Crystalline topological semi-metals

Andreas P. Schnyder

Max Planck Institute for Solid State Research, Stuttgart

Review article: Rev. Mod. Phys. 88, 035005 (2016)

May 31st, 2017

IFIMAC Conference Series, Universidad Autonoma de Madrid, Spain

Outline

1. Introduction: Topological band theory

- Classification of crystalline topological materials
- 2. Topological nodal-line semimetals
 - Ca₃P₂, Zr₅Si₃
- 3. Quantum anomalies in nodal-line semimetals
 - Parity anomaly & anomalous transport
 - 4. Dirac line nodes w/ non-symmorphic symmetries
 - CuBi₂O₄
- 4. Conclusions & Outlook

٥. -0.05 --0.1 --0.15 --0.2 -0.25 0 0.57 $2\pi^{-0.5}$ κ_u

(a)

Energy (eV)

Review article: Rev. Mod. Phys. 88, 035005 (2016)

• Consider band structure: $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$

• (i) Topological equivalence for insulators:

Symmetries to consider: time-reversal symmetry, particle-hole, reflection, inversion (parity)

 \triangleright top. equivalence classes distinguished by:

$$n_{\mathbb{Z}} = \frac{i}{2\pi} \int \mathcal{F} d\mathbf{k} \in \mathbb{Z}$$
filled
states
topological invariant

• Consider band structure: $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$

• (i) Topological equivalence for insulators:

Symmetries to consider: time-reversal symmetry, particle-hole, reflection, inversion (parity)

 \triangleright top. equivalence classes distinguished by:

• Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)

$$n_{\mathbb{Z}} = \frac{i}{2\pi} \int \mathcal{F} d\mathbf{k} \in \mathbb{Z}$$
filled
states
topological invariant

- Consider band structure: $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$
- (ii) Topological equivalence for band crossings:

Symmetries to consider: time-reversal symmetry, particle-hole, reflection, inversion (parity)

 \triangleright top. equivalence classes distinguished by:

$$n_{\mathbb{Z}} = \frac{i}{2\pi} \int \mathcal{F} d\mathbf{k} \in \mathbb{Z}$$
filled
states
topological invariant

- Consider band structure: $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$
- (ii) Topological equivalence for band crossings:

Symmetries to consider: time-reversal symmetry, particle-hole, reflection, inversion (parity)

 \triangleright top. equivalence classes distinguished by:

• Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)

$$n_{\mathbb{Z}} = \frac{i}{2\pi} \int \mathcal{F} d\mathbf{k} \in \mathbb{Z}$$
filled topological invariant states

Reflection symmetry

Consider reflection R:
$$x \to -x$$

$$\label{eq:relation} \begin{split} R^{-1}\mathcal{H}(-k_x,k_y,k_z)R &= \mathcal{H}(k_x,k_y,k_z) \\ \text{with} \quad R = s_x \end{split}$$

— w.l.o.g.: eigenvalues of $R \in \{-1, +1\}$

mirror Chern number:

 $k_x = 0 \implies \mathcal{H}(0, k_y, k_z)R - R\mathcal{H}(0, k_y, k_z) = 0$

– project $\mathcal{H}(0,k_y,k_z)$ onto eigenspaces of $R\colon \mathcal{H}_{\pm}(k_y,k_z)$

$$n_{\mathcal{M}}^{\pm} = \frac{1}{4\pi} \int_{2\text{D}BZ} \mathcal{F}_{\pm} d^{2}\mathbf{k}$$
Berry curvature in \pm eigenspace

- total Chern number: $n_{\mathcal{M}} = n_{\mathcal{M}}^+ + n_{\mathcal{M}}^-$

- mirror Chern number: $n_{\mathcal{M}} = n_{\mathcal{M}}^+ - n_{\mathcal{M}}^-$

Teo, Fu, Kane PRB '08

Reflection symmetry

Consider reflection R:
$$x \to -x$$

$$\label{eq:relation} \begin{split} R^{-1}\mathcal{H}(-k_x,k_y,k_z)R &= \mathcal{H}(k_x,k_y,k_z) \\ \text{with} \quad R = s_x \end{split}$$

— w.l.o.g.: eigenvalues of $R \in \{-1, +1\}$

mirror Chern number:

 $k_x = 0 \implies \mathcal{H}(0, k_y, k_z)R - R\mathcal{H}(0, k_y, k_z) = 0$

— project $\mathcal{H}(0,k_y,k_z)$ onto eigenspaces of $R\colon \mathcal{H}_{\pm}(k_y,k_z)$

$$n_{\mathcal{M}}^{\pm} = \frac{1}{4\pi} \int_{2\mathrm{D}\,\mathrm{BZ}} \mathcal{F}_{\pm} d^{2}\mathbf{k}$$
Berry curvature in \pm eigenspace

- total Chern number: $n_{\mathcal{M}} = n_{\mathcal{M}}^+ + n_{\mathcal{M}}^-$

— mirror Chern number:
$$n_{\mathcal{M}} = n_{\mathcal{M}}^+ - n_{\mathcal{M}}^-$$

Bulk-boundary correspondence:

 zero-energy states on surfaces that are left invariant under the mirror symmetry

Teo, Fu, Kane PRB '08


```
R_+: R commutes with T (C or S)
```

 R_{-} : R anti-commutes with T (C or S)

PRB 90, 205136 (2014); PRL 116, 156402 (2016)

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

	TI/TSC
Reflection	FS1
	FS2
R	A
R_+	AIII
R_{-}	AIII
	AI
	BDI
	D
R_{+}, R_{++}	DIII
	AII
	CII
	C
	CI
	AI
	BDI
	D
$R_{-}, R_{}$	DIII
	AII
	CII
	C
	CI
R_{-+}	BDI, CII
R_{+-}	DIII, CI
R_{+-}	BDI
R_{-+}	DIII
R_{+-}	CII
R_{-+}	CI

For which symmetry class and dimension is there a topological insulator or topological semi-metal protected by reflection symmetry?

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

	TI/TSC	d=1	d=2	d=3	d=4	d=5	d=6	d=7	d=8
Reflection	FS1	p=8	p=1	p=2	p=3	p=4	p=5	p=6	p=7
	FS2	<i>p</i> =2	p=3	p=4	p=5	p=6	p=7	p=8	<i>p</i> =1
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
R_+,R_{++}	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	C	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2
$R_{-},R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	C	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	2Z	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

PRB 90, 205136 (2014)

PRL 116, 156402 (2016)

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

	TI/TSC	d=1	d=2	d=3	d=4	d=5	d=6	d=7	d=8
Reflection	FS1	p=8	p=1	p=2	p=3	p=4	p=5	p=6	p=7
	FS2	<i>p</i> =2	p=3	p=4	p=5	p=6	p=7	p=8	<i>p</i> =1
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	ME	Ο	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	<u> </u>		0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	M2	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	graphe	ne 0	0	0	$2M\mathbb{Z}$	0
R_{+}, R_{++}	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	C	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_{2}$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0	BC	a₃PbO	, Sr₃Pb	$lacksquare{0}$ $\mathbb{C}\mathbb{Z}_2$	\mathbb{Z}_2
$R_{-},R_{}$	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0 -	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	C	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

PRB 90, 205136 (2014)

PRL 116, 156402 (2016)

Reduction of classification with interactions

 R_+ : R commutes with T (C or S) R_- : R anti-commutes with T (C or S)

			$D = 8n + d, n = 0, 1, 2 \cdots$							
Ref.	Class	Clifford Algebra	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4	<i>d</i> = 5	<i>d</i> = 6	<i>d</i> = 7	<i>d</i> = 8
R	A	Cl_{d+2}/Cl_{d+2}	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0	$\mathbb{Z}_{2^{4n+5}}$	0
R_+	AⅢ	Cl_{d+3}/Cl_{d+3}	0	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0	$\mathbb{Z}_{2^{4n+5}}$
R_{-}	A∎	Cl_{d+2}/Cl_{d+2}	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0	$\mathbb{Z}_{2^{4n+5}}$	0
	AI	$Cl_{2,d+2}/Cl_{2,d+2}$	$\mathbb{Z}_{2^{4n+2}}$	0	0	0	$\mathbb{Z}_{2^{4n+3}}$	0	\mathbb{Z}_2	\mathbb{Z}_2
	BDI	$Cl_{d+1,4}/Cl_{2,d+1}$	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$	0	\mathbb{Z}_2
	D	$Cl_{d,4}/Cl_{2,d}$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0	$\mathbb{Z}_{2^{4n+5}}$	0
R	D∎	$Cl_{d,5}/Cl_{3,d}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0	$\mathbb{Z}_{2^{4n+5}}$
I (+)	AI	$Cl_{4,d}/Cl_{4,d}$	$\mathbb{Z}_{2^{4n+1}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0
	CI	$Cl_{d+3,2}/Cl_{5,d}$	0	$\mathbb{Z}_{2^{4n+1}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0
	C	$Cl_{2+d,2}/Cl_{d+3,1}$	0	0	$\mathbb{Z}_{2^{4n+2}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+5}}$	0
	CI	$Cl_{2+d,3}/Cl_{2,d+3}$	0	0	0	$\mathbb{Z}_{2^{4n+2}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+5}}$
	AI	$Cl_{1,d+3}/Cl_{1,d+3}$	0	0	$\mathbb{Z}_{2^{4n+2}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+5}}$	0
	BDI	$Cl_{2+d,3}/Cl_{1,d+2}$	0	0	0	$\mathbb{Z}_{2^{4n+3}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+6}}$
	D	$Cl_{d+1,3}/Cl_{1,d+1}$	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$	0	\mathbb{Z}_2	\mathbb{Z}_2
R	D∎	$Cl_{d+1,4}/Cl_{2,d+1}$	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$	0	\mathbb{Z}_2
Λ_(-)	AI	$Cl_{3,d+1}/Cl_{3,d+1}$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$	0
	CI	$Cl_{d+4,1}/Cl_{4,d+1}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$
	C	$Cl_{3+d,1}/Cl_{d+2,2}$	$\mathbb{Z}_{2^{4n+1}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0
	CI	$Cl_{d+3,2}/Cl_{1,d+4}$	0	$\mathbb{Z}_{2^{4n+1}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0
R_{-+}	BDI	Cl_{d+4}/Cl_{d+2}	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0	$\mathbb{Z}_{2^{4n+5}}$	0
R_{-+}		Cl_{d+4}/Cl_{d+4}	$\mathbb{Z}_{2^{4n+1}}$	0	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0
R_{+-}	D∎	Cl_{d+4}/Cl_{d+2}	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0	$\mathbb{Z}_{2^{4n+5}}$	0
<i>R</i> ₊₋	CI	Cl_{d+4}/Cl_{d+4}	$\mathbb{Z}_{2^{4n+1}}$	0	$\mathbb{Z}_{2^{4n+2}}$	0	$\mathbb{Z}_{2^{4n+3}}$	0	$\mathbb{Z}_{2^{4n+4}}$	0
R_{+-}	BDI	$Cl_{d+1,3}/Cl_{1,d+1}$	$\mathbb{Z}_{2^{4n+3}}$	0	0	0	$\mathbb{Z}_{2^{4n+4}}$	0	\mathbb{Z}_2	\mathbb{Z}_2
R_{+-}		$Cl_{d+3,1}/Cl_{4,d}$	$\mathbb{Z}_{2^{4n+1}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0
R_{-+}	D∎	$Cl_{d,4}/Cl_{2,d}$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+4}}$	0	0	0	$\mathbb{Z}_{2^{4n+5}}$	0
R_{-+}	CI	$Cl_{2+d,2}/Cl_{1,d+3}$	0	0	$\mathbb{Z}_{2^{4n+2}}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{2^{4n+5}}$	0

PRB 95, 195108 (2017)

Reduction of classification with interactions

 $U_+: U$ commutes with T(C or S) $U_-: U$ anti-commutes with T(C or S)

PRB 95, 195108 (2017)

2. Topological nodal line semi-metals

$Ca_{3}P_{2}$, $Zr_{5}Si_{3}$

dz2 🛖

IUPUIUSILAI IIUUAI IIIICO III UA3E2

Band structure:

charge balanced: $Ca^{2+} - P^{3-}$

- Orbital character of bands near E_F: (6 Ca atoms, 6 P atoms)
 - Ca: d_{z^2} orbitals from 6 Ca atoms
 - P: p_x orbitals from 6 P atoms

Crystal structure P6₃/mcm

Dirac ring within reflection plane

Chan, Chiu, Chou, Schnyder, Phys. Rev. B 93, 205132 (2016)

Topological nodal line: Mirror invariant

Topological nodal line: Berry phase in variant

Berry phase:

$$\mathcal{P}(k_{\parallel}) = -i \sum_{j \in \text{filled}} \int_{-\pi}^{\pi} \left\langle u_{k_{\perp}}^{(j)} \right| \partial k_{\perp} \left| u_{k_{\perp}}^{(j)} \right\rangle dk_{\perp}$$

- $\mathcal{P}(k_{\parallel})$ quantized to $\pi \Rightarrow$ stable line node

In Ca₃P₂ Berry phase is quantized due to:

(i) reflection symmetry $z \rightarrow -z$

(ii) inversion + time-reversal symmetry

Relation btw Berry phase & mirror invariant:

$$(-1)^{n_{\mathrm{occ}}^{+,0}(k)+n_{\mathrm{occ}}^{+,\pi}(k)}e^{i\partial R} = e^{i\mathcal{P}(k)}$$

ин -0.5

Еп

PRL 116, 156402 (2016) Phys. Rev. B 93, 205132 (2016)

Drumhead surface state and Berry

 $\overset{\mathbf{L}}{\boxminus}$ -1ш –0.5 -2 $-3^{\perp}_{\overline{\Gamma}}$ $\overline{\overline{M}}$, $\overline{\overline{K}}$ $\overline{\Gamma}$ 0.4 Berry phase (π) 0 0 |E| k_y $\overline{\mathbf{K}}$ $\overline{\mathbf{M}}$ Ē $\overline{\Gamma}$ Surface spectrum ⁰ Energy (eV)₀ 5.0 $\overline{\Gamma}$ M $\overline{\mathbf{M}}$

Phys. Rev. B /93(,12/05)132 (2016)

Drumhead surface state

Low-energy effective theory for Ca₃P₂

$$H_{\text{eff}}(\mathbf{k}) = (k_{\parallel}^2 - k_0^2)\tau_z + k_z\tau_y + f(\mathbf{k})\tau_0$$

symmetry operators:

- reflection: $R = \tau_z$ - time-reversal: $T = \tau_0 \mathcal{K}$ - inversion: $I = \tau_z$

even in k

Sap-opening term τ_x is symmetry forbidden:

- breaks reflection symmetry: $R^{-1}\tau_x R = -\tau_x$

- breaks PT symmetry: $(PT)^{-1}\tau_x(PT) = -\tau_x$

Low-energy effective theory for Ca₃P₂

• (PT)-symmetric:

 $(\tau_z \otimes \sigma_0 \mathcal{K})^{-1} \hat{m} (\tau_z \otimes \sigma_0 \mathcal{K}) = \hat{m} \implies \mathbb{Z}_2$ classification

• but breaks R:

 $(\tau_z \otimes \sigma_0)^{-1} \hat{m} (\tau_z \otimes \sigma_0) \neq \hat{m} \qquad \Rightarrow \mathbb{Z}$ classification

 \Rightarrow nodal line is stable

3. Anomaly in nodal line semi-metals

Quantum Anomaly:

Symmetry of classical action broken by regularization of quantum theory

Anomaly in topological semimetals:

Top. semimetals with FS of co-dimension p, generally, exhibit (p+1)-dim anomaly:

• $\mathbf{p} = \mathbf{3}$: (3+1)D chiral anomaly in Weyl semi-metals

• $\mathbf{p} = \mathbf{2}$: (2+1)D parity anomaly in graphene

Is there an anomaly in nodal-line semi-metal?

 \implies consider family of 2D subsystems

 \implies study (2+1)D parity anomaly as a function of angle ϕ

Parity anomaly for a 2D subsystem:

Action for (2+1)D Dirac fermions coupled to gauge field A_{μ}

$$S^{\phi} = \int d^3x \, \bar{\psi} \left[i \gamma^{\mu} (\partial_{\mu} + i e A_{\mu}) + m \right] \psi$$
 breaks PT symmetry

 \implies effective action $S^{\phi}_{\text{eff}}[A,0]$ with m=0 is UV divergent

 \implies Pauli-Villars regularization of theory breaks PT symmetry

$$S_{\text{eff}}^{\text{R}}[A] = S_{\text{eff}}[A] - \lim_{M \to \infty} S_{\text{eff}}[A, M]$$

• Pauli-Villars mass term remains finite for $M \to \infty$, yielding Chern-Simons term:

$$S_{CS} = \frac{\mathcal{P}}{8\pi} \int d^3x \, \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$$

• anomalous current from one Dirac point:

$$j^{\mu} = \frac{\mathcal{P}}{4\pi} \epsilon^{\mu\nu\lambda} \partial_{\nu} A_{\lambda}$$

transverse charge response to applied EM field

R: radius of nodal ring m: small PT breaking term **E**: electric field

Anomalous transport within semi-classical response theory:

Non-symmorphic symmetries

 Glide reflection (rank two):

$$\mathbf{g} = (m|\vec{\tau})$$
$$\mathbf{g}^2 = T$$

 n-fold screw rotation (rank n=2,3,4,6):

$$\mathbf{s}_n = (C_n | \vec{\tau})$$

$$\left(\mathbf{s}_n\right)^n = T$$

Non-symmorphic symmetries

 Glide reflection (rank two):

$$\mathbf{g} = (m | \vec{\tau})$$
$$\mathbf{g}^2 = T$$

 n-fold screw rotation (rank n=2,3,4,6):

$$\mathbf{s}_n = (C_n | \vec{\tau})$$

$$\left(\mathbf{s}_n\right)^n = T$$

Constraints of non-symmorphic symmetry on band structure

• Consider 2-fold screw rotation in 1D:

$$G(k) = \begin{pmatrix} 0 & e^{-ik} \\ 1 & 0 \end{pmatrix}$$

$$G(k)\mathcal{H}(k)G^{-1}(k) = \mathcal{H}(k)$$

- Since $G^2(k) = e^{-ik}\sigma_0$ \implies EVs are $\pm e^{-ik/2}$
 - $\implies \text{states switch positions} \\ \implies \text{band crossing required by} \\ \text{non-symmorphic symmetry} \end{aligned}$

2-fold screw rotation in 1D

$$G(k) = \begin{pmatrix} 0 & e^{-ik} \\ 1 & 0 \end{pmatrix} \qquad \qquad G(k)\mathcal{H}(k)G^{-1}(k) = \mathcal{H}(k)$$

G(k) anti-commutes with $\sigma_3 \Rightarrow H(k) = \begin{pmatrix} o & q(k) \\ q^*(k) & 0 \end{pmatrix}$

• symmetry constraint: $q(k)e^{ik} = q^*(k)$ (*)

2-fold screw rotation in 1D

$$G(k) = \begin{pmatrix} 0 & e^{-ik} \\ 1 & 0 \end{pmatrix} \qquad \qquad G(k)\mathcal{H}(k)G^{-1}(k) = \mathcal{H}(k)$$

G(k) anti-commutes with $\sigma_3 \Rightarrow H(k) = \begin{pmatrix} o & q(k) \\ q^*(k) & 0 \end{pmatrix}$

• symmetry constraint: $q(k)e^{ik} = q^*(k)$ (*)

NOTE 1: Holds also for multi-band systems with chiral sym. $(q(k) = \text{Det}[\Delta(k)])$

2-fold screw rotation in 1D

$$G(k) = \begin{pmatrix} 0 & e^{-ik} \\ 1 & 0 \end{pmatrix} \qquad \qquad G(k)\mathcal{H}(k)G^{-1}(k) = \mathcal{H}(k)$$

G(k) anti-commutes with $\sigma_3 \Rightarrow H(k) = \begin{pmatrix} o & q(k) \\ q^*(k) & 0 \end{pmatrix}$

• symmetry constraint: $q(k)e^{ik} = q^*(k)$ (*)

NOTE 1: Holds also for multi-band systems with chiral sym. $(q(k) = \text{Det}[\Delta(k)])$ **NOTE 2**: Position of band crossing point can be anywhere in BZ

2-fold screw rotation & inversion in 1D

- Consider 2-fold screw rotation G and inversion \hat{P}
 - (i) \hat{P} and G anti-commute, $\hat{P}G(k)\hat{P}^{-1} = -G(-k)$:
 - $\implies q(k) = -q^*(-k), \qquad q(k) = \sum_{n=0}^{\infty} \frac{\lambda_n}{i} \left(e^{ink} e^{-i(n+1)k} \right)$ $\implies \text{band crossing at } k = 0$

(ii)
$$\hat{P}$$
 and G commute, $\hat{P}G(k)\hat{P}^{-1} = +G(-k)$:
 $\implies q(k) = +q^*(-k), \quad q(k) = \sum_{n=0}^{\infty} \lambda_n \left(e^{ink} + e^{-i(n+1)k}\right)$

 \implies band crossing at $k = \pi$

Position	G, \hat{P}
$k = 0$ $k = \pi$	$ \hat{P}G = -G^{\dagger}\hat{P} \\ \hat{P}G = G^{\dagger}\hat{P} $

CuBi₂O₄: Dirac ring protected by glide reflection

- anti-ferromagnetic insulator w/ space group #56.367 (Pc'cn)
- Important symmetries:
 - time-reversal ***** inversion: $(PT)^2 = -1$
 - \Rightarrow all bands doubly degenerate $|\psi(k)\rangle, PT|\psi(k)\rangle$
 - glide reflection: $\{R_x, \tau = (1/2, 0, 1/2)\}$
 - \Rightarrow 4-fold degenerate Dirac ring at $k_x = \pi$

$$[\mathbf{R}_x, \mathbf{PT}] = \mathbf{0} \Rightarrow \text{band crossing at } k_x = \pi$$

CuBi₂O₄: Dirac ring protected by glide reflection

4-fold degenerate ring protected by PT and glide reflection

CuBi₂O₄: Double drumhead surface states

• Double drumhead surface states bound by Dirac ring

(100) surface

Acknowledgments

Yuxin Zhao (MPI-FKF/Nanjing)

Wenbin Rui (MPI-FKF)

M. Hirschmann (MPI-FKF)

Xue-Yang Song (U Peking)

Yang-Hao Chan (A. Sinica, Taiwan)

Ching-Kai Chiu (Uni Maryland)

Conclusions and Outlook

- Classification of crystalline topological materials
 - w/ reflection symmetry
 - w/ PT and CP symmetry
- PRB 90, 205136 (2014) PRL 116, 156402 (2016) PRB 95, 195108 (2017)
- Topological nodal line semimetals
 - Drumhead surface states Ca₃P₂, Zr₅Si₃

PRB 93, 205132 (2016) PRL 116, 156402 (2016)

- Quantum anomalies in nodal-line semimetals
 - Parity anomaly & anomalous transport

arXiv:1703.05958

Dirac line nodes with non-symmorphic symmetries
 — CuBi₂O₄ to be published

