Density functional study of Pt metal, LiPt₂, LiPt and Li₂Pt

Jürgen Köhler

Max-Planck-Institut für Festköperforschung, Stuttgart, Germany *Changhoon Lee and Myung-Hwan Whangbo* Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Abstract

First principles density functional theory calculations were carried out for the series of metal-rich compounds, LiPt₂, LiPt and Li₂Pt, and elemental Pt as a comparison to probe the bonding picture that captures the essence of their electronic structures. Our analysis shows that the 5d-electron configuration of Pt in these compounds is close to $(5d)^{10}$, and the electrons released from the Li atoms in the Li/Pt binary compounds are delocalized among the Li⁺ and Pt⁰ atoms through the interactions of the Pt 5d orbitals of each Pt with the Pt 6s/6p of neighboring Pt atoms and the Li 2s/2p orbitals of neighboring Li atoms. The electron counting schemes best representing the electronic structures of Pt metal, LiPt₂, LiPt and Li₂Pt are Pt⁰ (d¹⁰), Li⁺[Pt⁰ (d¹⁰)](e⁻) and (Li⁺)₂[Pt⁰ (d¹⁰)](2e⁻), respectively, and hence the Pt atoms of the Li/Pt binary compounds exist as anions.