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Topological insulators and superconductors

1. Topological band theory
- What is topology?
- SSH model (polyacetylene)
- Chern insulator and IQHE

2. Topological insulators w/ time-reversal symmetry
- Quantum spin Hall state
- Zo invariants in 2D & 3D

3. Topological superconductors
- Topological superconductors in 1D & 2D
- Topological superconductors w/ TRS

4. Classification scheme and topological semi-metals
- Tenfold classification of Tls and SCs
- Topological semi-metals and nodal superconductors
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Lecture One: Topological band theory

1. Introduction

- What is topology?
- Bloch theorem
- Topological band theory

2. Topological insulators in 1D

- Berry phase

- Simple example: Two-level system

- Polyacetylene (Su-Schrieffer-Heeger model)
- Domain wall states

3. Chern insulator and IQHE
- Integer quantum Hall effect
- Chern insulator on square lattice
- Topological invariant



What is topology?

The study of geometric properties that are insensitive to smooth deformations

For example, consider two-dimensional surfaces in three-dimensional space

Closed surfaces are characterized by their genus g = # holes

g=0

» Topological equivalence:
Two surfaces are equivalent if they can be continuously
deformed into one another without cutting a hole.

p» topological equivalence classes distinguished by genus g (topological invariant)

topological invariant
Gauss-Bonnet Theorem

Genus can be expressed in terms of an integral / kdA = 47T(1 _ g)/
of the Gauss curvature over the surface g



Band theory of solids and topology

Bloch’s theorem: consider electron wavefunction in periodic crystal potential
crystal momentum

Electron wavefunction in crystal  [1,) = ™" |u,(k)) ~._<— Bloch wavefunction
has periodicity of potential

Bloch Hamiltonian ~ H (k) = e~ *" He™*" H(k) |u,(k)) = En(k) |un(k))
ky
A
T/a
k ¢ Brillouin Zone — —Tar> k, =
—7/a
Band structure defines a mapping: \ /
Brilloyi , C H(k Hamiltonians 4 I gap
riiouin zone 1 ? (k) it energy gap 5| LAY
()
Topological equivalence: G N
o —— |
Band structures are equivalent if they can be continuously —/a m/a

>

deformed into one another without closing the energy gap Momentum &



Topological band theory

e Consider band structure with a gap: N\ Dy
H (k) [un (k) = (k) lu, (k) I /\I gap
>
— band insulator: ErF between conduction and valence bands L‘:ZJ’
— superconductor: band structure of Bogoliubov quasiparticles lﬁ
—7/a m/a

e Topological equivalence: >

crystal momentum k..

Two band structures are equivalent if they can be continuously
deformed into one another without closing the energy gap

and without breaking the symmetries of the band structure.

> symmetries to consider:

— particle-hole symmetry, time-reversal symmetry
— reflection symmetry, rotation symmetry, etc.

> top. equivalence classes distinguished by: v Berry curvature

topological invariant (e.g. Chern no): nz = QL /]—“dk c Z
70

filled
states



Topological band theory

e Consider band structure with a gap: N\
H(k) [un(K)) = By (k) [un (k) ! I gap
>
— band insulator. ErF between conduction and valence bands L‘:ZJ’
— superconductor: band structure of Bogoliubov quasiparticles lﬁ
—7/a m/a

e Topological equivalence: >

crystal momentum k..

Two band structures are equivalent if they can be continuously
deformed into one another without closing the energy gap

and without breaking the symmetries of the band structure.

> symmetries to consider:

— particle-hole symmetry, time-reversal symmetry
— reflection symmetry, rotation symmetry, etc.

> top. equivalence classes distinguished by: v Berry curvature

topological invariant (e.g. Chern no): nz = QL /]—“dk c Z
TC
filled
e Bulk-boundary correspondence: states

Inz| = # gapless edge states (or surface states)



Band theory and topology

Berry phase: l glu(k))
Phase ambiguity of wavefucntion |u(k)) — e"%* Ju(k))
U(1) fiber bundle: to each k attach fiber {g|u(k)) | g € U(1)} T u(k))

define Berry connection: (like EM vector potential)

under gauge transformation:
u(k)) — ¢ Ju(k)) = A=A+ Vi

Berry phase: (gauge invariant quantity)

. Yo = A - dk
change in phase on a closed loop C
s, s,
Berry curvature tensor: (gauge independent)  Fuv (k) = aTAu(k) iy A, (k)
7’ v
For3D: F = vkz X A F,ul/ — E,ul/fff Stokes: Yo = /f - dk
S

Topological invariants of band structures:

Topological property of insulating material Z Z / F 2
given by Chern number (or winding number): 2T



Berry phase for two-band model

Two-level Hamiltonian: H(k)=d(k) o = (dw +id,  —d, )

param. by spherical coord.: d(k) = |d|(sin 0 cos ¢, sin @ sin ¢, cos 6)

two eigenvectors with energies F, = 4 |d| (north pole gauge)

o= (T ) =T )

270 __ solid angle
Berry vector potential: (gauge dependent) swept out by d(k)
Ag =1 <u,;‘ Oy ‘u;> =0 Ay =1i(uy|0y |ug) = sin®(0/2)
sin 60
Berry curvature: (gauge independent)  Fopy = OgAy — 0pAp = ;
If d(k)depends on parameters k: Fr o = 5in 0 88((6’ ¢)) << Jacobian matrix
v 2 ki, k;

Simple example: d(k) = k

1 i 1 lid angl
F = 1k (monopole field) e = / Fop dbdd = (SWSSJ ot %ye ci(k))
S 2 :



Polyacetylene (Su-Schrieffer-Heeger model)

[Su, Schreiffer, Heeger 79]
Su-Schrieffer-Heeger model H H H H H H
describes polyacetylene [Csz]n ' i

Hamiltonian:

H = Z {(t +t)cly ep 4 (- 5t)cjf4i+1cBi + h.c.} Gap
phonons lead to Peierls instability — finite 0t . /\;ﬁ
two degenerate ground states: S i >

5t1>0 X, BN N S
SANER SIS T
< > >
ot <0 .\.¢.\'¢.\.¢.\'é.\. Momentum £k,
in momentum space:  H(k)=d(k) o = <hT(()k) h(Ok)>
d.(k) = (t + dt) + (t — 0t) cos k d, (k) = (t — ot)sink d.(k) =0

Sublattice symmetry: o H(k) + H(k)o, =0 —> d, =0 (energy spectrum is symmetric)

Energy spectrum: Ei = +|d| = £v2/t2 + (6t)2 + [t2 — (6t)2] cos k



Polyacetylene (Su-Schrieffer-Heeger model)

Gap
Su-Schrieffer-Heeger model describes polyacetylene [CyH,| Ei = 4|[d| j
5t>0 Xy 0B ‘N 1
\‘/A,i%.ﬂ,i'k'l%ﬁ/a\./ %. 5 /\i)
St <0 .\.é.\'/.\.4'\'/'\' L1 \I/
—m/a )7T/CL
_ 0 h(k) Momentum K,
H(k) =d(k) o = (hT(k) 0 > ;
Ayd(k) ot > 0 :
d.(k) = (t + dt) + (t — 0t) cos k — dy Berry phase 0
dy(k) = (t—6t)sink  d,(k) =0 i vy =0
Winding no: vy = — [ dkTr [¢~ " Okq] A 5t <0 -
27 d(k)
o h(k) 1 1 N C—\ )dw Berry phase 7T
Q()—W g(k): 5" — 5 m(S°) = — v = 1

Provided d, = O (required by sublattice symmetry) states
with 0t > 0 and 0t < 0 are topologically distinct



Domain Wall States in Polyacetylene

[Su, Schreiffer, Heeger 79]

Domain wall between different topological states [Jackiw, Rebbi]

has topologically protected zero-energy modes
P 9 y P 9y zero-energy state

f at domain wall
2NN
Effective low-energy continuum theory: (expand around kg = 7) k — —10,
H(z) = —i0,0, + m(z)o, m(z) = 24t

Dirac Hamiltonian with a mass:  E(q) = £1/¢2 + m?2
Sublattice symmetry (“chiral symmetry”): {o,,H} =0 — 0. |vEg) = |V_E)

Consider domain wall:
xT / /
zero-energy state  Ansatz for boundstate: 1y = ye™ Jo m(a")dx

m >0 4; at domain wall

N

H%:OiX:G))

m <0
v =20 v =1

Bulk-boundary correspondence: Av = |vr — vp| = # zero modes (topological invariant
characterizing domain wall)



