in (b) and (d) show the second order conductance only atB=10 T.
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3.1. The smallest (S = 1) high-spin system
Regarding the spectra of the S 1 2= system (figure 7), one could get the impression that the coupling to the
sample always results in some superimposed peak-like structures as soon as a spin flip transition is possible, and
which scales with the substrate coupling strength J sρ− . In this sectionwewill show that the situation ismore
complex and depend not only on the transitionmatrix elements but also on the state energies.

To expand the complexity, we turn now to amagnetic systemwith S=1 inwhich axial and transverse
magnetic anisotropy have broken the zero-field degeneracy of the three eigenstates. Assuming easy-axis
anisotropy (D 0< ) the energetically lowest eigenstates haveweights only for m 1z = ± . The additional
transverse anisotropy splits the remaining two-fold degeneracy forming an antisymmetric ground and a
symmetric first excited state (figure 8(a)). Thus, in the basis of themagnetic easy axis the three eigenstates can be

written as:
1

2
( 1 1 )1ψ∣ 〉 = ∣+ 〉 − ∣− 〉 ,

1

2
( 1 1 )2ψ∣ 〉 = ∣+ 〉 + ∣− 〉 , and 03ψ∣ 〉 = ∣ 〉. Such situations have been

found for example for Fe(II)-phthalocyaninemolecules adsorbed on the (2 × 1) oxygen terminatedCu(110)
surface [65], for Fe atoms adsorbed on InSb(110) [53], or for CoHcomplexes adsorbed on the h-BN/Rh(111)
surface [51].

By taking only second order spin-flip processes into account it is easy to calculate (using equation (17)) that
the transition probabilities from the groundstate to the two excited states atB=0 are equal, leading to a
symmetric double step structure in the spectrum (figure 8). Expanding the calculation to third order, only the
processes which involve all states, i.e. (123) and (132), have non-zeromatrix elements when the potential
scatteringU=0. Processes like (112), (121), or (131) cannot be interlinked using any combination of the
operators Ŝ+, Ŝ−, and Ŝz and are thus forbidden.Nevertheless, additional potential scattering enables transitions

involving the operators Ŝ+, Ŝ−, and Î or Ŝz , Ŝz , and Î whichmakes the aforementioned processes possible
resulting in an asymmetry of the spectrumwith respect to tunneling direction.

It is remarkable that the remaining third order processes atU= 0 change the spectrum in a quite different
fashion, even though they have the same strength. Process (123) produces its peaks at eV 2ϵ= ± , but due to
energy conservation it contributes to the spectrumonly at eV 3ϵ∣ ∣ > , which efficiently cuts off the peak. In
contrast, the peak at higher energy due to process (132) is not as strongly cut off (figure 8(b)). Thus, the full
spectrum shows a peak-like increase of the conductance at the energy of the second step but not at the
energetically lowerfirst transition step. Furthermore, the conductance has a curved form for tunneling voltages
between 2ϵ and 3ϵ (figure 8(c)). Note, the overall general behavior would not alter when changing from easy-axis
to easy-plane anisotropy (D 0> ) as long as all degeneracies are lifted.

3.2. SingleMnand Fe atoms onCu2N
After the, with only three eigenstates, rather easy S= 1 example, we now apply themodel to the experimentally
and theoretically intensively studied single 3d transitionmetal atoms adsorbed on amonolayer of Cu2NonCu
(100).When these atoms are placed on top of aCu site they form strong covalent bondswith the neighboringN
atoms [8]. This highly anisotropic adsorption geometry leads to three distinct symmetry axes that are

Figure 8.Tunneling spectra of a spin S=1 system. (a) The anisotropy lifts all degeneracies (D 5= − meV,E=1 meV) at zerofield.
The plot shows the state energy over themz expectation value m Str ( ˆ )z z i iψ ψ〈 〉 = ∣ 〉〈 ∣ (blue: E = 0, black: E 0≠ ) (b) The significant
third order processes (T = 1 K,B = 0 T). The dot dashed line show the additional contribution for aU = 0.125. (c) The total spectrum
with J 0sρ = (dashed red line),−0.1 (full black line), andwith additionalU = 0.125 (dotted dashed blue line).
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perpendicular to each other: The direction out-of-surface and two in-surface directions along theCu-Nbonds
and perpendicular to it, along the so called vacancy rows (figure 9(a) inset).

Single Fe atoms adsorbed on this surface have been found to be in the S=2 state with amagnetic easy-axis
along theN rows (z-direction) and amagnetically hard-axis along the vacancy row (x-direction). In this
coordinate system anisotropy values of D 1.55= − mVandE=0.31 mV, and a gyromagnetic factor of g=2.11
described the experimental data well using a spinHamiltonian like equation (5) and a second order tunneling
model [8, 75, 102]. TheHamiltonian has as solutionfive non-degenerate eigenstates and, due to D 0< , favors,
at zerofield, ground states withweights at highmz values. Similar to the S=1 system the transverse anisotropy
breaks the degeneracies leading to a symmetric and antisymmetric solutionwith themainweights at 2∣± 〉 as
ground andfirst excited state andweights in 1∣± 〉 for the second and third excited state (figure 9(b)). To visualize
the anisotropywe plot the total energy necessary to rotate the ground state into arbitrary directions showing the
favored easy axis (z) and the unfavored hard axis (x) (figure 9(b)) [89]. In second order, spin-flip scattering is
allowed between the groundstate and the three lowest excited states but a transition to the highest state is
forbidden because this would require an exchange of m 2Δ = ± .

Experimental I Vd d measurements on this system show, in addition to the conductance steps, peak-like
structures at the second and third step but not at the lowest one (figure 9(a)). Additionally, they show an
asymmetry between positive and negative bias. To rationalize these observations we can follow a similar
argumentation as in the S=1 case: in third order, transitions like (121) are not possible without additional
potential interaction and processes like (123) or (124) are strongly cut off due to the high energy difference
between 2ϵ and 3ϵ or 4ϵ . In contrast, the processes (132) and (142) scale with J sρ leading to the peak features in

Figure 9.Comparison of experimental and calculated spectra on Fe andMn atoms adsorbed onCu2N. (a) Experimental data from [8]
measured on a single Fe atom at increasing fieldBz along the easy axis and at a temperatureT=550 mK (red circles). The simulations
(black lines) for all plots are obtainedwith one set of parameters: g = 2.11, D 1.57= − meV,E = 0.31 meV, J 0.087sρ = − ,U = 0.35,
and T 740eff = mK.Additionally, a constant offset of 20≈ %of the total conductance had to been added (black shaded area). For
Bz = 0 the second (green shaded area) and third order (orange hatched area) contributions to the conductance are indicated. The
spectra atfield are vertically shifted for better visibility. The inset shows the adsorption site of the 3d atoms (black circle) on theCu2N
(Cu yellow,Nblue circle) (b) and (c) schematic state diagrams and visualizations of themagnetic anisotropy (inmeV) for Fe (b) and
Mn (c) [89]. (d) Experimental data of two differentMn atoms atBz = 0 andBz = 7 T (colored circles). The fits (full lines) for the
B 0(7) Tz = data results in J 0.029( 0.0091)sρ = − − ,U 1.35(1.28)= , D 51( 39) eVμ= − − , g = 1.9, and T 790(930)eff = mK.The
dashed line simulates for the zero field data the absence of any anisotropy. The dotted line simulates with the 7 T parameters the
absence of amagnetic field. (e)The 7 T atomas in (d) probedwith tips of different spin polarizations tη (data from [99]).
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the differential conductance. The additional asymmetry hints at a non-negligible potential scattering. As the
computed curves infigure 9(a) reveal, ourmodel almost perfectlyfits themagnetic field data without any
adaption of the parameters3.Wemention that similar good agreement between experimental data and
computation can be reached in the other twomagnetic field directions (not shown). The coupling strength in
these simulations is J 0.087sρ = − , close to the−0.1 found in a similar perturbative approach [84]. A potential
scattering term ofU=0.35 is necessary to reproduce the asymmetry. This value is significantly smaller than the
U 0.75≈ found in experiments where themagneto-resistive elastic tunnelingwas probed [99]. Part of this
discrepancy can be understood by an additional conductance term that does not coherently interact with the
spin-system andwhichwould lead to an overestimation ofU inmagneto-resistivemeasurements. Indeedwe
need a constant conductance offset of about 20%,which is added to the calculated conductance to reproduce the
spectra.

Switching from an integer to a half-integer spin systemwenowdiscuss individualMn atoms onCu2N,which
have a spin of S 5 2= and only a small easy-axis anisotropy of D 40 eVμ≈ − along the out-of-plane direction
and a negligible transverse anisotropy [7, 8]. The easy-axis anisotropy prohibits the immediate formation of a
Kondo state due to aKramer’s degenerate ground state doublet with m 5 2z = ± (figure 9(c)). At zerofield a
typical spectrum shows only one step, which belongs to the transition between the 5 2± and the 3 2± states that
have superimposed asymmetric peak structures (figure 9(d)). Thefit to themodel yields J 0.029sρ = − and
resembles a S 1 2= split-Kondo peak at smallmagnetic fields (see figure 7(b)). A differentMn atom
investigated atBz=7T shows a significantly reduced J 0.0091sρ = − . Interestingly, wefind for both atoms a

potential scattering value ofU S
1

2
≈ , which allows one to describe the spectra without the need of any

additional conductance offset. This highU value that is the origin of the bias asymmetry has been independently
found in spin-pumping experiments [13] (see section 5) and bymeasuring themagneto-resistive elastic
tunneling contribution [99]. The extraordinary agreement betweenmodel and experiment can be seen in
measurements using different spin-polarized tips on the same atom (figure 9(e)). Here, the strong influence of
the tip-polarization on the inelastic conductance at bias voltages V 1∣ ∣ < mV is evident while the differential
conductance atV 1.5> mVstays, for all tips, constant.

4. The limit of the perturbative approach: theKondo systemCoonCu2N

When a half-integer spinwith S 1 2> has easy-plane anisotropy D 0> , its ground state at zerofield is a doublet
with itsmainweights in m 1 2z = ± . This enables an effective scatteringwith the substrate electrons and leads at
low enough temperatures to the formation of aKondo state. Experimentally this has been observed for Co atoms
onCu2N [9, 11, 16–18] which have been found to have the total spin S 3 2= andwhich enter the correlated
Kondo state with a characteristic Kondo temperature ofTK=2.6K in experiments performed on small patches
of Cu2N at temperatures down toT=550mK [9]. Apart from D 0> the system also has a small in-plane
anisotropy (E 0≠ ) which creates an easy axis (x) along the nitrogen row and a hard axis (z) along the vacancy
rows (figure 10(a)).

Interestingly, in this system the coupling to the substrate J sρ changes with the position of theCo atomon
larger Cu2Npatches, concomitant with a change in the anisotropy energies which separates the 1 2∣± 〉 states
from the 3 2∣± 〉ones [16, 94]. For us this allows the study of the transition from theweak coupling to the strong
coupling regime. In the case where theCo atom is relatively weakly coupled to the substrate (J 0.1sρ ≈ − ), the
model can be consistently fitted to the experimental data even at different field strengths alongBx (figure 10(b)).
We observe a zero-energy peak that splits at appliedfields similar to the S 1 2= systemoffigure 7(d). Butwhile
for S 1 2= thefield direction does not play a role, here the peak splitting depends strongly on the direction due
to themagnetic anisotropy [9]. For this high-spin systemwe furthermore observe inelastic steps due to the
transition to energetically higher excited states which are located at eV D2∣ ∣ = ∣ ∣ forB=0 andwhose additional
peak structure is well describedwithin themodel.

For Co atoms adsorbed closer to the edges of the Cu2Npatches, the coupling to the substrate increases and
thefit to themodel worsens significantly (figure 10(c)).While the experimental datameasured for non-zero
fields are reasonable well describedwith J 0.25sρ ≈ − , atB= 0 the experimentally detected peak atEF is stronger
than the peak created by themodel. Additionally, the experimental peak-width appears to be smaller than the
temperature broadened logarithmic function, whichwas similarly observed for a radicalmolecule with S 1 2=
for temperatures presumably close toTK [22]. Furthermore, we observe that the calculated spectrumno longer

3
Wenote that all experimental data in thismanuscript are unprocessed except for a slight slope adjustment of 2%< which corresponds to

the compensation of an unavoidable small drift in the tip sample separation of less than 0.5 pmduring themeasurement time. The effective
temperature is always larger than the base temperature of the experiments due to additional broadening effects as for examplemodulation
voltages, electromagnetic noise, or additional lifetime broadening.
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well describes the steps at D2∣ ∣. At this energy the third order contributions are less pronounced in the
experimental data, indicating that we reach the limit of the perturbative approach.

The full description of a spin system in the strong coupling regime requires complex theoreticalmethods like
numerical renormalization group theory [36, 103, 104]which are beyond the scope of this paper. Nevertheless,
we can discuss some of the physical consequences within the outlined perturbativemodel. In contrast to the
examples discussed in section 3, the two lowest degenerate ground states of the Co/Cu2N systemhaveweights in
states that are separated by m 1Δ = ± . Thus, at zero field, electrons from the substrate can efficientlyflip between
these two states. The computation of the transition rate between the two states iψ∣ 〉 and fψ∣ 〉of the spin system
that have the energies iϵ and fϵ is I eif ifΓ ≔ , i.e. the transition probability per time, is analogous to the
calculation of the current (equation (9)) given by:

( )( )
I

e
J f T f T

2
d ( , ) 1 , . (28)if

if
if if

s s
s s

s
2 s s 2 ⎡⎣ ⎤⎦∫Γ π ρ ϵ ϵ ϵ ϵ= = − −→

→

−∞

∞
→


Herewe have set the bias to eV = 0 and replaced the coupling constantT0 between adsorbate and tipwith J sρ , the
coupling between adsorbate and substrate.Whenwe now consider only processes up to second order, thematrix

if is independent of the energy and the integral can be evaluated to

( )f T f T

k T

d ( , ) 1 ,

exp 1

. (29)if
if

if

B

⎡⎣ ⎤⎦ ⎛
⎝⎜

⎞
⎠⎟

∫ ϵ ϵ ϵ ϵ
ϵ
ϵ

− − =
−

−∞

∞

Thus, the scattering rate between the two degenerate states (i.e. 012ϵ = ) is directly proportional to the
temperature (figure 11(a)):

( )J M k T
2 ˜ . (30)B12

(2)s s
s

2
12

2Γ π ρ=→


These scattering processes, whichwe have discussed in section 2 and displayed infigure 6(a), will tend to

change the spin polarization of the electronic states in the sample near the adsorbate to be correlated with the
localized spin. Nevertheless, this local correlationwill be quickly destroyed by decoherent scattering processes
with the remaining electron bath, whichwe can assume to be large and dissipative. This decoherence rate is also
proportional to the temperature, k TBdecohΓ ∝ [105], but usually stronger so that no highly correlated state can
form. This picture changes whenwe additionally consider third order scattering processes which yield, using
equation (23), the probability:
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Due to the growing intensity of F ( 0)ϵ = at reduced temperatures (figure 5), for temperaturesT 0→ the
scattering (3)Γ decreases significantlymore slowly than (2)Γ (seefigure 11(b)) so that their ratio steadily
increases:

Figure 10.The tunneling spectra of Co atoms (S 3 2= ) onCu2N. (a) Schematic state diagram and visualizations of themagnetic
anisotropy (inmeV). AtB=0 the states 1ψ∣ 〉 and 2ψ∣ 〉 are degenerated and differ by m 1zΔ = ± . (b) and (c) Experimental data from
[16] of two different Co atoms at B 0, 4, 6x = T (colored circles, top to down, shifted for clarity). The bestfits (full lines) results in
T 4eff = K,D = 3.3 meV,E = 0.7 meV, g=2, J 0.11sρ = − for (b) and T 3.8eff = K,D = 2.7 meV,E = 0.5 meV, g=2, J 0.25sρ = − for
(c), respectively.
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In contrast to that, the decoherent scattering rate with the bath decohΓ lacks localized scattering centers and
therefore has no significant third order contributions. Equation (32) leads to a characteristic temperature, the
Kondo temperatureTK, where

(3)Γ and higher order scattering terms become the dominant processes and
perturbation theory breaks down [34, 36, 106, 107]:
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Below this temperature the assumption used up to now, i.e. that the electronic states in the sample are not
influenced by the presence of the spin system, no longer applies. Using exactmethods like themodifiedBethe
ansatz [108, 109] or numerical renormalization group theory [104] reveals that the sample electrons in the
vicinity rather form an entangled statewith the impurity, i.e.

1

2

1

2

1

2
, (34)total s s

⎛
⎝⎜

⎞
⎠⎟Ψ = ↓ + − ↑ −

as illustrated infigure 11(c). This combined state is quite complicated because the electronic states in the sample
are continuous in energy and extend spatially, and therefore strongly alter the excitation spectrumof the
adsorbate [110, 111].

Figure 11(d) shows the impact of the formation of the correlated state on the experimentally detected
spectrumof theCo/Cu2N system. At temperatures T TK≪ , the peak at the Fermi energy can no longer bewell
reproduced by a temperature broadened logarithmic function (which in any casemust diverge forT 0→ ). The
peak ismuch better described by an asymmetric Lorentzian, i.e. a Fano line-shape [47], or the Frota function
[101, 112, 113]which has afinite amplitude and a half-width of k TB KΔ = , corresponding to the correlation
energy of theKondo state. Superimposed on this zero-energy peakwe detect conductance steps at voltages that
enable scattering of the spin system into the m 3 2z = ± state. These steps arewell described using only a second
order perturbation spin-flipmodel [9] and do not show any third order logarithmic contributions. Thismeans
that the probability of the third order scattering channelsmust be closed due to the ground-state correlation
between the localized spin and the substrate electrons. Herewe see that the simple perturbative approach of the
model is no longer valid and fails to capture the full physics in this strongly coupledKondo regime.Nevertheless,

Figure 11.Correlations induced by substrate electrons. (a) In second order the scattering probability of a substrate electronwith
energy ϵ is given by the overlap of the electron andhole-like Fermi–Dirac distributions (area underneath the curve) and is for
degenerated ground states directly proportional to the temperature. Third order scattering (b) gets logarithmically stronger than the
second order processes with decreasing temperature. (c) Schematics of the entangled state at temperatures below the characteristic
Kondo temperature. The scattering leads to a correlation between the spin state of the localized system and the sample electrons in the
vicinity. (d) Spectrumof a Co adatomonCu2N in theKondo regime (B = 0 T,T = 0.55 K, data from [9]). The experimental I Vd d
curve (red dots) is well described by the sum (full line) of a Frota peak centered atEF (dotted dashed line) and a broadened step-
function at higher energy (dashed line).
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themodel still gives valuable information because it enables us to identify the conditions under which
correlations can evolve and is due to its computational simplicity also applicable for larger andmore complex
spin systemswhere the calculation of the exact solutionmight not be feasible or very time consuming.

5. Spin dynamics and rate equations

In the preceding sectionwe discussed the appearance of correlations due to higher order scattering between the
substrate electrons and the localized spin system.Nowwewant to evaluate how the tunneling of electrons
between the biased tip and the sample influences the state populations and the observable spectroscopic features
in local conductancemeasurements. This is equivalent to dropping the zero-current approximationwe have
assumed until now.Wewill see that the change of time-averaged systemproperties results in characteristic
fingerprints in the I Vd d signal which can become crucial for a deeper understanding of the system’s response
and dynamics.

To describe the transition rate between the localized spin states iψ∣ 〉 and fψ∣ 〉due to the tunneling current
flowing between tip and sample we can again use equation (9) and the relation eV I eV e( ) ( )if if

t s t sΓ ≔→ → , which
leads, infirst order Born approximation, to:
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The integral can be solved using equation (29) resulting in:
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As long as eV k Tif Bϵ− ≫ , equation (36) can be further simplified to an equation that is linear in the energy
difference:

( )eV T eV( ) (2 ) . (37)if if if
(2)t s

0
2 t s 2Γ π ϵ= −→ →

This linear dependence of the scattering rate on the energy difference is equivalent to the assumptions that in
second order perturbation thematrix elements and the coupling constantT0 between tip and sample are energy
independent. Under these assumptions the rate is given by the energywindowbetween the available energetically
hot electrons and the energy needed to change the localized state [79].However, one should keep inmind that at
large energy differences the intrinsic variation of the local density of electronic states in tip and sample ( )t, sρ ϵ
might alter the results.

Furthermore, we additionally include third order contributions to the tunneling transition rates. This can be
archived by integrating the interference terms between 1 and 2 of equation (23) and leads to an additional
contribution to the scattering rate of:
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For tunneling currentsflowing in the opposite direction, i.e. for electronswhich are scattered at the spin
systemwhen tunneling from sample to tip, equations (36) and (38) can be adapted straightforwardly.

The total transition rates ij ij ij
t s (2)t s (3)t sΓ Γ Γ= +→ → → and ij ij ij

s t (2)s t (3)s tΓ Γ Γ= +→ → → have to be evaluated for all
possible initial and final localized spin states and, togetherwith the dissipative substrate to substrate scattering
rates discussed in section 4 (equations (28) and (31)), can be brought together to the characteristicmaster
equation for the state populations:
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t

p t p t p t

t p t

d

d
( ) ( ) ( )

( ) ( ). (39)

i
j i

j ji ji ji i
j i

ij ij ij

ij j

t s s t s s t s s t s s∑ ∑Γ Γ Γ Γ Γ Γ

Υ

= + + − + +

=
≠

→ → →

≠

→ → →

18

New J. Phys. 17 (2015) 063016 MTernes



This set offirst order differential equations describes the time-development of an initial state of the spin

system,whichmight be a superposition state t p t( ) ( )
i i i∑ψ ψ∣ 〉 = , at the time tunder the influence of all

possible, bias dependent, scattering events. Thefirst summation in equation (39) accounts for all the
probabilities to scatter into the ith eigenstate from any other eigenstate. These probabilities have to beweighted
with the time-dependent state probability pj of the originating state. The second summation accounts for all
scattering events which reduces the ith state probability by scattering it into other eigenstates. It is important to
note, that we use three crucial premisses in this approach:

(i) We assume that the future of the localized quantum state depends only on the actual state and not on any
interactions which happened in the past. ThisMarkovian limitmeans that we assume that the timescales at
which this approximation breaks down, in particular where higher than two-time correlations are
dominant, can be neglected [114].

(ii) We do not account for any phase coherences between the eigenstates of the spin system. Thismeans that the
phase coherence time is short compared to the state’s lifetime τ and the time between successive tunneling
events. Under these assumptions all off-diagonal elements of the densitymatrix in the rotating framewith
the eigenstates ψ′ are zero and thus the densitymatrix can be described as a statemixture

p
i i i i∑χ ψ ψ= ∣ ′〉〈 ′∣.

(iii) Because we treat the total system as the product state between the continuous electronic states in tip and
sample and the discrete spin states, a correlated state between substrate electrons and the localized spin as
discussed in section 4 (equation (34)) can not be developed directly within the limitations of ourmodel.

In the following, we furtherwant to limit our evaluation to steady-state conditions, whichmeans that the
change of any external parameter, like the tunneling bias voltage, occurs adiabatically slowly,muchmore slowly
than any relaxation times in the system. The steady-state condition is reached, when all pi are static, i.e.

t
p t

d

d
( ) 0i → ∞ = . This is equivalent tofinding of the algebraic kernel of the ratematrixΥ, which additionally

has to be normalized to account for the conservation of probabilities p 1
i i∑ = :
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From these p eV( )stat the current I(eV) and the differential conductance I eV eVd ( ) d( ) can be calculated:

( )I eV e p eV eV eV( ) ( ) ( ) ( ) . (41)
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stat t s s t∑ Γ Γ= −→ →

To show the influence of a non-zero tip–sample coupling strengthT0 on the tunneling spectra we are
returning to the spin S= 1 example from section 3.1. Infigures 12(a) and (c) we show the development of the

I Vd d spectra atB=0 andBz=10 T for different coupling strengths between sample and tip, respectively. The
coupling constants correspond to a tunneling resistance between R 130T ≈ and 2.6≈ MΩ, which is equivalent
to a tunneling current of I 150≈ pA–8 nA at a bias ofV=20mV.Note, that these are quite typical parameters
for STMexperiments.

Withoutmagneticfield and at small couplings we observe a spectrumwhich does not differ significantly
from the one calculated in the zero-current approximation. The average occupation of the two excited states
increases only slowly for voltages above the threshold for these transitions and reaches atV 10= ± mVonly
about 4% for p2 and less than 0.4% for p3 (dashed lines infigure 12(b)). This situation changes when the tip–
sample coupling is increased. At largerT0 an additional feature appears in the spectrum at about ±4 mV,which is
due to transitions from the state 2ψ∣ 〉 to 3ψ∣ 〉. These transitions are only possible because the probabilities pi are
driven far from thermal equilibrium and p2 has already a significant weight at V 4∣ ∣ = mV. Similar current
induced pumping to higher excitation states has been observed for example forMn-dimers adsorbed onCu2N
[13], for small Fe clusters containing only a few atoms onCu(111) [2], or for Fe-OEP-Cl (Fe-
octaethylporphyrin-chloride)molecules adsorbed on Pb(111) [115]. Interestingly, the latter experiment was
performed on a superconducting surface andwith a superconducting Pb-tipwhichmade it necessary to account
for the gap around the Fermi energy in the quasi-particle density of states of tip and sample.

If we now add amagnetic field ofBz = 10 T to our simulation, the situation changes: the energy differences

12ϵ and 23ϵ between thefirst and second, and second and third eigenstate, respectively, are almost identical (see
figure 12(c) inset)masking the additional step-like feature when pumping into energetically higher states.
Nevertheless, also here a clear change of the spectrumoccurs at high tip–sample couplings.We observe an
increased relative conductance between 2ϵ and 3ϵ and a stronger third order peak at eV 3ϵ= ± . This feature is
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mainly due to the third order scattering process (232)nowpossible, as apparently visible when taking the relative
difference between the spectra at strongest andweakest coupling strength (dashed dotted line infigure 12(c)).

As long as the tip is not spin-polarized, the current induced pumping into higher states cannot lead to an
inversion of the state occupancy. The state’s lifetime iτ for the eigenstate iψ∣ 〉 is inversely proportional to the sum
of all scattering processes which leaves the state:

( )eV eV eV( ) ( ) ( ) . (42)i

j i

ij ij ij
1 t s s t s ,s∑τ Γ Γ Γ= + +−

≠

→ → →

While for spin-averaged electrodes the scatteringmatrix elements do not changewhen inverting the initial and
final state, the energetically higher statesmust have always a shorter lifetime.

This behavior changes drastically when a spin-polarized tip is used.We have seen that, in particular for spin
systemswith a potential scatteringU S 2= , the tunneling conductance and thereby the scattering rate depends
strongly on the bias polarity (figure 4). Experimentally, this was first detected forMn adatoms adsorbed on
Cu2N [13] and successfully discussed theoretically in a second order perturbative scatteringmodel [79, 80].
Figure 13 shows the simulated spectra of aMn spin system at highfieldwhich—due to the smallmagnetic
anisotropy—leads to an almost equidistant energy difference between the five eigenstates. These eigenstates are
well described by pure states with themagnetic quantumnumbers m 5 2, 3 2, , 5 2z = − − … + .

At low tip sample couplings the I Vd d spectrum is similar to the ones simulatedwithout rate-equations
(figures 9(d) and (e)), but at higher couplingwe observe a drastic reduction of the differential conductance at
negative bias. This decrease is concomitant with the reduction of the averagemagnetization

( )m Str ˆ pz z i i i i∑ ψ ψ〈 〉 = ∣ 〉〈 ∣ . For the highestT0 the averagemagnetization becomes even negative at negative

bias showing clearly the inversion of the state populations. Interestingly, the strong bias asymmetry in the I Vd d
spectrum is only due to the potential scattering. Simulating the systemwithU=0 results in amuch less
asymmetric spectrum, even though the bias dependence of the state populations and averagemagnetization are
unaltered.

Finally, we have to remark that experimentally an effective interaction of the substrate conduction electrons
with theMn spin of G 2.7 SS μ= was found [13]. This ismuch higher than the spin-substrate scattering

determined solely by the spectroscopically estimated J 0.020ρ ≈ − which results to G e h2S
2= × J S( )s

2ρ
S( 1) 0.3 μ+ ≈ S. Thismeans that in this particular system roughly 90%of the spin relaxations with the
substrate electronsmust originate from scattering processes which do not directly leave their fingerprint in the
observable differential conductance spectrum. In this context, ab inito density functional calculations have

Figure 12.Tunneling spectra of a spin S=1 system at different coupling strengths T0
2 between tip and sample. The simulation

parameters are identical to the ones used infigure 8: g=2, D 5= − meV,E=1 meV,U=0, J 0.1sρ = − ,T=1 K. (a)Normalized zero

field spectra for T0
2 ranging from 1 10 4× − (dashed red line) to 5 10 3× − (full red line). At increasedT0 a feature at eV 3 2ϵ ϵ= ±∣ − ∣

4≈ ± meVappears and the apparent strength of the peaks at eV 3ϵ= ± increase. (b) State occupancy in steady-state for the smallest
(dashed lines) and highest (full lines) coupling strengths. (c) and (d) Same as (a) and (b) but at an applied field ofBz = 10 T. The
dashed–dotted line in (c) is the relative difference between the spectra at highest and lowest coupling strength. The inset in (c) shows
the evaluation of the state energy iϵ withfield.
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found an about 3.1 times higher coupling to the substrate via the 3dxz and d3 x y2 2− orbitals than experimentally
observed [116], while the approach discussed here neglect any orbital symmetry.

5.1. Current induced correlations
Comparing the dynamicalmodel outlined abovewith experimental data that require the evaluation up to third
order scattering is a very intriguing test of the capability, as well as the limitations, of this approach. Thus, wewill
now analyze spectroscopic data that have beenmeasured for Fe adatoms onCu2Nusing spin-averaged and spin-
polarized tips [99]. Figure 14 shows the experimental data obtained for two differentmagnetic field directions;
along themain anisotropy axis (easy axis,Bz) which leads to a strong polarization of the eigenstates along the
magnetic field (figure 14(a)) and, perpendicular to it, along the hard axis (Bx) which produces only a small
polarization of the lowest eigenstates (figure 14(d)).

In this experiment the spin polarizationwas deliberately changed by verticalmanipulation (‘picking-up’)
[13, 117] of aMn atomonto the apex of the tip, changing its polarization from 0tη ≈ to 0.4tη ≈ and enabling
the study of the identical atomwith andwithout a polarized tip. The experimental data for the spin-average and
for the spin-polarizedmeasurements along the hard axis can bewell simulatedwithin one set of parameters
(figure 14(c)). Surprisingly, the spectra are almost identical to simulations using only the zero-current
approximation. Thus, themoderate coupling between tip and sample does not disturb significantly the state
populations. This is also evident by plotting the averagemagneticmoment along the applied field (lower panels
infigures 14(b) and (c)). The smallmagnetic field (compared to the anisotropy energy) of onlyBx=3 T along
themagnetically hard-axis cannot polarize the Fe atom significantly (figure 14(d)). Thismeans, that the spin
imbalance produced by a spin-polarized current has only little influence on the I Vd d spectrum.However, note
that the small shift toward higher energies of the step at V 4∣ ∣ ≈ mV,which has its origin in transitions between
the states 1ψ∣ 〉 and 3ψ∣ 〉, might be due to an interaction between the spin systemon the surface and the spin
polarized electrode of the tip [118, 119].

The situation changes quite drastically when themagnetic field is applied along the easy axis and the
spectrum is takenwith the spin-polarized tip (figure 14(b)). A strong peak atV 5≈ − mVappears concomitant
with the apparent disappearance of the step at precisely the same energy, that was clearly visible in the spectrum
measuredwith the spin-averaging tip. Fortunately, themodel describes this spectrumquite well, too and thus
allows us to discuss the physical origin of these differences.

Comparing the spectrumwith the one calculated in the zero-current-approximation reveals that the
disappearance of the step is indeed due to the increased coupling between tip and sample. The origin lies in the
finiteU, quite similar to the differential conductance reduction observed at negative bias for theMn system
(figure 13). Indeed, we see that the spectrum calculatedwith the same set of parameters exceptU=0 leads to a
spectrum inwhich the step-like increase of the I Vd d atV 4< − mV ismaintained. Furthermore, we notice
that the calculatedmagnetization mz〈 〉decreased abruptly below this tunneling bias voltage,much faster than
for the spin-averaging tip, due to the increased population of the states 2ψ∣ 〉 and 3ψ∣ 〉 (figure 14(b) lower panel).

While the effects discussed above give a plausible explanation for the overall shape of the spectrum, there is
still a noticeable discrepancy between experiment and simulation. In particular, the experimental I Vd d data
show a significantly stronger peak atV 5≈ − mV than onewould expect based on the simulation, resembling of

Figure 13. Simulated tunneling spectra of aMn atomonCu2Nwith spin S 5 2= at different coupling strengths T0
2 between tip and

sample and at amagneticfield ofBz = 7 T. Simulation parameters are g = 1.9, D 40 eVμ= − ,E=0,U = 1.3, J 0.02sρ = − ,T=1 K,

and a tip polarization of 0.3tη = . (a)Normalized spectra, and (b) averagedmagneticmoment mz〈 〉 in units ofℏ for T0
2 ranging from

5 10 6× − to 2 10 4× − , corresponding to a tunneling resistance of R 270T ≈ to 6.8≈ MΩ or a stabilization current of I 35≈ pA–
1.5 nA at a bias of eV 10= + meV. The dashed lines in (a) and (b) are calculatedwithU=0 at T 2 100

2 4= × − . (c)Occupancy of the
six eigenstates at steady-state conditions for T 2 100

2 4= × − .
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the effects of strong correlations discussed in section 4 (which are not covered by themodel). Thus, it is worth to
dissect the characteristic peakwhich has its origin in the third order process (131) inwhich the spin system is
scattered from 1 3 1ψ ψ ψ∣ 〉 → ∣ 〉 → ∣ 〉.With the spin-polarized tip this transition has a significantly higher
probability to occurwhen the electrons tunnel from sample to tip. The process is illustrated infigures 14(d) and
(f). It starts with an ∣ ↓ 〉 electron in the sample which scatters on the spin system changing its grounstate from

1ψ∣ 〉 to 3ψ∣ 〉 and then tunnels, with increased probability, as ∣ ↑ 〉 electron into themajority states of the tip. The
spin-downhole in the sample will lead to a slightly higher spin-up electron density close to the Fe atom.Next, a
∣ ↑ 〉 electron from the sample fills the ∣ ↓ 〉hole togetherwith changing the localized spin-state from 3ψ∣ 〉back
to 1ψ∣ 〉 (figure 14(d)). During this process the substrate electrons are correlatedwith the spin state.While the
magneticmoment for 1ψ∣ 〉 is approximately m 2z ≈ + and for 3ψ∣ 〉 m 1z ≈ + , respectively, at low enough
temperature and at sufficiently negative bias and tunneling current, a correlated out-of-equilibriumKondo-
state developswhich has the total wavefunction

( )1

2
2 1 . (43)total s sΨ = ↓ ∣+ 〉 − ↑ ∣+ 〉

Even though the experimental data only give hints that this correlated state has formed, a similar non-
equilibriumKondo formation has been found in transportmeasurements on carbon nanotubes [120]. The
physical properties of such a non-equilibrium correlated state are very intriguing [121, 122]. Entering this state,
the substrate electrons partly screen themagneticmoment of the Fe spin reducing it to S 1 2− . Such an
underscreenedKondo state should show a very particular temperature and energy dependence [123–129].
Interestingly, in a system like the one discussed here, the transition betweenweak and strong coupling is not only
governed by a characteristic temperatureTK [130], but the formation of this correlated state is deliberately tuned
by drastically increasing the probability of its creationwhen applying a spin-polarized current of sufficient

Figure 14.Correlations induced by tunneling substrate electrons. (a) Schematic state diagram for an Fe atomonCu2N atBz=3 T. The
blue arrows illustrate the third order transition (131). (b) and (c) Top panels: experimental data from reference [99] of a Fe atomon
Cu2Nmeasuredwith a spin averaging tip ( 0tη = ) and a spin polarized tip ( 0.4tη ≈ ) at appliedfield in z (a) and x (b) direction
(colored circles). The bestfits (full lines) results in g=2.11, D 1.6= − meV,E=0.31meV,U=0.35, J 0.1sρ = − , T 1eff = K, and

T 3.2 100
2 4= × − . Spectra obtained and simulatedwith spin-polarized tips are shifted vertically by e h0.5 10 (2 )3 2× − . The dashed

(dotted dashed) line in (b) is calculatedwithU=0 (in zero-current approximation). Bottompanels: corresponding averagemagnetic
moment in field direction in units ofℏ (full lines: spin-polarized tip, dashed lines: spin-average tip). (d) Schematic state diagram for an
Fe atom atBx = 3 T. (e) and (f) Schematic illustration (e) and Feyman-like diagram (f) of the third order scattering process (131)
which leads to the peak at V 5≈ − mV in panel (a).
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energy by the probing tip. This enables us to envision for example pump-probe experiments [14] inwhich the
time-evolution of the formation and the decay of this correlated state ismeasured in detail.

6. Summary

In thismanuscript I have shown that applying perturbation theory to quantum spin systems enables one to
describe experimentallymeasured differential conductance spectrawith very high accuracy. This enables one to
obtain a profound understanding of the physical processes on play and to separate single- aswell asmany-
electron effects.

The versatility of low-temperature scanning tunnelingmeasurements on single and complexly coupled spin
systems ledme to believe that we should expect amultitude of exciting new experiments for the future, which
will further deepening our fundamental knowledge on quantum systems in general and, in particular, quantum
magnetism. Perturbativemodels, like the one outlined here,might be of help in such systems. For that, the
supplementalmaterial to thismanuscript include an easy usable software package that allows not only to
simulate the differential conductance spectra of arbitrary complex spin systems, but additionally allows one tofit
experimental data to themodel.

In thismanuscript we have restricted ourselves to the adiabatic limit and neglected any time dependence in
the parameters. However, it is straightforward to expand thismodel to capture also time dependent pump-
probemeasurements. In such a framework, coherent state superpositions could be accounted for by using, for
example, a Bloch–Redfield approach inwhich the spin system is coupled to an open quantum-system
[114, 131, 132] and inwhich interactions up to third order are included to account not only for the decay but
also for the creation of coherences.

Additionally, the study of the coupling between the spin-system and other (quasi)-particles, like phonons,
photons, ormagnonswould be very interesting. Furthermore, while the perturbative approach fails when the
system enters the strong-coupling Kondo-regime, it would be very intriguing to combine the simplemodel
outlined here, with exact quantum impuritymodels.
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Appendix.Matrix elements for arbitrary spin polarization

The two arbitrary spin densitymatrices tϱ and sϱ are a full description of the ensemble states in the tip and

sample electron bath close to the Fermi energy. The eigenvectors i
tφ and i

sφ of tϱ and sϱ are representative

eigenstates of these incoherent ensembles and enables one to calculate the interaction transition intensities
between them as:

ˆ , (A.1)i f
x y z I

i f f x y z I i
, , , t s s

, , ,
tξ λ λ φ σ φ=′ ′ ′ ′ ′ ′

with i
tλ and i

sλ as the eigenvalues of the corresponding eigenvectors. Note, that due to the in general incoherent
spin ensembles in tip and sample equation (A.1) has to be evaluated independently for all combinations of
i 1, 2′ = and f 1, 2′ = .

For the localized spin systemwe canwrite similarly the transition intensities between the eigenstates:

Ŝ , (A.2)if
x y z

f x y z i
, ,

, ,Ξ ψ ψ=

so that the absolute square of thematrix element in equation (13) calculates to:

( ) U
1

2
. (A.3)if

i f

i f
x

if
x

i f
y

if
y

i f
z

if
z

i f
I

if(1)
t s 2

,

2

 ∑ ξ Ξ ξ Ξ ξ Ξ ξ δ= + + +→

′ ′
′ ′ ′ ′ ′ ′ ′ ′

The interference termbetween 1 and 2 (equation (23)) can be evaluated in an analogousway leading
to:
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M M M˜ ¯ ˜ , (A.4)fi mf im

j k l i m f

f i
l

fi
l

m f
k

mf
k

i m
j

im
j

, , , ,
x y z I{ , , , }

∑ ∑ ξ Ξ ξ Ξ ξ Ξ= × ×
= ′ ′ ′

′ ′ ′ ′ ′ ′

and for the reversed order processes:

M M M̃ ¯ ˜ . (A.5)fi mf im

j k l i m f

f i
l

fi
l

m f
k

mf
k

i m
j

im
j

, , , ,
x y z I{ , , , }

∑ ∑ ξ Ξ ξ Ξ ξ Ξ= × ×
= ′ ′ ′

′ ′ ′ ′ ′ ′

The tilde (ξ̃) and bar ( ¯ †ξ ξ= ) account for processes which starts and ends in the sample, and for processes in
which tunneling electrons traverse the junction in the opposite direction, i.e. which starts in the sample and ends
in the tip, respectively. They can be calculated in an analogouswaywith equation (A.1).
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