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Lecture Two: Chern insulator & Quantum spin Hall state

1. Chern insulator and IQHE 1’ {
- Integer quantum Hall effect e
- Chern insulator on square lattice '

- Topological invariant

2. Quantum spin Hall state

- Time reversal symmetry
- QSH state on square lattice )
- Z> surface invariant & Z2 bulk invariant _

[picture courtesy S. Zhang et al.]



The Integer Quantum Hall State

Integer Quantum Hall State: [von Klitzing ‘80]
First example of 2D topological material
- 2D electron gas in large magnetic field, at low T >
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The Integer Quantum Hall State

What causes the precise quantization in IQHE? Ié
Explanation One: Edge state transport m
IQHE has an energy gap in the bulk:

— charge cannot flow in bulk; only along 1D channels at edges (chiral edge states)

— chiral edge state cannot be localized by disorder (no backscattering)
— edge states are perfect charge conductor!

Explanation Two: Topological band theory

Distinction between the integer quantum Hall state and a conventional insulator
IS a topological property of the band structure [Thouless et al, 84]

H(k) :  Brillouin zone I > Hamiltonians with energy gap
Classified by Chern number: ™= 5~ > / Fd’k (= topological invariant) n € Z

states

2
Kubo formula: 72y = h 27T /]:d

filled
states

=== does not change under smooth deformations, as long as bulk energy gap is not closed



Bulk-boundary correspondence
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Bulk-boundary correspondence:

Zero-energy states must exist at the interface
between two different topological phases

Follows from the quantization of the topological invariant

An = |nL _ "’LR| = number or edge modes

Stable gapless edge states:

e robust to smooth deformations
(respect symmetries of the system)

* insensitive to disorder, impossible to localize

e cannot exist in a purely 1D system
(Fermion doubling theorem)

Zero-energy state at interface
n=1
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Chern insulator (“integer quantum Hall state on a lattice”)

Experimental realization: Cr-doped (Bi,Sb)zTes [D. Haldane PRL '88] [Chang et al. Science "13]
Tight-binding model:  H¢y = (Ci,k c;f?,k) Her (ZSE) Heor =d(k) -7 + eog(k)og
p,

d.(k) =sink, dy(k)=sink, d.(k) =(2+4+ M — cos k, — cosk,)

Ei =+|d(k)| Spectrum flattening:  d(k) = % :
"k
trivial phase non-trivial phase
d
—4 < M <0
ny = +1 chiral edge state
Ay
y
no edge state chiral edge state
2
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Chern number: nyz = — d*k e"’d - [Gkud X 8kud} quantized Hall effect 0, = ﬁn
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Mapping  d(k) : Brillouin zone | s> d(k) € S? “my(9%) =77




Chern insulator (“integer quantum Hall state on a lattice”)

Experimental realization: Cr-doped (Bi,Sb)2Tes [D. Haldane PRL ’88] [Chang et al. Science "13]
Tight-binding model:  H¢y = (ci’k c;f?,k) Her (ZSE) Heor =d(k) -7 + eog(k)og
p,

d.(k) =sink, dy(k)=sink, d.(k) =(2+4+ M — cos k, — cosk,)

Ey = £]d(k)| Spectrum flattening:  d(k) = % E
Texture of unit vector d(k) k
trivial phase non-trivial phase




Chern insulator on square lattice

Chern insulator on square lattice: Hcp = d(k) - & + eg(k)og

d.(k) =sink, dy(k)=sink, d,(k) =(2+ M — cosk, — cos k)
Effective low-energy continuum theory for M=0: (expand around k = 0; 0 term can be neglected)

Hcr = kyop + kyoy + Mo,

two eigenfunctions with energies: Fi = +)\ = +/k2 + M2

| I _ 1 —ky + ik,
u) = (52ar)  lmo= Nt
VIO M) \A-M V2AA+ M) AT

M

Berry curvature:  Fyy = Ok, Ak, — Ok, Ak, = +533
zero-energy state

gives nonzero Chern number n — 1 d?k Fp, = lsgn(M) T bounan
(= Hall conductance o,,,) 27 2 A;

<IN

n=>0 n =1

NB: Chern number must be integer for integrals over compact manifolds.
Proper regularization of Dirac Hamiltonian will lead to n € Z

Chiral edge state at boundary between o = 1 ( 1 ) otkyy o= Jo M(z")da’

two Chern insulators with different 71 ﬁ —1



Experimental realisation of Chern insulator

_ [Chang et al. Science ’13]
» Cr-doped (Bi,Sb)2Tes

— Thin layer of topological insulator, o .
. . e lowest sub-bands
which has helical surface states A with broken TRS .- @ ___ Fermi lovel

— States on top surface are gapped out
by finite size quantization

— Time-reversal symmetry is broken by
magnetic ad-atoms (Cr or V)
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Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field
dependence of p,, at V. (B) Magnetic field dependence of p,, at V/;. The blue and red lines in (A) and
(B) indicate the data taken with increasing and decreasing fields, respectively.



Quantum spin Hall state

[picture courtesy S. Zhang et al.]



Time-reversal symmetry & Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants [Kane-Mele, PRL 05]
®: t——-t, k— -k St -8

Time-reversal symmetry implemented by anti-unitary operator:

complex conju- o
O = UT/C — eiwgy/hlc gation operator 8 w _ e’Lﬂ'S /hw*

For quadratic Hamiltonians in momentum space: OH(k)O~! = +H(—k)

V1 vy

1
For spin-= particles: ©?=—-1 Ut = —UTT O =10,K © ( ) = < *>
2 wi _¢¢

Kramers theorem (for spin-1/2 particles): 0% = —1 = (Y|0y) = —(|OyY) =0

—> all eigenstates are at least two-fold degenerate

—> for Bloch functions in k-space:
lu(k)) and |u(—k)) have same energy; degeneracy at TRI momenta

Consequences for edge states: A v
>
— states at time-reversal invariant momenta are degenerate S
— crossing of edge states is protected 0

— absence of backscattering from non-magnetic impurities
-7 0 +JT



Time-reversal-invariant topological insulator

[Bernevig, Hughes, Zhang 2006]

2D topological insulator
[Kane-Mele, PRL 05]

(also known as Quantum Spin Hall insulator)

2D Bloch Hamiltonians in the presence of time-reversal symmetry:

OH(k)O ' = +H(—k) O =ir,®1K 0% — 1

Simplest model: H(ky k) = Hy 0\ (Hci(k) 0
(Chern insulator)? oYe 0 Hy) oo 0 H(—k)

Sz is conserved
edge band structure:

o o/ ‘n {

>

spin up

spin down

Enerqgy

lattice momentum
Bulk energy gap but gapless edge: Spin filtered edge states

— protected by time-reversal symmetry

— half an ordinary 1D electron gas
— Is realized in certain band insulators with strong spin-orbit coupling



TRI topological insulator: HgTe quantum wells

i ’ _HgTe

d < 6.3 nm: Normal band order d > 6.3 nm: Inverted band order

s band ' >< P ba,
band
’ Band inversion s band
transition

v = 0 : conventional insulator v = 1 : topological insulator

P observed in HgTe/(Hg,Cd) quantum wells

[Bernevig, Hughes, Zhang Science 2006] d

[M. Koenig, Buhmann,
Mohlenkamp, et al., Science 2007]




TRI topological insulator: HgTe quantum wells

[M. Koenig, Buhmann,
} observed in HgTe/(Hg,Cd) quantum wells Mohlenkamp, et al., Science 2007]

Measured conductance: 2¢?/h for short samples L < Lmag, Lis
(two terminal conductance)

d<6.3 nm G =001 02/h
normal band order: 107k helical edge states:
trivial ~—
106:_T= 30 mK l <
S :
8 \ V R topological insulator
o 10 G =0.3 e2/h :
d> 6.3 nm /104-—? 7 \ G=2e2%h 3 t = = |
inverted band order: f \ ]
topological Ry T RN Y.
(Vg = Vinr) /V

Helical edge states are unique 1D electron conductor

e spin and momentum are locked
e no elastic backscattering from non-magnetic impurities
e perfect spin conductor!



2D topological insulator: Edge Z> invariant

Time-reversal invariant insulators with @2 = —1

are classified by a Z, topological invariant (v =0,1)

[Kane Mele 05]

OH(K)O " = +H(—k)

This can be understood via the bulk-boundary correspondence:

— consider edge states in half of the edge Brillouin zone (other half is related by TRS)

Edge Z: invariant:

v = (0 : conventional insulator

Conduction band

 [—

Energy

at TRI momenta

E¢
Kramers degenerate_ S Q

Valence band

k=0 k=

trivial phase
even # Dirac cones

OR

Edge Z5 invariant distinguishes between
even / odd number of Kramers pairs of edge states

Energy

v = 1 : topological insulator

Conduction band
E¢
§ Dirac cone
Valence band
k=0 k=1

non-trivial phase
odd # Dirac cones

[after Hasan & Kane, RMP 2010]



2D topological insulator: First bulk Z> invariant

Bulk Z> invariant as an obstruction to define a “TR-smooth gauge”:

— Jul? (k)) and |u{?) (k)) denote gauge choices in the two EBZs
— TR-smooth gauge: |u1)(—k)) = O|u?) (k))

[Kane Mele 05]
[Fu and Kane]

=> consider anti-symmetric “t-matrix”: tmn (k) = (ur, (k)| O |u,

(k))

antisymmetry property: ' (k) = —t(k)

(Pf [w(Aq)])?

—> Pfaffian can be defined: Pf [t(k)] e.g.. Pf (_OZ S) =2 = det [w(Aq)]
» Zeroes of Pf [t(k)]| occurin
isolated points, carry phase winding AL A3.
P Due to time-reversal symmetry: A A, ke
(i) |Pflt(k)]| = |Pf[t(—k)]| = zeros come in pairs | 4
(ii) At TRI momenta A, we have |Pf[t(A,)]| =1 EBZ

= zeros cannot be brought to TRI momenta



2D topological insulator: First bulk Z> invariant

Topological invariant = number or zeros of Pf |[t(k)] in EBZ modulo 2

conventional insulator topological insulator

g dk - V log (Pf [(u;, (k)[©]u, (k)]) mod 2
21 ) 5(EBZ)

It follows from bulk-boundary correspondence: edge Z- invariant = bulk Z> invariant



2D topological insulator: Second bulk Z> invariant

[Kane Mele 05]

Bulk Z> invariant as an obstruction to define a “TR-smooth gauge”:
[Fu and Kane]

— |ul? (k)) and |u{? (k)) denote gauge choices in the two EBZs
— TR-smooth gauge: |u1)(—k)) = O|u?) (k))

—> consider unitary sewing matrix:

Wmn (k) = (u,,(—k)|Ou, (k))

antisymmetry property: wl (k) = —w(—k)
at TRl momenta: A, = —A, = wT(Aa) — —w(Aa) IS antisymmetric
—> Pfaffian can be defined:  Pf [w(A,)] e.g.. Pf (_OZ g) =z

but smooth

(_1)1/ _ H Pt [W(Aa)] 41 (gauge invariant,
a=1 \/det [w(Aa)] gauge needed)

Bulk Z, invariant (= 0,1):

It follows from bulk-boundary correspondence: edge Z: invariant = bulk Z> invariant



2D topological insulator: Bulk Z2 invariants

Three equivalent definitions for bulk Z, topological invariant:

4

Pt [w(A, (gauge invariant,
(A) in terms of sewing matrix: (—1)" = H ©WAo)] _ +1|  butsmooth
a=1 \/ det [W(Aa gauge needed)

SeWing matrix: Wmn (k) — <ufr_n (_k) ‘@‘uT_L (k)> gs;rr::’[ea"[;?g Z?'?’F?In:;omenta)

(B) count number of zeroes of Pf |(u., (k)|®|u, (k)| inEBZ

= L dk - V log (Pf [(u.,(k)[O]u; (k)]) mod 2
2T Jo(®BZ) N /

Y

A

(antisymmetric at all momenta,
but not unitary)

(C) in terms of Berry connection:
1

u——[j{ dk - A — ko]:]mod 2
2m d(EBZ) EBZ




