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The properties of geometrically confined superconductors significantly differ from their bulk

counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling

microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To

this end, we compare the experimentally determined magnetic field dependence for several

vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model

of a superconducting cone, we find a direct correlation between the geometry and the order of the

superconducting phase transition. Increasing the opening angle of the cone changes the phase

transition from first to second order. Comparing our experimental findings to the theory reveals

first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory

also explains experimentally observed broadening effects by the specific tip geometry. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931359]

When geometrically confined to dimensions smaller than

the London penetration depth, superconductors in a magnetic

field exhibit properties that can significantly differ from their

bulk counterparts. For example, the critical magnetic fields, at

which superconducting thin films become normal conducting,

are considerably enhanced compared to the bulk due to geo-

metrical confinement.1–4 At the critical field, the order of the

superconducting phase transition also depends on geometrical

factors such as the film thickness.3,4 In addition to thin films,

various other geometries have been studied experimentally

and theoretically such as disks, rings, or spheres.5–10 A cone

presents a particularly interesting and challenging geometry

covering length scales from the atomic scale apex to the

macroscopic base.11 At mesoscopic length scales where super-

conductivity has to be described, cones are a highly suitable

approximation for superconducting tips in scanning tunneling

microscopy (STM). Superconducting STM tips can be

employed for enhancing the energy resolution (e. g. Refs. 12

and 13), for accessing parameters of a superconductor,14 as

probes for absolute spin polarization,15 or for designing

Josephson junctions.16–18 In a conical geometry, it is a priori
not clear if the superconducting properties are affected due to

the mesoscopic confinement or if quantum size effects have

to be considered as in zero-dimensional (0D) superconduc-

tors.19–22 In this context, the magnetic field dependence of the

superconducting gap is of fundamental interest. The order of

the superconducting phase transition also remains an open

question. Therefore, it is essential to understand the impact of

the confinement on tunneling experiments employing super-

conducting STM tips.

Here, we investigate the influence of the geometry on

the superconducting phase transition of STM tips in mag-

netic fields. To this end, we measure the magnetic field de-

pendence of several vanadium tips by STM and use the

Usadel equation for modeling the tips as sharp superconduct-

ing cones in magnetic fields. Comparing our experimental

results with the calculations, we characterize the order of the

superconducting phase transitions in the V tips. We find that

we can tune the order of the phase transition by changing the

geometry of the tip apex, i.e., first order transitions for sharp

tips and second order transitions for blunt tips. Furthermore,

our approach allows to correlate experimentally observed

broadening effects to the geometric confinement of the

superconductor.

Fig. 1(a) shows differential conductance (dI/dV) tunneling

spectra of a superconducting V tip on single crystal V(100) as

a function of magnetic field B and at a temperature of

15 mK.23,29 Since the critical field for bulk V Bc;bulk < 0:5 T,

the sample is normal conducting for all measurements shown.

The dI/dV-spectra show the superconducting quasi-particle

density of states (DOS) of the STM tip up to its critical field Bc

of about 4.2 T, which is higher than in the bulk due to the

dimensional confinement near the apex.15 The lifted spin

degeneracy results in the characteristic four-peak-structure of

the superconducting coherence peaks.24

To characterize our data, we start with the simplest 0D

model of a small superconductor in a magnetic field. In this

model analyzed by Maki,25,26 the DOS is given by

q#"ðEÞ ¼ ðq0=2ÞsgnðEÞRe

�
u6

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

6 � 1

q �
; (1)

where uþ and u� are implicitly defined by
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u6 ¼
E� iCð Þ7lBB

D
þ f

u6ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

6

p þ b
u7 � u6ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
7

p ; (2)

with q0 is the normal conducting DOS, E is the energy, lB is

the magnetic moment (Bohr magneton), D is the supercon-

ducting order parameter, f is the orbital depairing parameter,

B is the external magnetic field, and b is the spin-orbit scat-

tering parameter. In our dI/dV spectra, we usually observe

broader spectral features than expected just from thermal

effects (T¼ 15 mK). At higher magnetic fields, we observe

the filling of the superconducting gap where the dI/dV-signal

does not completely go to zero as predicted by the original

Maki’s model.25,26 Therefore, we employ an extended

Maki’s model (EMM) with an additional phenomenological

broadening parameter C.27 Including C broadens the spectral

features and results in a much better fit to our experimental

data. We emphasize that an artificially introduced parameter

C should not be attributed to any real pair-breaking mecha-

nism. Its appearance is the price to pay for a good fitting of

experimental data by an oversimplified 0D Maki’s model.

Below, we present a consistent microscopic description for

our experimental data based on the Usadel equations.

In Fig. 1(a), the black solid lines represent fits to the

data using the EMM with b ¼ 0:1060:04 (which is in good

agreement with Ref. 28) and a magnetic field dependent f
(for details see Ref. 29). In Fig. 1(b), the same experiment is

repeated with a different V tip. While the superconducting

DOS of the tip is clearly visible and similar to Fig. 1(a), the

spectral features appear much broader and the critical field

Bc � 2:5 T is smaller. Fitting the more broadened spectra

with the EMM requires larger C values than in Fig. 1(a).

Repeating these experiments for several V tips (made

from five different pieces of V wire), we extract the super-

conducting parameters by the fitting routine based on the

EMM. Fig. 1(c) shows the superconducting gap D (solid

symbols) and the Zeeman energy (open symbols) as a func-

tion of the external magnetic field B. The analysis reveals

large variations of the critical fields (2 T � Bc � 4:5 T)

as well as of the superconducting gaps at zero field

(260 leV � D0 � 580 leV). The observed Zeeman splitting

follows the theoretical prediction of a system with spin

s¼ 1/2 and g¼ 2 for all investigated V tips [gray line in

Fig. 1(c)].30

Further, the behavior of the superconducting gap D in

the magnetic field depends on the specific tip (cf. Fig. 1(c)).

While tip 1 shows a discontinuous transition to the normal

state at high fields, other tips, such as tip 5, show a more con-

tinuous phase transition at lower fields. This behavior

becomes more obvious when comparing the measured super-

conducting gaps to ellipses drawn as a guide to the eye in

Fig. 1(c). We further find different initial superconducting

gaps D0 at zero field, all of which are smaller than the super-

conducting bulk gap of V (D0;bulk ¼ 820 l eV at T ¼ 0 K).31

This reduction might be explained by the influence of vana-

dium oxide at the tip surface, changes in the phonon disper-

sion, and correspondingly the electron-phonon interaction, or

grain size effects within the material.32–34 The parameter C
obtained by fitting the experimental spectra within the EMM

is shown in Fig. 1(d), where ~C ¼ C=D is plotted as a func-

tion of the external magnetic field. The values of ~C increase

monotonically with the field for all V tips. Both ~C as well as

the rate of change d~C=dB depend on the specific tip, indicat-

ing that C is correlated with the specific geometry of each

tip.

For a quantitative description of the non-uniform super-

conducting state in the V tips, we employ a quasi-classical

approach based on the Usadel equation.35 This approach is

suitable for the polycrystalline V tips in the dirty limit, where

the electron mean free path l is smaller than the coherence

length. We model the STM tips as superconducting cones

with the opening angle a in an external magnetic field B
applied along the tip axis (z-direction) [see insets Figs. 2(a)

and 2(b)]. For sharp tips (a� 1), one can use the adiabatic

approximation neglecting variations perpendicular to the

cone axis.15 The resulting one-dimensional (1D) Usadel

equation is written in terms of the spectral angle h�ð~zÞ29,36

a=ac

3
ffiffiffi
2
p lBB �h00� �

2

~z
h0� þ ~z2 sin 2h�

� �
þ �6ilBBð Þsin h�

¼ D ~zð Þcos h�; (3)

where � is the imaginary Matsubara energy, ~z is the dimension-

less z-coordinate defined by ~z ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pBa=2U0

p
; U0 ¼ h=2e is

the superconducting flux quantum, and 6 refers to the spin ori-

entation. The critical angle ac (described in more detail below)

is defined as

ac ¼ ð2
ffiffiffi
2
p

=3ÞðclB=eDÞ ¼
ffiffiffi
2
p
ðm�=mÞ=ðkFlÞ � 1; (4)

FIG. 1. Superconducting vanadium STM tips in external magnetic fields. (a)

The dI/dV spectra are measured with a superconducting V tip on normal

conducting samples at 15 mK. With increasing external magnetic field, the

Zeeman splitting increases and the superconducting gap decreases. The lines

are fits based on the extended Maki model (EMM). (b) The spectral features

of another V tip appear much broader indicating the influence of the specific

tip geometry. (c) Superconducting gaps D (solid markers) and Zeeman

energy lBB (open markers) are fit results of several tips. The lines indicate

elliptic fits of the superconducting gaps at small B. (d) The reduced parame-

ter ~C ¼ C=D takes spectral broadening into account.
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with the speed of light c, the diffusion coefficient D, the

Fermi wave vector kF, the electron mass m, and the effective

mass m�. The order parameter Dð~zÞ is determined from the

self-consistency equation at T¼ 0

Dð~zÞ ¼ k Re

ð�hxD

0

sin h�ð~zÞ d�; (5)

where k is Cooper-channel interaction constant, and �hxD is the

Debye energy. The DOS is obtained by analytic continuation

q#"ðE; ~zÞ ¼ ðq0=2ÞsgnðEÞRe cos h6
�iEð~zÞ; (6)

where h6
� ð~zÞ refers to the spin orientation in Eq. (3). With

u6 ¼ �i coth h6, Eq. (6) generalizes Eq. (1) to a non-

uniform case.

Calculating the free energy of such a system reveals that

the nature of the quantum phase transition at the critical field

is determined by the ratio a=ac. While for small opening

angles a < ac (sharp tips), a first order phase transition with

abrupt disappearance of D at B¼Bc is expected, larger open-

ing angles a > ac (blunter tips) exhibit a second order phase

transition, with D continuously vanishing at B¼Bc.
29

In Figs. 2(a) and 2(b), the superconducting gap in a tip

with a=ac ¼ 0:4 and 3.2 is displayed, respectively, as a func-

tion of the dimensionless coordinate ~z. The figures show that

only the apex of the cone remains superconducting in an

external magnetic field B > Bc;bulk. Increasing the field

shrinks the superconducting region, which becomes more

confined to the apex. At a critical field Bc of 4.35 T in (a) and

1.27 T in (b), the superconducting gap vanishes and the

whole cone is normal conducting. This demonstrates a strong

influence of the confined geometry, i.e., the opening angle a.

The geometrical confinement also affects the quasi-particle

DOS measured in tunnel experiments. In Figs. 2(c) and 2(d),

the calculated quasi-particle DOS at the apex of a supercon-

ducting cone is displayed for a=ac ¼ 0:4 and 3.2, respec-

tively, for different external magnetic fields. The spectral

features are well-defined and the increasing Zeeman splitting

is clearly observable in (c), while in (d), the wider opening

angle results in broadened features with the spin-up and

spin-down contributions completely smeared out.

Due to the high computational cost related with the self-

consistency equation Eq. (5), the Usadel approach is unsuit-

able as fitting routine for the experimental dI/dV-spectra.

To establish the relation between the microscopic theory

and the phenomenological EMM, we employ the latter

(now with b ¼ f ¼ 0) to fit the calculated spectra [dashed

lines in Figs. 2(c) and 2(d)]. The superconducting gaps

obtained from the EMM fits match the results obtained

from the Usadel equation.

In Fig. 3(a), the magnetic field dependence of the super-

conducting gap D is presented for several superconducting

cones with varying opening angles 0:2 � a=ac � 4.

Increasing a=ac clearly decreases the critical field Bc of the

cone. More importantly, at the critical field, the ratio a=ac

determines the order of the superconducting phase transition.

Sharp cones with a=ac < 1 exhibit a first order phase transi-

tion to the normal state. For a=ac < 1, D only decreases

slowly up to the critical field where it abruptly vanishes and

the cone becomes normal. Blunter tips with a=ac > 1 (but

still a� 1) undergo a second order phase transition, in

which the superconducting gap continuously decreases to

zero. For a quantitative analysis of the spectral broadening,

Fig. 3(b) shows the reduced broadening parameter ~C ¼ C=D
of the calculated quasi-particle DOS fitted by the EMM as a

function of the magnetic field. For all cones with opening

angles 0:2 � a=ac � 4, the spectral broadening is well-

described by the phenomenological parameter C. More

importantly, the rate of change d~C=dB in the magnetic field

is also a function of the opening angle. When increasing

a=ac, the spectral broadening becomes more sensitive to the

external field, and therefore, the observation of features such

as coherence peaks split by the Zeeman energy is more

difficult.

For comparing the results obtained from the Usadel equa-

tion to our experimental findings in Fig. 4(a), we normalize

FIG. 2. Calculated superconductivity of cones with opening angle a in an

external magnetic field. (a) The apex of a sharp cone (a=ac ¼ 0:4) remains

superconducting for magnetic fields up to 4.35 T. (b) For a blunt cone

(a=ac ¼ 3:2), the superconducting part is more confined to the apex and the

critical field is smaller (Bc ¼ 1:27 T). (c) The DOS of the sharp tip

(a=ac ¼ 0:4) exhibits clear spectral features, and the lifted spin degeneracy

is clearly visible due to the Zeeman energy. (d) The DOS of the blunt tip

(a=ac ¼ 3:2) appears more broadened.

FIG. 3. Superconducting parameters extracted by the EMM fit of the Usadel

spectra. (a) The magnetic field dependence of the superconducting gap D is

determined by the opening angle a. For a=ac < 1, the phase transition is of

first order, and for a=ac > 1 a second order phase transition is observed. (b)

The spectral broadening is described by the parameter ~C ¼ C=D, which

increases with a.

122601-3 Eltschka et al. Appl. Phys. Lett. 107, 122601 (2015)



the measurements and calculations to the zero-field gaps D0

and critical fields Bc. The black line for a=ac ¼ 1 marks the

separation between phase transitions of first and second order.

The superconducting gaps of tip 1 lie in the region above the

separation line and, therefore, tip 1 undergoes a phase transi-

tion of first order. For tip 2, the classification of the phase tran-

sition is ambiguous, since it is too close to the line a=ac ¼ 1.

Tips 3–5 exhibit a second order phase transition as already

indicated by the continuously vanishing gaps [Fig. 1(c)]. In

Fig. 4(b), the rate of change d~C=d ~B in the normalized mag-

netic field ( ~B ¼ B=Bc) is calculated for the Usadel results at

lower magnetic fields (0:5Bc � B � 0:7Bc), where a linear

approximation is reasonable. The gray area indicates the

results obtained when shifting the fitting range to 0:45Bc � B
� 0:65Bc, respectively, to 0:55Bc � B � 0:75Bc and gives an

error estimation for this approach. d~C=d ~B is also extracted

from the fits of the experimental data for the similar field

range. Comparing the experimentally obtained values of

d~C=d ~B to the Usadel calculations [line in Fig. 4(b)] allows for

estimating an effective a=ac. This approach provides an addi-

tional independent parameter to characterize the order of the

superconducting phase transition. Again, it shows that tip 1

undergoes a first order phase transition, while tip 2 cannot

unambiguously be characterized. Tips 3–5 are clearly in the

regime with a=ac > 1 resulting in second order phase transi-

tions. Therefore, the behavior of the broadening parameter

confirms the characterization of the phase transition by the

superconducting gaps [Fig. 4(a)].

In conclusion, we have investigated the quantum phase

transitions of superconducting V STM tips of various geo-

metries in magnetic fields. Solving an effective 1D Usadel

equation, we have demonstrated the direct correlation of

the cone geometry and the order of the superconducting

phase transition: first order for very sharp tips (a < ac) and

second order for blunter tips (a > ac). Our microscopic

approach provides a physical interpretation for the experi-

mentally observed broadening of the dI/dV spectra and

sheds light on the origin of the phenomenological parame-

ter C introduced to fit the data by the very simple Maki

model. This parameter is not related to any pair-breaking

but is a formal way to remedy the inapplicability of the 0D

Maki model to systems with nonuniform superconductivity.

For experimental applications, a detailed understanding of

the superconductivity in the cone geometry is essential.

Our study facilitates the application of superconducting

STM tips in presence of an external magnetic field as addi-

tional tuning parameter, which enables techniques such as

Meservey-Tedrow-Fulde STM (MTF-STM) or Josephson

STM.15,16,18,37 Both techniques greatly benefit from clearly

distinguishable spectral dI/dV features, e.g., for resolving

the Zeeman splitting and probing absolute spin polarization

in MTF-STM. The combination of Josephson STM with

external magnetic fields enables a wide range of additional

experiments, such as single electron spin resonance meas-

urements.38 Our findings suggest that both techniques bene-

fit from superconducting tips with small opening angles

(a� 1) resulting in small broadening (C� D) and first

order phase transitions at high critical fields (Bc � Bc;bulk).
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