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2. Quantum spin Hall state
- Time reversal symmetry
- QSH state on square lattice
- Z2 surface invariant & Z2 bulk invariant

[picture courtesy S. Zhang et al.]

Lecture Two: Chern insulator & Quantum spin Hall state

1. Chern insulator and IQHE 
- Integer quantum Hall effect
- Chern insulator on square lattice
- Topological invariant



Edge states

• There is a gapless chiral edge mode along the sample
boundary.
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Effective field theory
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domain wall fermion

Robust against disorder (chiral fermions cannot be backscattered)

First example of 2D topological material
- 2D electron gas in large magnetic field, at low T

- There is an energy gap, but it is not an insulator

2D cyclotron motion 
Landau levels

 Quantized Hall conductivity:
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1 frist chapter

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (1)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (2)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (3)

Θ2 Ξ2 Π2 (4)

Interaction Hamiltonian

Sint =
g2
ph

2

∫

dx dx′ρ(x)D(x − x′)ρ(x′)

+
g2
sf

2

∫

dx dx′si(x)Dij(x − x′)sj(x
′) (5)

1. f-Summenregel

Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward

[von Klitzing ‘80]

The Integer Quantum Hall State
Integer Quantum Hall State: 
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Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward
bend, while those with longer pulse widths an upward one. The curve with τp = τl lies in
between these two regimes and marks the reach of full effectiveness of the single-photon
processes. At relatively high integrated intensity, all downward bending curves (τp ≤ τl)
show a more or less sharp upward bend before reaching zero. Instead, upward bending
curves (τp > τl) tend to flatten before reaching zero and to saturate for pulse widths
larger than 4τl with increasing A2

0τp. This occurs because long pump pulses create sharp

En
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gy
- Plateaus in resistivity
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The Integer Quantum Hall State

— chiral edge state cannot be localized by disorder (no backscattering)

— charge cannot flow in bulk; only along 1D channels at edges (chiral edge states)

Edge states

• There is a gapless chiral edge mode along the sample
boundary.
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Effective field theory
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domain wall fermion

Robust against disorder (chiral fermions cannot be backscattered)

IQHE has an energy gap in the bulk:

Explanation One:

Explanation Two:

Edge state transport

Topological band theory
Distinction between the integer quantum Hall state and a conventional insulator 
is a topological property of the band structure
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Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump

Hamiltonians with energy gap

What causes the precise quantization in IQHE?

Brillouin zone
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Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (2)

γC =

∮

C

A · dk (3)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(4)
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n
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Classified by Chern number:  (= topological invariant)

[Thouless et al, 84]
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does not change under smooth deformations, as long as bulk energy gap is not closed
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Chern number

n =
i

2π

∫

F dk filled states (1)

Gauss:
∫

S

κ dA = 4π(1 − g) (2)

Thermal Halll

κxy

T
=

π2k2
B

6h
n (3)

start labels

4s 3p 3s Egap − π/a + π/a (4)

end labels

H(k) (5)

and

W (k∥) = (6)

HBdG =

⎛

⎜

⎜

⎝

εk − gz
k

+∆s,k + ∆t,k ε∗⊥k
0

+∆s,k + ∆t,k −εk + gz
k

0 −ε∗⊥k

ε⊥k
0 εk + gz

k
−∆s,k + ∆t,k

0 −ε⊥k
−∆s,k + ∆t,k −εk − gz

k

⎞

⎟

⎟

⎠

, (7)

and

λL ≫ ξ0 ξ0 = !vF /(π∆0) (8)

(9)

λL > L ≫ ξ0 (10)

charge current operator

jy(x) =
iekF /β

2π!

√

λ̃2 + 1

∑

iωn,ν

+π/2
∫

−π/2

dθν sin θν ×

{

E

Ων
uνvν

(

ahe
ν,ν + aeh

ν,ν

)

e−2iqνx

}∣

∣

∣

∣

E→iωn

,

jl,y = +
e

!
t
∑

ky ,σ

sin ky c†lkyσclkyσ −
e

!
α

∑

ky

cos ky

(

c†lky↓clky↑ + c†lky↑clky↓

)

(10)

(11)

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich
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and

n =
i

2π

∑

∫

Fd2k (1)

|u(k)⟩ → eiφk |u(k)⟩ (2)

A → A + ∇kφk (3)

F = ∇k ×A (4)

γC =

∮

C

A · dk (5)

γC =

∫

S

Fd2k (6)

=⇒ (7)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (8)

(9)

H(k) = e−ikrHe+ikr (10)

(11)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (12)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (13)

majoranas

γ1 = ψ + ψ† (14)

γ2 = −i
(

ψ − ψ†
)

(15)

and

ψ = γ1 + iγ2 (16)

ψ† = γ1 − iγ2 (17)

and

γ2
i = 1 (18)

{γi, γj} = 2δij (19)

— edge states are perfect charge conductor!

⇥
xy

=
e2

h

i

2�

XZ
Fd2k
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∣

∣

∣
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Kubo formula: 



Follows from the quantization of the topological invariant.

Zero-energy states must exist at the interface 
between two different topological phases 

Bulk-boundary correspondence

smooth transition
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Zero-energy state at interface

Bulk-boundary correspondence: 
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and

n =
i

2π

∑

∫

Fd2k (1)

|u(k)⟩ → eiφk |u(k)⟩ (2)

A → A + ∇kφk (3)

F = ∇k ×A (4)

γC =

∮

C

A · dk (5)

γC =

∫

S

Fd2k (6)

=⇒ (7)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (8)

(9)

H(k) = e−ikrHe+ikr (10)

(11)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (12)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (13)

majoranas

γ1 = ψ + ψ† (14)

γ2 = −i
(

ψ − ψ†
)

(15)

and

ψ = γ1 + iγ2 (16)

ψ† = γ1 − iγ2 (17)

and

γ2
i = 1 (18)

{γi, γj} = 2δij (19)
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1 frist chapter

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (1)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (2)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (3)

Θ2 Ξ2 Π2 (4)

Interaction Hamiltonian

Sint =
g2
ph

2

∫

dx dx′ρ(x)D(x − x′)ρ(x′)

+
g2
sf

2

∫

dx dx′si(x)Dij(x − x′)sj(x
′) (5)

1. f-Summenregel

Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward

topological invariant

Stable gapless edge states:

= number or edge modes

IQHE: chiral Dirac Fermion
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and

E0 ky (1)
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γ2 = −i
(

ψ − ψ†
)
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and
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γ2
i = 1 (21)

{γi, γj} = 2δij (22)
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• robust to smooth deformations 
  (respect symmetries of the system)

• insensitive to disorder, impossible to localize

• cannot exist in a purely 1D system 
  (Fermion doubling theorem)

�n = |nL � nR|
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Chern insulator on square lattice
[D. Haldane PRL ’88]

Tight-binding model:

d
x

(k) = sin k
x

dy(k) = sin ky d
z

(k) = (2 +M � cos k
x

� cos k
y

)

Chern number:

Spectrum flattening:E± = ± |d(k)| d̂(k) =
d(k)

|d(k)|

no edge state

trivial phase 

dy
d
x

dz

chiral edge state

non-trivial phase 
dz

d
x

dy

quantized Hall effect �
xy

=
e2

h
n

HCI = d(k) · ~� + ✏0(k)�0

Chern insulator (“integer quantum Hall state on a lattice”)

 

 

E  

k 

�4 < M < 0

nZ = ±1 chiral edge statenZ = 0

nZ =
1

8⇡

Z

BZ
d2k ✏µ⌫ d̂ ·

h
@kµ d̂⇥ @k⌫ d̂

i

HCI =
⇣
c†s,k c†p,k

⌘
HCI

✓
cs,k
cp,k

◆Experimental realization: Cr-doped (Bi,Sb)2Te3 [Chang et al. Science ’13]

M > 0

Brillouin zone
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1 frist chapter

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (2)

γC =

∮

C

A · dk (3)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(4)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (7)

Θ2 Ξ2 Π2 (8)

Mapping d̂(k) : d̂(k) 2 S2
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energy spectrum Simple example Polyacethylene:

“⌅2(S
2) = ” H(k) = d(k) · � =

⌅
0 h(k)

h†(k) 0

⇧
(1)

and

[C2H2]n (2)

F =
1

2

k̂

k2
(3)

�C =

⌃

S

F�⌅ d⇤d⇧ = (4)

Fµ⇥ = ⇥µ⇥⇤F ⇤ (5)

F = ⇤k ⇥A (6)

d(k) = k (7)

�C =

⌃

S

F · dk (8)

Berry curvature tensor

Fµ⇥(k) =
⌃

⌃kµ
A⇥(k)� ⌃

⌃k⇥
Aµ(k) (9)

Berry curvature

Fki,kj =
sin ⇤

2

⌃(⇤,⇧)

⌃(ki, kj)
(10)

k d(k) (11)

F�⌅ = ⌃�A⌅ � ⌃⌅A� =
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2
(12)

Berry vector potential
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�
u�k
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⇥
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Experimental realisation of Chern insulator

levels nor an external magnetic field. This type
of QHE induced by spontaneous magnetization
is considered the quantized version of the con-
ventional (nonquantized) anomalous Hall effect
(AHE) discovered in 1881 (16). The quantized
Hall conductance is directly given by a topo-
logical characteristic of the band structure called
the first Chern number. Such insulators are called
Chern insulators.

One way to realize a Chern insulator is to start
from a time-reversal-invariant TI. These mate-
rials, whose topological properties are induced
by spin-orbit coupling, were experimentally re-
alized soon after the theoretical predictions in
both 2D and 3D systems (12, 13). Breaking the
TRS of a suitable TI (17) by introducing ferro-
magnetism can naturally lead to the quantum
anomalous Hall (QAH) effect (6–9, 11). By tuning
the Fermi level of the sample around the mag-
netically induced energy gap in the density of states,
one is expected to observe a plateau of Hall
conductance (sxy) of e

2/h and a vanishing lon-
gitudinal conductance (sxx) even at zero mag-
netic field [figure 14 of (7) and Fig. 1, A and B].

The QAH effect has been predicted to occur
by Mn doping of the 2D TI realized in HgTe
quantum wells (8); however, an external mag-
netic field was still required to align the Mn mo-
ments in order to realize the QAH effect (18). As
proposed in (9), due to the van Vleck mechanism
doping the Bi2Te3 family TIs with isovalent 3d
magnetic ions can lead to a ferromagnetic insu-
lator ground state and, for thin film systems, this
will further induce the QAH effect if the mag-
netic exchange field is perpendicular to the plane
and overcomes the semiconductor gap. Here, we
investigate thin films of Cr0.15(Bi0.1Sb0.9)1.85Te3
(19, 20) with a thickness of 5 quintuple layers
(QL), which are grown on dielectric SrTiO3 (111)
substrates by molecular beam epitaxy (MBE)
(20, 21) (fig. S1). With this composition, the
film is nearly charge neutral so that the chem-
ical potential can be fine-tuned to the electron- or
hole-conductive regime by a positive or nega-
tive gate voltage, respectively, applied on the
backside of the SrTiO3 substrate (20). The films
are manually cut into a Hall bar configuration
(Fig. 1C) for transport measurements. Varying
the width (from 50 mm to 200 mm) and the as-
pect ratio (from 1:1 to 2:1) of the Hall bar does
not influence the result. Figure 1D displays a
series of measurements, taken at different tem-
peratures, of the Hall resistance (ryx) of the sam-
ple in Fig. 1C, as a function of the magnetic field
(m0H). At high temperatures, ryx exhibits linear
magnetic field dependence due to the ordi-
nary Hall effect (OHE). The film mobility is
~760 cm2/Vs, as estimated from the measured
longitudinal sheet resistance (rxx) and the carrier
density determined from the OHE. The value is
much enhanced compared with the samples in
our previous study (20, 21), but still much lower
than that necessary for QHE (2, 3). With decreas-
ing temperature, ryx develops a hysteresis loop
characteristic of the AHE, induced by the ferro-

magnetic order in the film (22). The square-shaped
loop with large coercivity (Hc = 970 Oersted at
1.5 K) indicates a long-range ferromagnetic or-
der with out-of-plane magnetic anisotropy. The
Curie temperature is estimated to be ~15 K (Fig.
1D, inset) from the temperature dependence of
the zero field ryx that reflects spontaneous mag-
netization of the film.

Figure 2, A and C, shows the magnetic field
dependence of ryx and rxx, respectively, mea-
sured at T = 30 mK at different bottom-gate
voltages (Vgs). The shape and coercivity of the
ryx hysteresis loops (Fig. 2A) vary little with Vg,
thanks to the robust ferromagnetism probably

mediated by the van Vleck mechanism (9, 20).
In the magnetized states, ryx is nearly indepen-
dent of the magnetic field, suggesting perfect
ferromagnetic ordering and charge neutrality of
the sample. On the other hand, the AH resist-
ance (height of the loops) changes dramatically
with Vg, with a maximum value of h/e2 around
Vg = –1.5 V. The magnetoresistance (MR) curves
(Fig. 2C) exhibit the typical shape for a ferro-
magnetic material: two sharp symmetric peaks
at the coercive fields.

The Vg dependences of ryx and rxx at zero
field [labeled ryx(0) and rxx(0), respectively] are
plotted in Fig. 2B. The most important obser-

30 mK 30 mK

A B

V  = Vgg
0 V  = Vgg

0

Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field
dependence of ryx at Vg0. (B) Magnetic field dependence of rxx at Vg0. The blue and red lines in (A) and
(B) indicate the data taken with increasing and decreasing fields, respectively.

30 mK

30 mK

30 mK

30 mK

A B

C D

Fig. 2. The QAH effect measured at 30 mK. (A) Magnetic field dependence of ryx at different Vgs.
(B) Dependence of ryx(0) (empty blue squares) and rxx(0) (empty red circles) on Vg. (C) Magnetic field
dependence of rxx at different Vgs. (D) Dependence of sxy(0) (empty blue squares) and sxx(0) (empty
red circles) on Vg. The vertical purple dashed-dotted lines in (B) and (D) indicate the Vg for Vg0. A
complete set of the data is shown in fig. S3.
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Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau

REPORTS

1State Key Laboratory of Low-Dimensional Quantum Physics,
Department of Physics, Tsinghua University, Beijing 100084,
China. 2Beijing National Laboratory for Condensed Matter
Physics, Institute of Physics, The Chinese Academy of Sciences,
Beijing 100190, China. 3Department of Physics, Stanford Uni-
versity, Stanford, CA 94305–4045, USA.

*These authors contributed equally to this work.
†Corresponding author. E-mail: qkxue@mail.tsinghua.edu.cn
(Q.-K.X.); kehe@iphy.ac.cn (K.H.); yayuwang@tsinghua.edu.
cn (Y.W.)

Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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[Chang et al. Science ’13]
 Cr-doped (Bi,Sb)2Te3  

 
— Thin layer of topological insulator, 
which has helical surface states

— Time-reversal symmetry is broken by 
magnetic ad-atoms (Cr or V)

— States on top surface are gapped out 
by finite size quantization



 Quantum spin Hall state

[picture courtesy S. Zhang et al.]



Time-reversal symmetry & Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants 

Time-reversal symmetry implemented by anti-unitary operator:

[Kane-Mele, PRL 05]

For quadratic Hamiltonians in momentum space: 

Kramers theorem (for spin-1/2 particles):

� = UTK = ei�Ŝ
y/~K

complex conju-
gation operator �� = ei�Ŝ

y/~�⇤

For spin-    particles: 
1

2
�

✓
 "
 #

◆
=
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 ⇤
#

� ⇤
"

◆
� = i�yK�2 = �1

�H(k)��1 = +H(�k)
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⇥ ⇤ |� ⌅ = �⇤ |� ⌅ = 0

)

Consequences for edge states:  

UT = �UT
T

)
 have same energy; degeneracy at TRI momenta|u(k)⇥ and |u(�k)⇥

for Bloch functions in k-space:

— states at time-reversal invariant momenta are degenerate
— crossing of edge states is protected
— absence of backscattering from non-magnetic impurities

0-π +π
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gy

�2 = �1



2D topological insulator
(also known as Quantum Spin Hall insulator)

edge band structure:

0-π +π

En
er

gy

Bulk energy gap but gapless edge: Spin filtered edge states

[Kane-Mele, PRL 05]
[Bernevig, Hughes, Zhang 2006]

— protected by time-reversal symmetry
— half an ordinary 1D electron gas
— is realized in certain band insulators with strong spin-orbit coupling

Sz is conserved

FIG. 1: (color online). This is.

a

5

2D Bloch Hamiltonians in the presence of time-reversal symmetry:
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Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)
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∑
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H(k) :

H(k, k′)

kF > 1/ξ0
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K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (7)

Θ2 Ξ2 Π2 (8)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)

Time-reversal-invariant topological insulator

Simplest model:
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energy spectrum Simple example Polyacethylene:
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TRI topological insulator: HgTe quantum wells

 observed in HgTe/(Hg,Cd) quantum wells

[Bernevig, Hughes, Zhang Science 2006]

conventional insulator ⌫ = 0 : topological insulator⌫ = 1 :

Band inversion 
transition

E E

k k
s band

s bandp band

p band

d < 6.3 nm: Normal band order d > 6.3 nm: Inverted band order

[M. Koenig, Buhmann, 
Mohlenkamp, et al., Science 2007]

Hg
x

Cd1�x

Te

Hg
x

Cd1�x

Te

HgTe

d



Measured conductance:             for short samples L < Lmag, LIS

Although the four-band Dirac model (Eq. 1)
gives a simple qualitative understanding of
this novel phase transition, we also performed
more realistic and self-consistent eight-band
k·p model calculations (13) for a 6.5-nm quan-
tum well, with the fan chart of the Landau
levels displayed in Fig. 1B. The two anoma-
lous Landau levels cross at a critical magnetic
field Bc

⊥, which evidently depends on well
width. This implies that when a sample has its
Fermi energy in the gap at zero magnetic
field, this energy will always be crossed by
the two anomalous Landau levels, resulting in
a QH plateau in-between the two crossing
fields. Figure 3 summarizes the dependence
of Bc

⊥ on well width d. The open red squares
are experimental data points that result from
fitting the eight-band k·p model to experi-
mental data as in Fig. 1, while the filled red
triangles result solely from the k·p calcula-
tion. For reference, the calculated gap ener-
gies are also plotted in this graph as open
blue circles. The band inversion is reflected
in the sign change of the gap. For relatively
wide wells (d > 8.5 nm), the (inverted) gap

starts to decrease in magnitude. This is be-
cause for these well widths, the band gap no
longer occurs between the E1 and HH1 lev-
els, but rather between HH1 and HH2—the
second confined hole-like level, as schemat-
ically shown in the inset of Fig. 3 [see also
(17)]. Also in this regime, a band crossing of
conductance- (HH1) and valence- (HH2) band–
derived Landau levels occurs with increasing
magnetic field (13, 17, 18). Figure 3 clearly
illustrates the quantum phase transition that
occurs as a function of d in the HgTe QWs:
Only for d > dc does Bc

⊥ exist, and at the
same time the energy gap is negative (i.e.,
the band structure is inverted). The experimen-
tal data allow for a quite accurate determi-
nation of the critical thickness, yielding dc =
6.3 ± 0.1 nm.

Zero-field edge channels and the QSH
effect. The actual existence of edge channels
in insulating inverted QWs is only revealed
when studying smaller Hall bars [the typical
mobility of 105 cm2 V−1 s−1 in n-type material
implies an elastic mean free path of lmfp ≈
1 mm (19, 20)—and one may anticipate lower

mobilities in the nominally insulating regime].
The pertinent data are shown in Fig. 4, which
plots the zero B-field four-terminal resistance
R14,23 ≡ V23/I14 as a function of normalized gate
voltage (Vthr is defined as the voltage for which
the resistance is largest) for several devices that
are representative of the large number of
structures we investigated. R14,23 is measured
while the Fermi level in the device is scanned
through the gap. In the low-resistance regions at
positive Vg − Vthr, the sample is n-type; at
negative Vg − Vthr, the sample is p-type.

The black curve labeled I in Fig. 4 was
obtained from a medium-sized [(20.0 × 13.3)
mm2] device with a 5.5-nm QW and shows the
behavior we observe for all devices with a
normal band structure: When the Fermi level
is in the gap, R14,23 increases strongly and is
at least several tens of megohm (this is the de-
tection limit of the lock-in equipment used in
the experiment). This clearly is the expected
behavior for a conventional insulator. How-
ever, for all devices containing an inverted QW,
the resistance in the insulating regime remains
finite. R14,23 plateaus at well below 100 kilohm
(i.e., G14,23 = 0.3 e2/h) for the blue curve
labeled II, which is again for a (20.0 × 13.3)
mm2 device fabricated by optical lithography,
but that contains a 7.3-nm-wide QW. For much
shorter samples (L = 1.0 mm, green and red
curves III and IV) fabricated from the same
wafer, G14,23 actually reaches the predicted
value close to 2e2/h, demonstrating the exis-
tence of the QSH insulator state for inverted
HgTe QW structures.

Figure 4 includes data on two devices with
d = 7.3 nm, L = 1.0 mm. The green trace (III)
is from a device with W = 1.0 mm, and the red
trace (IV) corresponds to a device with W =
0.5 mm. Clearly, the residual resistance of the
devices does not depend on the width of the
structure, which indicates that the transport
occurs through edge channels (21). The traces
for the d = 7.3 nm, L = 1.0 mm devices do not
reach all the way into the p-region because the
electron-beam lithography needed to fabricate
the devices increases the intrinsic (Vg = 0 V)
carrier concentration. In addition, fluctuations
on the conductance plateaus in traces II, III,
and IV are reproducible and do not stem from,
e.g., electrical noise. Although all R14,23 traces
discussed so far were taken at the base
temperature (30 mK) of our dilution refriger-
ator, the conductance plateaus are not limited
to this very-low-temperature regime. In the
inset of Fig. 4, we reproduce the green 30-mK
trace III on a linear scale and compare it with
a trace (in black) taken at 1.8 K from another
(L × W) = (1.0 × 1.0) mm2 sample, which was
fabricated from the same wafer. In the fabrica-
tion of this sample, we used a lower-illumination
dose in the e-beam lithography, resulting in a
better (but still not quite complete) coverage of
the n-i-p transition. Clearly, in this further
sample, and at 1.8 K, the 2e2/h conductance

Fig. 3. Crossing field,
Bc⊥ (red triangles), and
energy gap, Eg (blue
open dots), as a func-
tion of QW width d
resulting from an eight-
band k·p calculation.
For well widths larger
than 6.3 nm, the QW is
inverted and a mid-gap
crossing of Landau levels
deriving from the HH1
conductance and E1 va-
lence band occurs at fi-
nite magnetic fields. The
experimentally observed
crossing points are in-
dicated by open red
squares. The inset shows
the energetic ordering of the QW subband structure as a function of QW width d. [See also (17)].
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TRI topological insulator: HgTe quantum wells

Helical edge states are unique 1D electron conductor

• spin and momentum are locked
• no elastic backscattering from non-magnetic impurities
• perfect spin conductor!

helical edge states:

topological insulator
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)

d < 6.3 nm 
normal band order:

trivial

d > 6.3 nm 
inverted band order:

topological

 observed in HgTe/(Hg,Cd) quantum wells

(two terminal conductance)

[M. Koenig, Buhmann, 
Mohlenkamp, et al., Science 2007]



2D topological insulator: Edge Z2 invariant

Valence band

Conduction  band

Ef

E
ne

rg
y

Momentum CA

trivial phase
even # Dirac cones

non-trivial phase
odd # Dirac cones

Conduction  band

Valence band

Momentum

Ef

E
ne

rg
y

A C

OR

Edge Z2 invariant distinguishes between 
even / odd number of Kramers pairs of edge states

Time-reversal invariant insulators with   
are classified by a Z2 topological invariant (   = 0,1)

This can be understood via the bulk-boundary correspondence:

[after Hasan & Kane, RMP 2010]
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Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)
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Kramers degenerate 
at TRI momenta
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Dirac cone
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Edge Z2 invariant: 

[Kane Mele 05]



e.g.: Pf

✓
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consider anti-symmetric “t-matrix”:)

antisymmetry property:

) Pfaffian can be defined:

(Pf [!(�a)])
2

= det [!(�a)]

[Kane Mele 05]
[Fu and Kane]

—                                       denote gauge choices in the two EBZs
— TR-smooth gauge: |u(1)

n (�k)⇥ = �|u(2)
n (k)⇥

|u(1)
n (k)� and |u(2)
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  Bulk Z2 invariant as an obstruction to define a “TR-smooth gauge”:
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Pf [t(k)]
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    isolated points, carry phase winding

2D topological insulator: First bulk Z2 invariant

 Due to time-reversal symmetry:

(i) |Pf[t(k)]| = |Pf[t(�k)]| ) zeros come in pairs

(ii) At TRI momenta ⇤a we have |Pf[t(⇤a)]| = 1

) zeros cannot be brought to TRI momenta

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)
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and

ψ = γ1 + iγ2 (4)
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|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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and time-reversal symmetry
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E0 ky (2)
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H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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It follows from bulk-boundary correspondence: edge Z2 invariant = bulk Z2 invariant
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2D topological insulator: Second bulk Z2 invariant

consider unitary sewing matrix:)
�mn(k) = ⇥u�

m(�k)|�|u�
n (k)⇤

antisymmetry property: !T (k) = �!(�k)

at TRI momenta: �a = ��a ) !T (�a) = �!(�a) is antisymmetric

) Pfaffian can be defined: Pf [!(�a)]
(Pf [!(�a)])

2

= det [!(�a)]

Bulk Z2 invariant (   = 0,1):⌫ (�1)� =
4Y

a=1

Pf [!(�a)]p
det [!(�a)]

= ±1
(gauge invariant, 
but smooth 
gauge needed)

[Kane Mele 05]
[Fu and Kane]

It follows from bulk-boundary correspondence: edge Z2 invariant = bulk Z2 invariant

—                                       denote gauge choices in the two EBZs
— TR-smooth gauge: |u(1)

n (�k)⇥ = �|u(2)
n (k)⇥

|u(1)
n (k)� and |u(2)

n (k)�

  Bulk Z2 invariant as an obstruction to define a “TR-smooth gauge”:
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h Λi Λ1 Λ2 Λ3 Λ4 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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2D topological insulator: Bulk Z2 invariants
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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=⇒ (11)
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ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)
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EBZ

Three equivalent definitions for bulk Z2 topological invariant: 
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1 frist chapter

ν =
1

2π

[
∮

∂(EBZ)

dk · A−
∫

EBZ

d2kF
]

mod 2 (1)

tages

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (2)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (3)

γC =

∮

C

A · dk (4)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(5)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

in terms of sewing matrix: (�1)� =
4Y

a=1

Pf [!(�a)]p
det [!(�a)]

= ±1
(gauge invariant, 
but smooth 
gauge needed)

�mn(k) = ⇥u�
m(�k)|�|u�

n (k)⇤

(B)

(C)

  count number of zeroes of                                            in EBZPf
⇥
�u�

m(k)|�|u�
n (k)

⇤

(A)

in terms of Berry connection:

I =
1

2�i

Z

�(EBZ)
dk ·⇥ log

�
Pf

⇥
�u�

m(k)|�|u�
n (k)

⇤�

(is unitary, and anti-
symmetric at TRI momenta)sewing matrix:

(antisymmetric at all momenta, 
but not unitary)

mod 2


