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Crystalline topological semi-metals

Figure 3: current generated in gapped nodal loop system by electrical field in ê
y

(left panel) and ê
z

(right panel) direction.
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z

, E = Eê
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1.2.2 Gapped case
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From above discussion, the integrand approximates delta function, which suggests contribution
around nodal loop dominates. By using kk = R
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�

⇥ ê
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where the integration range is ⇢ 2 (0,
p
µ2 ��2), which comes from E 2 (�, µ). With this expres-

sion, we can calculate the currents and conductance with E in di↵erent direction.
Below, we calculate conductance when electrical field are in ê

x

, ê
y

and ê
x

directions.
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y

direction, the corresponding currents are

dj

d�
=

e2

~
ER

8⇡2Bk
cos�ê
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momentum space the (anti)-commutation relations can be al-
tered as the centers of the two crystalline symmetry operations
are di↵erent. We first consider the operations Mx and PT in
two di↵erent orders

(x, y, z)
Mx��! (�x, y, z + 1/2)

PT��! (x + 1/2,�y + 1/2,�z � 1/2) (11)

(x, y, z)
PT��! (�x + 1/2,�y + 1/2,�z)
Mx��! (x � 1/2,�y + 1/2,�z + 1/2) (12)

Since in the x direction Mx and PT reflecting at di↵erent
centers and Mx has an additional half lattice shifting, the
commutation relation between these two symmetry opera-
tions posses an extra momentum-dependent phase ptsms

x =
ei(�kx+kz)ms

x pts. The relation for the entire symmetry oper-
ation is given by PT Mx = �ei(�kx+kz)MxPT [11, 12]. In
the reflection planes kx = 0, ⇡, due to the glide along
the z�direction the eigenvalues Mx = ±e�ikz/2. Since
PT 2 = �1 and PT H(k)PT�1 = H(k), the kramers the-
orem leads to 2-fold degenerate states (|�(k)i, PT |�(k)i)
at any momentum in Brillouin zone. As Mx|�±(k)i =
±e�ikz/2|�±(k)i at the Mx-reflection plane, MxPT |�±(k)i =
�ei(kx�kz)PT Mx|�±(k)i = ⌥ei(kx�kz/2)PT |�±(k)i. As kx =
⇡, MxPT |�±(k)i = ±e�ikz/2PT |�±(k)i. In this regard,
|�±(k)i, PT |�±(k)i in the same eigenspace of Mx lead to the
presence of 4-fold degenerate nodal lines protected by Mx
reflection-glide symmetry only in the kx = ⇡ plane. As
shown in fig. 3(a,b), the two two-fold degenerate bands cor-
respond to two di↵erent Mx eigenvalues. The 4-fold degen-
erate band crossing (nodal line) is robust under the Mx pro-
tection since the band hybridization mixes the Mx eigenval-
ues and breaks Mx symmetry. On the other hand, as kx = 0,
MxPT |�±(k)i = ⌥e�ikz/2PT |�±(k)i the two degenerate states
correspond to di↵erent Mx eigenvalues. If a 4-band cross-
ing occurs in kx = 0 plane, two pairs of the crossings can
be gapped without breaking any symmetries since each pair
is in the same eigenspace of Mx. Therefore, robust nodal
lines are absent in kx = 0 plane as a trivial case. Since in
most of the physical systems, time-reversal inversion operator
and reflection operator usually anticommutes with each other
(if ‘i’ is recovered in the reflection operator for spin-1/2 sys-
tems, the anti-commutation relation is changed to commuta-
tion relation); hence, symmetry-protected nodal lines is com-
monly absent. As the reflection has a di↵erent reflection cen-
ter than inversion symmetry, the emerge of the commutation
relation between Mx and PT protects nodal lines in URSX
plane (kx = 0). Bi2CuO4 is the first concrete material realiza-
tion (c.f. the early theoretical proposals [11,12]).

To show additional 4-fold degeneracy in UR, we further
include Mz symmetry by considering the relation between Mx
and Mz

(x, y, z)
Mx��! (�x, y, z + 1/2)

Mz��! (�x + 1/2, y + 1/2,�z � 1/2) (13)

(x, y, z)
Mz��! (x + 1/2, y + 1/2,�z)

Mx��! (�x � 1/2, y + 1/2,�z + 1/2)
(14)

Similarly, ms
zms

x = ei(�kx+kz)ms
xms

z leads to MzMx =
�ei(�kx+kz)MxMz. This additional phase stems from the
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FIG. 3. (a) bulk energy spectrum on the reflection plane kx = ⇡. en-
ergy scale is weird Blue(red) indicates 2-fold degenerate energy band
corresponding reflection eigenvalue Mx = e�ikz/2(�e�ikz/2). Yang-
hao check. maybe it’s other way around. (b) two double nodal
rings appear at di↵erent energy levels. Green(purple) represents
Mx = e�ikz/2(�e�ikz/2) Check Mx eigenvalue. R point in (b) is �?
(c) (100) surface spectrum shows surface states connecting the pro-
jected double nodal ring. zoom in for the surface states (d) In S R
and UX, any two 2-fold degenerate bands merge in UR as a 4-fold
degenerate band.

the glide property of these two nonsymmorphic symme-
try operators. In UR of the BZ (⇡, ky, ⇡), the additional
phase vanish. As Mx|�±(k)i = ⌥i|�±(k)i, {Mz,Mx} =
0 lead to the states Mz|�±(k)i and MzPT |�±(k)i in dif-
ferent Mx eigenspaces (±i) from the Mx eigenspaces (⌥i)
of |�±(k)i and PT |�±(k)i. Hence, these four orthogonal
states |�±(k)i, PT |�±(k)i,Mz|�±(k)i,MzPT |�±(k)i share the
same energy due to the symmetries. Back to Bi2CuO4, first
due to PT symmetry, any band in BZ is two-fold degeneracy
and each band in UR is four-fold degeneracy, as shown in fig.
3(d), due to the interplay of PT , Mx, and Mz symmetries. This
analysis leads to that for the (magnetic) space group having a
subgroup of this magnetic space group #56.367, UR is always
4-degenerate. For example, BaP2(HO2)4 preserves time rever-
sal symmetry and belongs SG #56 and WO3 TaTe4 SG 130.

As this double nodal line is protected by reflection glide
symmetry, it is natural to ask if the surface states should
be robust under symmetry protection. Although as shown
in fig.3(c) (100) surface spectrum the boundary of the sur-
face states connect the projected double nodal ring, the sur-
face state cannot be protected by magnetic space group sym-
metries in the absence of spin S U(2) symmetry[13]. The
main reason is Mx operation, which is o↵-centered of the unit
cell, is always k-dependent in momentum space. Momentum-
dependence reflection unable to quantize Berry phase; hence,
the bulk cannot be described by well-defined topological in-
variant so the surface states are unstable. In the following, we
use 1D reflection-symmetric toy model (7) to show unquan-

3. Quantum anomalies in nodal-line semimetals
     - Parity anomaly & anomalous transport

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

R A MZ 0 MZ 0 MZ 0 MZ 0

R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2

DIII Z2 MZ 0 0 0 2MZ 0 TZ2

AII TZ2 Z2 MZ 0 0 0 2MZ 0

CII 0 TZ2 Z2 MZ 0 0 0 2MZ
C 2MZ 0 TZ2 Z2 MZ 0 0 0

CI 0 2MZ 0 TZ2 Z2 MZ 0 0

R�+ BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0

R+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0

R+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2

R�+ DIII MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0 2MZ� 2Z 0

R+� CII 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0

R�+ CI 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0

Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)

En
er

gy

gap

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)

En
er

gy

gap

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)
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)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,
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e

!

1
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∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im
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]
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∣
T (ω)
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a (13)

ξ±
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= εk ± α |gk|(14)

crystal momentum
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Bloch theorem
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)

(8)

and

ψ = γ1 + iγ2 (9)

ψ† = γ1 − iγ2 (10)

and

γ2
i = 1 (11)

{γi, γj} = 2δij (12)

mean field

γ†
E=0 = γE=0 (13)

⇒ γ†
k,E = γ−k,−E (14)

Ξ ψ+k,+E = τxψ
∗
−k,−E (15)

Ξ2 = +1 Ξ = τxK (16)

τx =

(

0 1
1 0

)

(17)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (18)

weak vs strong

|µ| < 4t (19)

n = 1 (20)

• Consider band structure: 

        time-reversal symmetry, particle-hole,  
        reflection, inversion (parity)

. symmetries to consider:

. top. equivalence classes distinguished by:

nZ =
i

2⇡

Z
F dk 2 Z

filled 
states

topological invariant

• (i) Topological equivalence for insulators:
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum
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Bloch theorem

[T (R), H ] = 0 |ψn⟩ = eikr |un(k)⟩ (1)

(2)

H(k) = e−ikrHe+ikr (3)

(4)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (5)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (6)

majoranas

γ1 = ψ + ψ† (7)

γ2 = −i
(

ψ − ψ†
)

(8)

and

ψ = γ1 + iγ2 (9)

ψ† = γ1 − iγ2 (10)

and

γ2
i = 1 (11)

{γi, γj} = 2δij (12)

mean field

γ†
E=0 = γE=0 (13)

⇒ γ†
k,E = γ−k,−E (14)

Ξ ψ+k,+E = τxψ
∗
−k,−E (15)

Ξ2 = +1 Ξ = τxK (16)

τx =

(

0 1
1 0

)

(17)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (18)

weak vs strong

|µ| < 4t (19)

n = 1 (20)

• Consider band structure: 

        time-reversal symmetry, particle-hole,  
        reflection, inversion (parity)

. symmetries to consider:

. top. equivalence classes distinguished by:

nZ =
i

2⇡

Z
F dk 2 Z

filled 
states

topological invariant

• (i) Topological equivalence for insulators:

• Bulk-boundary correspondence:
|nZ| = #gapless edge states (or surface states)
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weak vs strong

|µ| < 4t (19)

n = 1 (20)

• Consider band structure: 

• (ii) Topological equivalence for band crossings:

        time-reversal symmetry, particle-hole,  
        reflection, inversion (parity)

. symmetries to consider:

. top. equivalence classes distinguished by:

nZ =
i
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Z
F dk 2 Z

filled 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topological invariant
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weak vs strong
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉
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∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉
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crystal momentum
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Bloch theorem

[T (R), H ] = 0 |ψn⟩ = eikr |un(k)⟩ (1)

(2)

H(k) = e−ikrHe+ikr (3)

(4)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (5)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (6)

majoranas

γ1 = ψ + ψ† (7)

γ2 = −i
(

ψ − ψ†
)

(8)

and

ψ = γ1 + iγ2 (9)

ψ† = γ1 − iγ2 (10)

and

γ2
i = 1 (11)

{γi, γj} = 2δij (12)

mean field

γ†
E=0 = γE=0 (13)

⇒ γ†
k,E = γ−k,−E (14)

Ξ ψ+k,+E = τxψ
∗
−k,−E (15)

Ξ2 = +1 Ξ = τxK (16)

τx =

(

0 1
1 0

)

(17)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (18)

weak vs strong

|µ| < 4t (19)

n = 1 (20)

• Consider band structure: 

• (ii) Topological equivalence for band crossings:

        time-reversal symmetry, particle-hole,  
        reflection, inversion (parity)

. symmetries to consider:

. top. equivalence classes distinguished by:

nZ =
i

2⇡

Z
F dk 2 Z

filled 
states

topological invariant
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Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (10)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

crystal momentum
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• Bulk-boundary correspondence:
|nZ| = #gapless edge states (or surface states)
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R� : R anti-commutes with T (C or S)
R+ : R commutes with T (C or S)
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection sym. class d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R

+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0
a
Z
2

and MZ
2

invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological invariant.
c

For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

PRB 90, 205136 (2014); PRL 116, 156402 (2016)

“Bott cube” 41

t = 0

t = 1 t = 2

t = 3

FIG. 10 (Color online) The 27 symmetry classes with reflec-
tion symmetry can be visualized as the extension of the Bott
clock.

acterized by a Z
2

invariant, nd�1

k1=0(⇡) = ±1, the mirror
Z
2

invariant MZ
2

is defined by

nMZ2
= 1 � ��nd�1

k1=0

� nd�1

k1=⇡

�� , (4.9)

with nk1=0(⇡)d�1 2 {+1, �1}. A nontrivial value (�1) of
these mirror indices indicates the appearance of Dirac or
Majorana boundary modes at reflection symmetric sur-
faces, i.e., at surfaces that are perpendicular to the reflec-
tion hyperplane x

1

= 0. At surfaces that break reflection
symmetry, however, the boundary modes are in general
gapped.

(iii) TZ
2

invariant: In symmetry classes where R anti-
commutes with the TR and PH operators (R

�

and R
��

in Table VIII), the second descendant Z
2

invariants are
well defined only in the presence of translation symmetry.
That is, boundary modes of these phases can be gapped
out by density-wave type perturbations, which preserve
reflection and AZ symmetries but break translation sym-
metry. Hence, these topological states are protected by
a combination of reflection, translation, and AZ antiuni-
tary symmetries.

(iv) MZ�Z and MZ
2

�Z
2

invariants: In some cases,
topological properties of reflection symmetric insulators
(SCs) with chiral symmetry are described both by a
global Z or Z

2

invariant and a mirror index MZ or MZ
2

,
which are independent of each other. At boundaries
which are perpendicular to the mirror plane the number
of protected gapless states is given by max {|nZ| , |nMZ|}
(Chiu et al., 2013), where nZ denotes the global Z invari-
ant, whereas nMZ is the mirror Z invariant.

Before discussing the gapless surface modes of crys-
talline materials, let us note that the classification of
reflection-symmetric TIs and TSCs (Table VIII) can
be generalized to any order-two symmetry (Z

2

symme-
try) and, moreover, to include the presence of topolog-
ical defects (cf. Sec. III.C.2). The generalized classifi-

cation can be inferred from K-groups labeled by 6 in-
tegers K(s, t, d, d

k

, D, D
k

), where d
k

(D
k

) is the num-
ber of momentum (spatial) coordinates that are flipped
by the Z

2

operation, s denotes the AZ symmetry class,
t = 0, 1, 2, 3 labels the reflection Bott clock (Fig. 10),
and (d, D) are the dimensions of the defect Hamilto-
nian. It was shown by Shiozaki and Sato, 2014 that
the generalized classification follows from the relation
K(s, t, d, d

k

, D, D
k

) = K(s�d+D, t�d
k

+D
k

, 0, 0, 0, 0).
For reflection symmetric TIs and SCs, we have d

k

= 1,
D

k

= 0, and D = 0, which reproduces Table VIII.

a. Bulk-boundary correspondence in topological crystalline

systems While protected gapless modes always exist at
any boundary in TIs/TSCs in AZ symmetry classes, this
is not the case in topological crystalline materials; pro-
tected gapless modes do not exist at boundaries that
are not invariant under spatial symmetries, although
their absence does not indicate the trivial bulk topol-
ogy. Complementary to studying boundary modes in
physical Hamiltonians, studying gapless boundary modes
in the entanglement Hamiltonian or in the entanglement
spectrum is a generic way to distinguish the topology of
topological (crystalline) materials (Chang et al., 2014;
Fidkowski, 2010; Ryu and Hatsugai, 2006). For exam-
ple, for TIs/TSCs protected by inversion symmetry, for
which there is no boundary that respects the inversion,
and hence there is no protected gapless boundary mode
in physical Hamiltonians, stable gapless boundary modes
in the entanglement spectrum indicate the nontriviality
of the bulk topology (Hughes et al., 2011; Turner et al.,
2012, 2010).

Another di↵erence between the boundary modes of
crystalline TIs/TSCs and those of ordinary TIs/TSCs
exists with regard to disorder. While the surface modes
of TIs/TSCs with AZ symmetries are robust to spatial
disorder (Sec. III.F), the protection of the gapless sur-
face modes of topological crystalline materials relies cru-
cially on spatial symmetries, which typically are broken
by disorder. However, the gapless surface modes of crys-
talline TIs/TSCs may evade Anderson localization when
disorder respects the spatial symmetries on average. For
example, the weak TIs in class AII in d = 3 rely on the
existence of lattice translation symmetries. Once trans-
lational symmetry is not imposed, the surfaces of weak
TIs can be gapped out by charge density wave, which
preserves TRS. However, when translation symmetry is
respected on average, the surface states do not Anderson
localize (Diez et al., 2014; Fulga et al., 2014; Mong et al.,
2012; Obuse et al., 2014; Ringel et al., 2012). Similarly,
for class AII+R

�

in d = 3, the surface modes are de-
localized when TRS is strictly preserved and reflection
symmetry is preserved on average (Fu and Kane, 2012),
even though the number of surface Dirac cones is even.
For symmetry classes other than AII+R

�

, the presence

Classification of free-fermion systems with reflection symmetry



R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

R A MZ 0 MZ 0 MZ 0 MZ 0

R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2

DIII Z2 MZ 0 0 0 2MZ 0 TZ2

AII TZ2 Z2 MZ 0 0 0 2MZ 0
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Classification of free-fermion systems with reflection symmetry
R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)
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points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
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Reduction of classification with interactions
R� : R anti-commutes with T (C or S)R+ : R commutes with T (C or S)

4

TABLE I. Collapse of the classification of interacting (contact interactions) reflection symmetric topological crystalline superconductors (TC-
SCs)/topological crystalline insulators(TCIs). The first column denotes the commutation relation of the symmetry with protecting symmetries
[TRS,PHS,or CHS. +,� denotes commutation/anticommutation, respectively.] of the AZ classes [We impose R2 = 1. For classes with two
protecting symmetries, we denote the commutation relations with TRS first followed by PHS.]. As can be conveniently compared with Table
VIII of Ref.3, the Z classifications collapse while Z2 classifications remain stable. The columns “Cli↵ord algebra” lists the relevant cli↵ord
algebra encoding all associated matrices in a certain symmetry class with reflection symmetry, written in complex fermion/real Majorana basis,
respectively20. (Here n is a non-negative integer which is zero for dimension 1� 8, namely we could generalize the classification to dimension
D = 8n + d.) For symmetry classes BDI, D, DIII, that entertain two symmetry embedding scheme, the reduction pattern from Z should be
further reduced by two if we embed additional U(1)oZC

2 to the symmetry classes, since these additional symmetry constraints enlarge the root
states.

D = 8n + d, n = 0, 1, 2 · · ·
Ref. Class Cli↵ord Algebra d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

R A Cld+2/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0
R+ AIII Cld+3/Cld+3 0 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5

R� AIII Cld+2/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0

R+(+)

AI Cl2,d+2/Cl2,d+2 Z24n+2 0 0 0 Z24n+3 0 Z2 Z2
BDI Cld+1,4/Cl2,d+1 Z2 Z24n+3 0 0 0 Z24n+4 0 Z2
D Cld,4/Cl2,d Z2 Z2 Z24n+4 0 0 0 Z24n+5 0
DIII Cld,5/Cl3,d 0 Z2 Z2 Z24n+4 0 0 0 Z24n+5

AII Cl4,d/Cl4,d Z24n+1 0 Z2 Z2 Z24n+4 0 0 0
CII Cld+3,2/Cl5,d 0 Z24n+1 0 Z2 Z2 Z24n+4 0 0
C Cl2+d,2/Cld+3,1 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0
CI Cl2+d,3/Cl2,d+3 0 0 0 Z24n+2 0 Z2 Z2 Z24n+5

R�(�)

AI Cl1,d+3/Cl1,d+3 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0
BDI Cl2+d,3/Cl1,d+2 0 0 0 Z24n+3 0 Z2 Z2 Z24n+6

D Cld+1,3/Cl1,d+1 Z24n+3 0 0 0 Z24n+4 0 Z2 Z2
DIII Cld+1,4/Cl2,d+1 Z2 Z24n+3 0 0 0 Z24n+4 0 Z2
AII Cl3,d+1/Cl3,d+1 Z2 Z2 Z24n+3 0 0 0 Z24n+4 0
CII Cld+4,1/Cl4,d+1 0 Z2 Z2 Z24n+3 0 0 0 Z24n+4

C Cl3+d,1/Cld+2,2 Z24n+1 0 Z2 Z2 Z24n+4 0 0 0
CI Cld+3,2/Cl1,d+4 0 Z24n+1 0 Z2 Z2 Z24n+4 0 0

R�+ BDI Cld+4/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0
R�+ CII Cld+4/Cld+4 Z24n+1 0 Z24n+2 0 Z24n+3 0 Z24n+4 0
R+� DIII Cld+4/Cld+2 Z24n+2 0 Z24n+3 0 Z24n+4 0 Z24n+5 0
R+� CI Cld+4/Cld+4 Z24n+1 0 Z24n+2 0 Z24n+3 0 Z24n+4 0
R+� BDI Cld+1,3/Cl1,d+1 Z24n+3 0 0 0 Z24n+4 0 Z2 Z2
R+� CII Cld+3,1/Cl4,d Z24n+1 0 Z2 Z2 Z24n+4 0 0 0
R�+ DIII Cld,4/Cl2,d Z2 Z2 Z24n+4 0 0 0 Z24n+5 0
R�+ CI Cl2+d,2/Cl1,d+3 0 0 Z24n+2 0 Z2 Z2 Z24n+5 0

matrices �i. In addition, we assume that {�} is a pairwise an-
ticommuting set of matrices. We note that, if the SPT state
is topologically non-trivial in the free-fermion limit, then the
fermion (Majorana) bilinear  †� has to break at least one of
the defining symmetries.

Now we can decompose the quartic interaction (2.5c) us-
ing Euclidean time path integrals and a Hubbard-Stratonovich
transformation with respect to the bosonic fields �� conju-
gate to the bilinear  †� . This yields a dynamical bound-
ary Hamiltonian which is quadratic in the fermion (Majorana)
operators

H(dyn)
bd (⌧, x) = eH(0)

bd (x) +
P
{�}

2i � ��(⌧, x), (2.6)

with the Lagrangian

Lbd =  
†[@⌧ + Hdyn

bd ] + 1
�

P
�
�2
�, (2.7)

where eH(0)
bd = (�i

Pd�1
j=1

@
@x j �i ⌦1) is the free part of the Hamil-

tonian (2.5). We observe that, within a saddle-point approx-

imation, the amplitude fluctuations of the vector � with the
components �� are suppressed by the second term in Eq. (2.7).
Since the dynamical mass matrices � [we also call it Dirac
mass] are mutually anticommuting, the direction of � within
the mean-field approximation is arbitrary. Hence, after rescal-
ing the length of the vector � to one, the mean-field config-
uration of � forms a (N(⌫) � 1)-dimensional sphere S N(⌫)�1,
where N(⌫) is the number of anticommuting boundary mass
matrices �, which depends on ⌫, the chosen number of root
states. Therefore the direction of � is chosen by spontaneous
symmetry breaking with N(⌫)�1 associated Goldstone modes.

The low-energy e↵ective theory describing the fluctuations
of these Goldstone modes is given in terms of a QNLSM,
which is obtained by use of a gradient expansion and by inte-
grating out the fermionic fields. The partition function for this
QNLSM reads34

Zbd ⇡
Z
D[�]�(�2 � 1)e�S QNLSM�S top , (2.8a)

where S top is a topological term and S QNLSM is the Euclidian
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Reduction of classification with interactions

5

TABLE II. Collapse of the classification of interacting two-fold
rotation-symmetric TCSCs/TCIs. The first column denotes the com-
mutation relation of the rotation symmetry U with the protecting
symmetries of the AZ classes. (Here, we impose U2 = 1.). Com-
pared with the noninteracting classification17, the Z classifications
collapse, while the Z2 classifications remain stable. We note that the
collapse of the classification is given for any dimension D = 8n + d,
where d = 1, 2, · · · 8 and n = 0, 1, 2, · · · . For symmetry classes
BDI, D, and DIII, that allow for two di↵erent symmetry embedding
schemes, the reduction pattern from Z should be further reduced by
two if we embed an additional U(1)oZC

2 symmetry to the symmetry
classes, since these additional symmetry constraints enlarge the root
states.

D = 8n + d, n = 0, 1, 2 · · ·
Rot. Class d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
U A 0 0 0 0 0 0 0 0
U+ AIII Z24n+2 Z24n+2 Z24n+3 Z24n+3 Z24n+4 Z24n+4 Z24n+5 Z24n+5

U� AIII 0 0 0 0 0 0 0 0

U+(+)

AI Z24n+2 0 0 0 Z24n+3 0 Z2 Z2
BDI Z24n+3 Z24n+3 Z24n+3 Z24n+3 Z24n+4 Z24n+4 Z24n+5 Z24n+6

D Z2 Z2 0 0 0 0 0 Z2
DIII Z2 Z2 Z24n+3 0 0 0 Z24n+5 Z2
AII 0 0 0 0 0 0 0 0
CII Z24n+1 Z24n+1 Z24n+2 Z24n+3 Z24n+4 Z24n+4 Z24n+4 Z24n+4

C 0 0 0 Z2 Z2 Z2 0 0
CI 0 0 Z24n+2 Z2 Z2 Z2 Z24n+4 0

U�(�)

AI 0 0 0 0 0 Z2 Z2 Z2
BDI Z24n+2 0 0 0 Z24n+4 Z2 Z2 Z2
D 0 0 0 0 0 0 0 0

DIII Z24n+2 Z24n+3 Z24n+4 Z24n+4 Z24n+4 Z24n+4 Z24n+5 Z24n+5

AII 0 Z2 Z2 Z2 0 0 0 0
CII Z24n+1 Z2 Z2 Z2 Z24n+3 0 0 0
C 0 0 0 0 0 0 0 0
CI Z24n+1 Z24n+1 Z24n+2 Z24n+2 Z24n+3 Z24n+4 Z24n+5 Z24n+5

U�+ BDI Z2 0 0 0 0 0 Z2 Z2
U�+ CII 0 0 Z2 Z2 Z2 0 0 0
U+� DIII 0 0 0 0 0 0 0 0
U+� CI 0 0 0 0 0 0 0 0
U+� BDI 0 0 0 0 0 0 0 0
U+� CII 0 0 0 0 0 0 0 0
U�+ DIII Z2 Z2 Z2 0 0 0 0 0
U�+ CI 0 0 0 0 Z2 Z2 Z2 0

grating out the fermionic fields. The partition function for this
QNLSM reads35

Zbd ⇡
Z
D[�]�(�2 � 1)e�S QNLSM�S top , (2.8a)

where S top is a topological term and S QNLSM is the Euclidian
action

S QNLSM =
1

2g

Z
d⌧
Z

dd�1
x (@i�)2, (2.8b)

with base space R(d�1)+1 and target space S N(⌫)�1. The topo-
logical term S top can only be present in the QNLSM, if any
one of the homotopy groups ⇡◆

h
S N(⌫)�1

i
, with ◆ = 0, 1, . . . , d+

1, is nonvanishing63. The presence of a topological term in
the QNLSM (2.8) signals the existence of zero modes of the
Hamiltonain (2.6) that are localized at topological defects in

the order parameter �. These zero-modes, in turn, prevent the
interactions from gapping out the boundary modes of the SPT
state. It follows that ⌫ copies of the root state of an interact-
ing SPT phase cannot be connected to a trivial state, whenever
⇡◆
h
S N(⌫)�1

i
is non-zero for some ◆.

On the other hand, if

⇡◆
h
S N(⌫)�1

i
= 0, for all ◆ = 0, 1, . . . , d + 1, (2.9)

there is no topological term in the QNLSM. We denote the
smallest value of ⌫ for which this happens by ⌫min. By com-
puting the homotopy groups of the spheres, one finds that ⌫min
must satisfy the condition

d + 1 < N(⌫min) � 1. (2.10)

In the absence of a topological obstruction, Eq. (2.8) is sim-
ply a QNLSM on the sphere S N(⌫min)�1. In that case the strong
coupling fixed point g ! 1 of the QNLSM is stable, which
corresponds to a quantum-disordered phase in which all the
the discrete Z2 symmetries are dynamically restored by quan-
tum fluctuations. In order to check that this strong-coupling
phase is also compatible with the continuous symmetries (e.g.,
a U(1) symmetry corresponding to fermion number conserva-
tion), one needs to verify that the Hubbard-Stratonovich fields
�� are invariant as a set under conjugation with the generators
of the continuous symmetries. That is, the QNLSM target
space S N(⌫min)�1 must remain invariant under the continuous
symmetry operations. If all of these conditions are satisfied,
then there exists a continuous symmetry-preserving deforma-
tion that connects ⌫ copies of the root state to a trivial SPT
state. Hence, the free-fermion classification is reduced from,
e.g., Z to Z⌫min .

In closing this section, we remark that there exists an in-
teresting connection between interacting fermionic SPT states
and bosonic SPT states with the same symmetries. That is, the
QNLSM (2.8) in d � 1 spatial dimensions with N(⌫) = d + 2
bosonic fields � and a WZ topological term can be viewed as
an O(d + 2) nonlinear � model describing the boundary of a
d-dimensional bosonic SPT phase40,64–66. Using this connec-
tion, the classification of bosonic SPT states can be inferred
from their interacting fermionic counterparts.

C. Complex fermion vs. real Majorana representation

As stated above, the reduction patterns of the free-fermion
classifications can be derived by expressing the Hamiltonians
of the SPT states using either complex fermion35 or real Majo-
rana operators36. Both choices give consistent reduction pat-
terns, which we demonstrate in Appendix A 2. In the main
text of this paper, however, we focus on the real Majorana rep-
resentation, since in this representation the continuous U(1)
symmetries are realized explicitly.

But before proceeding, let us briefly highlight the crucial
di↵erences between the two representations. Using the Majo-
rana representation, the root state for a given symmetry class

SSH model / Kitaev chain

U+ : U commutes with T (C or S) U� : U anti-commutes with T (C or S)
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2.  Topological nodal line semi-metals

Ca3P2 , Zr5Si3 
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FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p

x

and Ca-d
z

2 orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of Ca3P2. The weights of the P-p

x

and Ca-d
z

2 orbitals that are located within the layers are indi-
cated by the width of the corresponding band. (d) Fermi ring
of Ca3P2 as obtained from the tight-binding model, Eq. (2.2).
The bulk and surface Brillouin zones are outlined by the green
and black lines, respectively.

cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s↵) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =

✓
HCaCa HCaP

HPCa HPP

◆
, H

ij

=

✓
hll

ij

hlu
ij

hul
ij

huu
ij

◆
, (2.3)

where the sub-blocks hmn

ij

with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K,

dz2

p
x

charge balanced: Ca2+ — P3-
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FIG. 3. (Color online) (a) Band structure of Ca3P2 in a (001) slab geometry. �̄ (b) Surface density of states for Ca3P2. �̄ (c)
Band structure within the kz = 0 plane. Red corresponds to R = �1, blue to R = +1. (d) Band structure within the kz = ⇡
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between these two types of the invariants can be written
is in a simple form

(Nk=0
MZ +Nk=⇡

MZ )⇡ = P1 (mod 2⇡) (2.10)

Unfortunately, in our case R
k

in quote the equation is
k-dependent so that @R has to be computed to confirm
the relation between N

MZ and the Berry phase. obtain
the value of @R = 3⇡ from Yang-hong’s numerics and
Nk=⇡

MZ = 3 as shown in fig. 3 (d). By Eq. (2.9), we have
an alternative way to obtain the same value of the Berry
phase.

However, the ⇡ Berry phase, which leads to the pres-
ence of the surface modes, does not explain that end sur-
face modes end up at the bulk Fermi ring. Weyl node
discussion needed

III. LOW-ENERGY THEORY OF CA3P2

In the presence of a Dirac line, SU(2) symmetry for
spin-1/2 is required for the protection of the Dirac line.
Furthermore, reflection symmetry can protect the Dirac
line and lock it in the mirror plane. Even when reflec-
tion symmetry is broken, inversion symmetry and TRS
is su�cient to protect the Dirac line. The Hamiltonian
of a simple Dirac line is written as use the 1st or 2nd
quantization

ĤDirac =
X

✓,k,kz

c†k,kz

⇥
(k2 � k20)⌧z�0 + k

z

⌧
y

�0

⇤
ck,kz

, (3.1)

H = (k2
r

� k20)⌧z�0 + k
z

⌧
y

�0, (3.2)

where k = (k cos ✓, k sin ✓, 0) and ⌧
↵

and �
↵

describe or-
bital(atom) and spin degree freedom respectively. The
Fermi ring located at k

z

= 0 and k2
x

+ k2
y

= k20. TRS,
reflection symmetry and inversion symmetry are pre-
served with the symmetry operators Tk!�k = ⌧0�y

K,
R

kz!�kz = ⌧
z

�
z

, Pk!�k = ⌧
z

�
z

. To have the stable
Dirac line, SU(2) in spin is necessary to forbid hybridiza-
tion of the two spins so that the Hamiltonian can be
written as in spinless case

H = (k2
r

� k20)⌧z + k
z

⌧
y

(3.3)

with the symmetry operators r = ⌧
z

, p = ⌧
z

, and t =
⌧0K.

IV. TOPOLOGICAL FEATURES

A. Topological invariants of Dirac rings

Consider only reflection symmetry then the Hamilto-
nian belongs to class A+R with p = 2 described by MZ
invariant, which is determined by the number of the oc-
cupied states in one of the eigenspaces of r, (say r = 1).

N
MZ(kr) =

⇢
1, |k

r

| < k0
0, |k

r

| > k0
. (4.1)

The Fermi ring located at k
r

= k0 is protected by the
di↵erence of N

MZ. Even without reflection symmetry, in-
version symmetry and TRS also stabilize the Fermi ring
since ⌧

x

, which is the only term gapping the ring, is for-
bidden by those symmetries. The ring is not locked at

R = +1

R = �1

�k0+k0
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— number of occupied states with R = +1
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FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p

x

and Ca-d
z

2

orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of Ca3P2. The weights of the P-p

x

and Ca-d
z

2

orbitals that are located within the layers are indi-
cated by the width of the corresponding band. The weight of
the Ca-d

z

2

orbital is multiplied by two to make it more visible
on the scale of the plot. (d) Fermi ring of Ca3P2 as obtained
from the tight-binding model, Eq. (2.2). The bulk and sur-
face Brillouin zones are outlined by the green and black lines,
respectively.

tial occupancy of the Ca atoms within the virtual crys-
tal approximation [65]. Figure 1(c) shows the calculated
band structure of Ca

3

P
2

within an energy range of ±3 eV
around the Fermi energy E

F

. To obtain the orbital char-
acter of the bands we introduce a local coordinate system
for each Ca and P site, whose definition is illustrated in
Fig. 1(b). In each coordinate frame the x axis is oriented
along the c direction, whereas the z axis lies with the ab
plane, pointing towards the lower left edge of the unit
cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding

model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s
↵

) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six
Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s
↵

�s
�

)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in the
unit cell at the origin to orbital � in the unit cell at posi-
tion R. To simplify the form of the matrix elements (2.2)
and have a single-valued Hamiltonian, we absorb a mo-
mentum dependent phase factor in the definition of the
basis orbitals, i.e., we let | ↵

k i ! eik·s
↵ | ↵

k i. We observe
that Hamiltonian (2.2) has a nested block structure

H(k) =

✓
H

CaCa

H
CaP

H
PCa

H
PP

◆
, H

ij

=

✓
hll

ij

hlu

ij

hul

ij

huu

ij

◆
, (2.3)

where the sub-blocks hmn

ij

with fixed i, j 2 {Ca, P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll

ij

)

and (hlu

ij

, hul

ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [66, 67].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = E

F

± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca

3

P
2

. Comparing the first-
principles band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principles results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

R(k) =

0

BB@

13⇥3 0 0 0
0 13⇥3e�ikz 0 0
0 0 �13⇥3 0
0 0 0 �13⇥3e�ikz

1

CCA

Chan, Chiu, Chou, Schnyder, Phys. Rev. B 93, 205132 (2016)



 Berry phase:

P(kk) = �i
X

j2filled

Z ⇡

�⇡

D
u(j)
k?

��� @k?
���u(j)

k?

E
dk?

—  P(kk) quantized to ⇡ ) stable line node

— In Ca3P2 Berry phase is quantized due to:

(i) reflection symmetry

(ii) inversion + time-reversal symmetry

z ! �z

Berry phase

�̄

5

k
x

k
y

E

FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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C. Surface states and Berry phase

In this section, we present the surface spectrum of
Ca

3

P
2

as obtained from the tight-binding model (2.2)
and show that, due to a non-zero Berry phase, there ap-
pear nearly flat ingap states at the surface. Figure 3(a)
displays the surface band structure for the (001) surface
in a three-dimensional slab geometry with 60 unit cells.
The surface momentum is varied along a high-symmetry
path, which is drawn in red in the surface Brillouin
zone of Fig. 1(d). Using an iterative Green’s function
method [68] we compute the momentum resolved surface
density of states for a semi-infinite (001) slab, which is
shown in Fig. 3(b). As indicated by the green area in
Fig. 3(d) and by the green and yellow lines in Figs. 3(a)
and 3(b), respectively, the surface state is nearly disper-
sionless, taking the shape of a drumhead that is bounded
by the projected Dirac ring. We note that nearly or com-
pletely flat surface states have recently also been studied
in photonic crystals [69], in noncentrosymmetric super-
conductors [70–73], in bernal graphite [74], and in topo-
logical crystalline insulator heterostructures [48].

In contrast to crystalline topological insulators the sur-
face states of the semimetal (2.2) are not directly related
to the mirror invariant (2.7), but are connected to a non-
zero Berry phase. To make this connection explicit, we
decompose the (001) slab considered in Fig. 3 into a fam-
ily of one-dimensional systems parametrized by the in-
plane momentum kk = (k

x

, k
y

). For fixed kk, the Berry
phase is defined as

P(kk) = �i
X

E

j

<E

F

Z
⇡

�⇡

hu
j

(k)|@
k

z

|u
j

(k)idk
z

, (2.9)

where the sum is over filled Bloch eigenstates |u
j

(k)i of
Hamiltonian (2.2). As was shown by King-Smith and
Vanderbilt [75], the Berry phase P(kk) is related to the
charge q

end

at the end of the one-dimensional system with
fixed in-plane momentum kk, i.e.,

q
end

=
e

2⇡
P(kk) mod e. (2.10)

Hence, when P(kk) 6= 0 an ingap state appears at kk in
the surface Brillouin zone. For the tight-binding Hamil-
tonian (2.2) we find that there are two di↵erent sym-
metries which each quantize the Berry phase (2.9) to
0 or ⇡, namely, the reflection symmetry (2.5) and the
product of time-reversal and inversion symmetry IT ,
see Appendix B. In Fig. 3(c) we numerically compute
P(kk) using the tight-binding wave functions of Hamil-
tonian (2.2). We obtain that the Berry phase equals ⇡
for kk inside the projected Dirac ring, while it is zero for
kk outside the ring. This indicates that surface states
occur within the projected Dirac ring, which is in agree-
ment with the surface spectrum of Figs. 3(a) and 3(b).
The Berry phase is defined modulo 2⇡, since large gauge
transformations of the wave functions change it by 2⇡.
As a result, P protects only single, but not multiple, sur-
face states at a given kk.

(a) (b)

(c) (d)

k
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(1/a)

k
y

(1/a)

E(eV )

FIG. 3. Drumhead surface states and Berry phase.
(a) Surface band structure of Ca3P2 as obtained from the
tight-binding model (2.2) for the (001) surface in slab geom-
etry with 60 unit cells. The surface state is highlighted in
green. (b) Momentum-resolved surface density of states of
Hamiltonian (2.2) for the (001) surface. White and dark red
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.9) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.1) for the (001) face as a function of surface mo-
menta k

x

and k
y

. The bulk states at k
z

= 0 with reflection
eigenvalues R = +1 and R = �1 are colored in blue and red,
respectively. The drumhead surface state is indicated by the
green area.

Remarkably due to the IT symmetry, the Berry
phase P along any closed loop in the three-dimensional
Brillouin zone is quantized (see Appendix B). This allows
us to interprete the Berry phase as a topological invari-
ant which guarantees the stability of the Dirac line in the
presence of the IT symmetry. That is, for a loop inter-
linking with the Dirac ring, we find that P = ±⇡ which
shows that the Dirac band crossing is protected by the
product of inversion with time-reversal symmetry. The
Berry phase represents a Z

2

-type invariant, since it is de-
fined only up to multiples of 2⇡. In contrast, the mirror
number (2.7) is a Z-type invariant, which can take on
any integer number. Therefore, only the mirror invari-
ant N

MZ can give rise to the stability of multiple Dirac
lines at the some location in the Brillouin zone.

D. Relation between Berry phase
and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related
to the appearance of surface states. In order to put this
connection on a firmer footing, we present here a relation
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FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

Bulk-boundary correspondence:

— surface charge: �surf =
e

2⇡
P mod e
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E

FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
[*Add label “(d)”. Add numbers to k

x

, k

y

, and E axes in
lower right panel *]

Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

 Drumhead surface state



Low-energy effective theory for Ca3P2

— reflection:

 low-energy effective Hamiltonian:

 symmetry operators:

He↵(k) = (k2k � k20)⌧z + kz⌧y + f(k)⌧0

even in k

— time-reversal: — inversion: 

 Gap-opening term       is symmetry forbidden:

— breaks reflection symmetry:

— breaks PT symmetry:
) nodal line is stable

R = ⌧z T = ⌧0K I = ⌧z

⌧
x
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— reflection:

 low-energy effective Hamiltonian:

 symmetry operators:

He↵(k) = (k2k � k20)⌧z + kz⌧y + f(k)⌧0

even in k

— time-reversal: — inversion: 

 Gap-opening term       is symmetry forbidden:

— breaks reflection symmetry:

— breaks PT symmetry:
) nodal line is stable

R = ⌧z T = ⌧0K I = ⌧z

⌧
x

R�1⌧
x

R = �⌧
x

  Z versus Z2 classification:

He↵(k)⌦ �0 = (k2k � k20)⌧z ⌦ �0 + kz⌧y ⌦ �0 + f(k)⌧0 ⌦ �0

—

) Z classification

) Z2 classification

• but breaks R:

(⌧z ⌦ �0K)�1m̂(⌧z ⌦ �0K) = m̂

(⌧z ⌦ �0)
�1m̂(⌧z ⌦ �0) 6= m̂

consider gap opening term m̂ = ⌧
x

⌦ �
y

:

• (PT )-symmetric:

(PT )�1⌧
x

(PT ) = �⌧
x



3.  Anomaly in nodal line semi-metals

Figure 3: current generated in gapped nodal loop system by electrical field in ê
y

(left panel) and ê
z

(right panel) direction.

which is depicted in Fig. 3.
Electrical field can also be applied in ê

x

or ê
y

direction, the corresponding currents are

dj

d�
=

e2

~
ER

8⇡2Bk
cos�ê

z

, E = Eê
x

;

dj

d�
= �e2

~
ER

8⇡2Bk
sin�ê

z

, E = Eê
y

.

(9)

1.2.2 Gapped case

Next we calculate the current in the gapped case,

j =
e2

~

Z
d3k

(2⇡)3
⌦

k

⇥E

=
e2

~

Z
d3k

(2⇡)3
B2

kCz

�

�3
kkEê

�

⇥ ê
E

(10)

We consider angular di↵erential current,

dj

d�
=

e2

~
EB2

kCz

�

(2⇡)3

ZZ

S

k2
k

�3
dkkdkzê�

⇥ ê
E

(11)

From above discussion, the integrand approximates delta function, which suggests contribution
around nodal loop dominates. By using kk = R

Bk
+ ⇢

2RBk
cos ✓ and k

z

= ⇢

C

z

sin ✓, the integration

becomes,

dj

d�
=

e2

~
EB2

kCz

�

(2⇡)3

ZZ

S

( R

Bk
+ ⇢

2RBk
cos ✓)2

(
p

⇢2 +�2)3
⇢

2RBkCz

d⇢d✓ê
�

⇥ ê
E

= ⌧
�

e2

~
ER

8⇡2Bk

✓
1� �

µ

◆
ê
�

⇥ ê
E
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(12)

where the integration range is ⇢ 2 (0,
p
µ2 ��2), which comes from E 2 (�, µ). With this expres-

sion, we can calculate the currents and conductance with E in di↵erent direction.
Below, we calculate conductance when electrical field are in ê

x

, ê
y

and ê
x

directions.
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Parity anomaly in nodal-line semi-metals
Quantum Anomaly: 
 

       Symmetry of classical action broken by regularization of  quantum theory

Is there an anomaly in nodal-line semi-metal?

Anomaly in topological semimetals:
 

       Top. semimetals with FS of co-dimension p, generally, exhibit (p+1)-dim anomaly:

•p = 3: (3+1)D chiral anomaly in Weyl semi-metals

•p = 2: (2+1)D parity anomaly in graphene

?

=) study (2+1)D parity anomaly

as a function of angle �

�
=) consider family of 2D subsystems



Parity anomaly in nodal-line semi-metals
Parity anomaly for a 2D subsystem:
 

       Action for (2+1)D Dirac fermions coupled to gauge field

SCS =
P
8⇡

Z
d

3
x ✏

µ⌫�
Aµ@⌫A�

Aµ

=) Pauli-Villars regularization of theory breaks PT symmetry

transverse charge response to applied EM field

Berry phase
SR
e↵[A] = Se↵[A]� lim

M!1
Se↵[A,M ]

• anomalous current from one Dirac point: jµ =
P
4⇡

✏µ⌫�@⌫A�

2

their momenta.
Z
2

topological charge and parity anomaly.— We be-
gin our analysis by discussing the relation between the
Z
2

topological charge of PT symmetric DNLSMs and
the parity anomaly. The Fermi surface of Dirac nodal-
line semimetals consists of one-dimensional Dirac rings,
which have co-dimension d

c

= 1 in the three-dimensional
Brillouin zone (BZ). Without loss of generality, we as-
sume that the DNLSM exhibits only a single Dirac ring,
which is located within the k

z

= 0 plane [see Fig. 1(a)].
Its low-energy Hamiltonian reads [35]

H(k) =
1

⇤
[k2

0

� (k2
x

+k2
y

)� b2k2
z

]�
3

+ v
z

k
z

�
2

+m�
1

, (1)

where for later use we have introduced a small PT break-
ing mass m�

1

. In a DNLSM material this mass term
could be generated, for example, by inversion breaking
uniaxial strain or pressure. In the absence of m�

1

the
Hamiltonian H(k) is PT symmetric with the PT op-
erator P̂ T̂ = �

3

K̂. The symmetry protection of the
Dirac ring (1) is guaranteed by a quantized Z

2

topolog-
ical charge ⌫, which is given by the parity of the Berry
phase along a loop S1 that interlinks with the Dirac ring
[green loop in Fig. 1(a)]. That is, ⌫ is expressed as

⌫[S1] =
1

⇡

Z

S

1

d� trA(') mod 2, (2)

where the integration is along the loop S1, parametrized
by ' 2 [�⇡,⇡), and A

↵�,j

= h↵,k|i@
kj |�,ki denotes the

Berry connection of the occupied Bloch eigenstates |↵,ki.
PT symmetry ensures that ⌫ can only take on the quan-
tized values 0 and 1. Loops S1 that interlink with a
Dirac ring have a nontrivial Berry bundle, which results
in a nonzero topological charge ⌫ = 1. In two dimen-
sions, Eq. (2) assures the stability of the Dirac points
in graphene. In fact, since graphene is PT symmetric
and its Dirac points have co-dimension d

c

= 1, it be-
longs to the same entry in the classification of topological
semimetals as DNLSMs [33].

Guided by this observation, we introduce cylindri-
cal coordinates {k

⇢

,�, k
z

} and decompose the (3+1)-
dimensional DNLSM into a family of (2+1)-dimensional
subsystems parameterized by the angle �, as shown in
Fig. 1(a). The subsystems exhibit two Dirac points with
opposite Berry phase [52], each of which is described by a
(2+1)-dimensional quantum field theory with the action

S� =

Z
d3x  ̄ [i�µ(@

µ

+ ieA
µ

) +m] , (3)

where  is a two-component Dirac spinor coupled to
the electromagnetic gauge field A

µ

. Here,  ̄ =  †�0,
{�µ, �⌫} = 2⌘µ⌫ , and ⌘µ⌫ = diag(1,�1,�1). The mass
term m ̄ breaks spacetime inversion symmetry, since
the spinors transform under PT as  ! �2�0 and
 † ! � †�0�2. In the absence of the mass term m ̄ ,

Figure 1: Dirac ring and drumhead surface states of a Dirac
nodal-line semimetal. (a) The topological charge is de-
fined in terms of a line integral along the green loop. The
blue plane indicates the two-dimensional subsystems that are
parametrized by the angle �. (b) Relationship of the Dirac
ring to the surface states of a topological nodal-line semimetal.
The yellow and blue regions show the bulk and surface BZ,
respectively. Drumhead surface states occur within the red
region, which is bounded by the projected Dirac ring. Within
this region the topological charge ⌫, Eq. (2), takes on the
value ⌫ = 1, while outside this region it is zero.

Eq. (3) is PT symmetric (with (PT )2 = 1) and can
be viewed as a classical action of (2 + 1)-dimensional
Dirac fields. It is however impossible to quantize this
classical action without breaking the spacetime inversion
symmetry, i.e., PT symmetry is broken by the regular-
ization of the quantum theory. To see this, let us con-
sider the Pauli-Villars regularization of the e↵ective ac-
tion S�

e↵

[A,m] of Eq. (3), which is obtained from the
fermion determinant by integrating out the Dirac spinors.
The e↵ective action with zero mass S�

e↵

[A, 0] needs to
be regularized due to ultraviolet divergences, which can
be achieved by the standard Pauli-Villars method, i.e.,
S�,reg

e↵

[A] = S�

e↵

[A, 0] � lim
M!1

S�

e↵

[A,M ]. While this reg-

ularization scheme preserves gauge symmetry, it breaks
PT invariance, since the Pauli-Villars mass term M  ̄ 
remains finite in the M ! 1 limit, yielding the Chern-
Simons term [19, 21]

S�

CS

= ⌘
e2

4⇡

Z
d3x ✏µ⌫�A

µ

@
⌫

A
�

, (4)

where ⌘ = ±1 is the sign of the Dirac point Berry phase.
As discussed in Eq. (2), the Berry phase is related to the
topological charge ⌫ via ⌫ = ⌘ mod 2.
From the modern condensed matter viewpoint, the

parity anomaly is attributed to the Z
2

topological charge
⌫ of the PT symmetric Dirac point. That is, because of
the topological obstruction from the nontrivial topologi-
cal charge, there exists no PT symmetric lattice ultravi-
olet regularization for a single (2+1)-dimensional Dirac
point. In other words, any lattice regularization has to
involve an even number of nontrivial Dirac points, since
the sum over all topological charges in the BZ torus must
be zero. This is consistent with the Z

2

nature of the par-
ity anomaly, since a doublet of (2+1)-dimensional Dirac

• Pauli-Villars mass term remains finite for

M ! 1, yielding Chern-Simons term:

=) e↵ective action S�
e↵[A, 0] with m = 0 is UV divergent

breaks PT symmetry



Parity anomaly in nodal-line semi-metals

Anomalous transport within semi-classical response theory:

Berry curvature

Anomalous current vanishes after integrating over �Figure 3: current generated in gapped nodal loop system by electrical field in ê
y

(left panel) and ê
z

(right panel) direction.

which is depicted in Fig. 3.
Electrical field can also be applied in ê

x

or ê
y

direction, the corresponding currents are
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1.2.2 Gapped case

Next we calculate the current in the gapped case,
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We consider angular di↵erential current,
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From above discussion, the integrand approximates delta function, which suggests contribution
around nodal loop dominates. By using kk = R

Bk
+ ⇢

2RBk
cos ✓ and k

z

= ⇢

C

z

sin ✓, the integration

becomes,
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where the integration range is ⇢ 2 (0,
p

µ2 ��2), which comes from E 2 (�, µ). With this expres-
sion, we can calculate the currents and conductance with E in di↵erent direction.
Below, we calculate conductance when electrical field are in ê

x

, ê
y

and ê
x

directions.
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Figure 3: current generated in gapped nodal loop system by electrical field in ê
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From above discussion, the integrand approximates delta function, which suggests contribution
around nodal loop dominates. By using kk = R
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where the integration range is ⇢ 2 (0,
p
µ2 ��2), which comes from E 2 (�, µ). With this expres-

sion, we can calculate the currents and conductance with E in di↵erent direction.
Below, we calculate conductance when electrical field are in ê

x

, ê
y

and ê
x

directions.
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Berry 
curvature

transverse 
current

• transverse current:

• di↵erential current:

universal part!

Xia, Chiung, Niu RMP 10• anomalous velocity:
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R: radius of nodal ring m: small PT breaking term E: electric field
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x y
z

(a)

(b)

In Bloch Hamiltonian is given by,

H
B

= (m
z

� 2tk(cos(kxa) + cos(k
y

a))� 2t
z

cos(k
z

a))�3 � 2t
so

sin(k
z

a)�2 +��1, (17)

of which the energy spectrum at k
z

= 0 is plotted in Fig. 4 left panel. � is a small perturbation.
With open boundary condition in ê

z

direction, we can obtain the energy band shown in Fig. 4 right
panel, where the surface states is marked by red line.
This surface state, like the edge states in graphene, can be engineered to select certain states on
nodal loop, just as that in [3].

2.2 Nodal loop filter

Following [3], we construct a similar structure in Fig. 5 to select states on nodal loop. In left and
right cylinder, there are 40 sites along z direction, while in the middle there are only 10 sites. The
surface states in the middle serves as a filter for states on nodal loop. In Fig. 5, there are more states
transported in red region than black region, where dashed line represents Fermi surface.

Figure 5: Construction of an nodal loop filter. In the upper panel, three energy spectrums of left
cylinder, middle cubic and right cylinder in the lower panel.

5

Drumhead surface states as a momentum filter:

• Consider dumbbell geometry:

transverse 
current

4

x y
z

Figure 4: A filter for soft modes along a Dirac nodal loop.

For concreteness, we use the lattice model of DNLSM,

H
L

(k) = [m
z

� 2tk(cos kx + cos k
y

)

� 2t
z

cos k
z

]�3 � 2t
so

sin k
z

�2 +��1. (6)

When 0 < (m
z

� 2t
z

)/2tk < 2 and � = 0, there exists a
single nodal loop centred at the origin of the k

x

-k
y

plane
with k

z

= 0. We place the DNLSM on the dumbbell
geometry, as illustrated in Fig.4(a), such that the mid-
dle bridge is appropriately confined for the z-dimension
while the other two dimensions are extensive, which con-
nects the two relatively unconfined Weight plates. The
confinement in the middle bridge implies that the trans-
port in this part mainly comes from the drumhead states
when the chemical potential is set close to the band cross-
ing level of the bulk nodal loop, and thereby a filter is
realized for soft modes from distinct regions along the
nodal loop as explained in the following. When apply-
ing voltage along the x-direction illustrated in Fig.4(a),
electric currents are induced from the left plate to the
right, which are dominated by carriers of quasi particles
excited mainly from the (two disconnected) arcs perpen-
dicular to the exerted electric field. Therefore, cross sec-
tions with k

x

= 0 of the spectra are plotted, respectively,
for the three parts of the dumbbell, noting that carri-
ers are mainly excited from arcs as neighborhoods of the
two points of minimal gap in Fig.4(b) i on the nodal
loop. However, from the spectrum in Fig.4(b)ii, only
quasi particles from the right (red) arc are able to propa-
gate through drumhead modes across the middle bridge,
namely a filter for soft modes from distinct parts of the
nodal line has been realized by utilizing the drumhead
states of the DNLSM.

Propagating across this filter, the remaining currents
are populated by quasi particles from the right arc in the

left plate, which, according to Eq.(5), have components
toward z-direction. Thus, net electric charge is accu-
mulating on the upper surface of the right plate, and
a voltage has been developing for the upper and lower
surface of the right plate, which can be detected as the
experimental signature of the nodal topological physics
of the DNLSM. The voltage is related to the geometry
of the nodal loop in momentum space, which determines
the amount of modes that can be excited by the electric
field. When the nodal loop is approximately a circle, the
voltage �V at the leading order is linearly proportional
to the radius R of the circle,

�V / R, (7)

which may be examined experimentally.

Discussions
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Figure 2: Topological currents in a Dirac nodal-line
semimetal. The red arrows indicate the Berry curvature⌦(k),
Eq. (6), in the presence of a small PT breaking mass term
m�1. The green arrows represent the transverse topological
current jt,�, Eq. (7), that is induced by an external electric
field applied along (a) the ŷ direction and (b) the ẑ direction.

points coupled to gauge fields can be quantized without
breaking PT symmetry.

To conclude, in the process of quantizing the clas-
sical action (3) we have broken PT symmetry due to
the Chern-Simons term (4). Thus, although the parity
anomaly strictly speaking occurs only in (2+1) dimen-
sions, it also appears in (3+1)-dimensional DNLSMs.

Topological transport in DNLSMs.— Next we discuss
the anomalous transport phenomena that are associated
with the parity anomaly. Varying the Chern-Simons
term (4) with respect to the electromagnetic gauge field
A

µ

yields the anomalous transverse current

jµ
t,�

= ⌘
e

4⇡
✏µ⌫�@

⌫

A
�

(5)

for a single Dirac cone in a given (2+1)-dimensional sub-
system. Thus, electromagnetic fields projected onto a
two-dimensional subsystem induce a topological current,
which flows transverse (i.e., perpendicular) to the ap-
plied field. Since the energy bands of DNLSMs are, to a
first approximation, nondispersive along the � direction,
one might expect that the electromagnetic response of
DNLSMs in the presence of a small PT breaking term is
dominated by this topological current. However, for each
two-dimensional subsystem there are two Dirac points
that contribute to the transverse current with opposite
signs ⌘ = ±1. Since these two contributions cancel out
to zero, the topological current can only be measure by a
device that filters electrons based on their momenta, as
we will explain below.

But before doing so, let us give a second derivation of
the transverse topological currents in terms of semiclas-
sical response theory [8]. In the presence of an electric
field, the semiclassical equations of motion for Bloch elec-
trons contain an anomalous velocity proportional to the
Berry curvature. This gives rise to a transverse Hall-like

current [7, 8], given by j

t

= e

2

~
R

d

3
k

(2⇡)

3 f(k) E ⇥ ⌦(k),

where f(k) is the Fermi-Dirac distribution function, E
denotes the electric field, and ⌦(k) represents the Berry
curvature of the Bloch eigenstate |↵,ki, which is defined
as⌦(k) = r

k

⇥h↵,k|ir
k

|↵,ki. From a symmetry analy-
sis it follows that the Berry curvature in a gapped system
vanishes identically, unless either time-reversal or inver-
sion symmetry are broken. Indeed, using Eq. (1) with
m = 0 we find that ⌦(k) is zero in the entire BZ, except
at the Dirac nodal line, where it becomes singular, i.e.,
⌦(k) = ⇡�(k

⇢

� k
0

)�(k
z

)ê
�

. To regularize this divergent
Berry curvature, PT symmetry needs to be broken, for
example, by uniaxial strain, pressure, disorder, or cir-
cularly polarized light, which leads to a small non-zero
mass m�

1

in Eq. (1) and, consequently, a well-behaved
Berry curvature. For the conduction band ⌦(k) is given
by [47]

⌦(k) =
mv

z

k
⇢

/⇤

[( 2k0
⇤

q
⇢

)2 + v2
z

k2
z

+m2]
3
2

ê

�

, (6)

where we have neglected terms of higher order in q
⇢

and
k
z

. Here, q
⇢

= k
⇢

� k
0

is the radial distance from the
Dirac ring. As shown in Fig. 2 the Berry curvature is
peaked at (q

⇢

, k
z

) = (0, 0) and points in opposite direc-
tions at opposite sides of the Dirac ring. The latter is
a consequence of time-reversal symmetry, which requires
that ⌦(k) = �⌦(�k).

From Eq. (6) we can now compute the transverse cur-
rent contributed by states with momentum angle � by
performing the momentum integral only over the two
cylindrical coordinates k

⇢

and k
z

. Assuming that the
chemical potential E

F

= µ lies within the conduction
band, just above the gap opened by m�

1

, we obtain
the following �-dependent Hall current at zero tempera-
ture [47]

j

t,�

' e2

~
k
0

8⇡2

✓
1� m

µ

◆
E⇥ ê

�

, (7)

where we have neglected terms of orderm2. Interestingly,
when the chemical potential µ is bigger than the gap
energy m, the transverse current j

t,�

is dominated by the
first term, which is universal as it follows from the parity
anomaly. Indeed, the first term of Eq. (7) is consistent
with Eq. (5) as it di↵ers only by the di↵erential element
(k

0

/2⇡)d� of the cylindrical coordinate system. Figure 2
displays the distribution of the transverse currents j

t,�

(green arrows) along the Dirac ring for a constant electric
field applied along the ŷ and ẑ directions. We observe
that carriers on opposing sides of the Dirac ring flow into
opposite directions transverse to the electric field. This
leads to an accumulations of charge on opposite surfaces
of the DNLSM.

Dumbbell device.— From the above analysis it is now
clear that the parity anomaly in DNLSMs gives rise to

arXiv:1703.05958



4.  Dirac line nodes protected by 
non-symmorphic symmetries

3

momentum space the (anti)-commutation relations can be al-
tered as the centers of the two crystalline symmetry operations
are di↵erent. We first consider the operations Mx and PT in
two di↵erent orders

(x, y, z)
Mx��! (�x, y, z + 1/2)

PT��! (x + 1/2,�y + 1/2,�z � 1/2) (11)

(x, y, z)
PT��! (�x + 1/2,�y + 1/2,�z)
Mx��! (x � 1/2,�y + 1/2,�z + 1/2) (12)

Since in the x direction Mx and PT reflecting at di↵erent
centers and Mx has an additional half lattice shifting, the
commutation relation between these two symmetry opera-
tions posses an extra momentum-dependent phase ptsms

x =
ei(�kx+kz)ms

x pts. The relation for the entire symmetry oper-
ation is given by PT Mx = �ei(�kx+kz)MxPT [11, 12]. In
the reflection planes kx = 0, ⇡, due to the glide along
the z�direction the eigenvalues Mx = ±e�ikz/2. Since
PT 2 = �1 and PT H(k)PT�1 = H(k), the kramers the-
orem leads to 2-fold degenerate states (|�(k)i, PT |�(k)i)
at any momentum in Brillouin zone. As Mx|�±(k)i =
±e�ikz/2|�±(k)i at the Mx-reflection plane, MxPT |�±(k)i =
�ei(kx�kz)PT Mx|�±(k)i = ⌥ei(kx�kz/2)PT |�±(k)i. As kx =
⇡, MxPT |�±(k)i = ±e�ikz/2PT |�±(k)i. In this regard,
|�±(k)i, PT |�±(k)i in the same eigenspace of Mx lead to the
presence of 4-fold degenerate nodal lines protected by Mx
reflection-glide symmetry only in the kx = ⇡ plane. As
shown in fig. 3(a,b), the two two-fold degenerate bands cor-
respond to two di↵erent Mx eigenvalues. The 4-fold degen-
erate band crossing (nodal line) is robust under the Mx pro-
tection since the band hybridization mixes the Mx eigenval-
ues and breaks Mx symmetry. On the other hand, as kx = 0,
MxPT |�±(k)i = ⌥e�ikz/2PT |�±(k)i the two degenerate states
correspond to di↵erent Mx eigenvalues. If a 4-band cross-
ing occurs in kx = 0 plane, two pairs of the crossings can
be gapped without breaking any symmetries since each pair
is in the same eigenspace of Mx. Therefore, robust nodal
lines are absent in kx = 0 plane as a trivial case. Since in
most of the physical systems, time-reversal inversion operator
and reflection operator usually anticommutes with each other
(if ‘i’ is recovered in the reflection operator for spin-1/2 sys-
tems, the anti-commutation relation is changed to commuta-
tion relation); hence, symmetry-protected nodal lines is com-
monly absent. As the reflection has a di↵erent reflection cen-
ter than inversion symmetry, the emerge of the commutation
relation between Mx and PT protects nodal lines in URSX
plane (kx = 0). Bi2CuO4 is the first concrete material realiza-
tion (c.f. the early theoretical proposals [11,12]).

To show additional 4-fold degeneracy in UR, we further
include Mz symmetry by considering the relation between Mx
and Mz

(x, y, z)
Mx��! (�x, y, z + 1/2)

Mz��! (�x + 1/2, y + 1/2,�z � 1/2) (13)

(x, y, z)
Mz��! (x + 1/2, y + 1/2,�z)

Mx��! (�x � 1/2, y + 1/2,�z + 1/2)
(14)

Similarly, ms
zms

x = ei(�kx+kz)ms
xms

z leads to MzMx =
�ei(�kx+kz)MxMz. This additional phase stems from the
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FIG. 3. (a) bulk energy spectrum on the reflection plane kx = ⇡. en-
ergy scale is weird Blue(red) indicates 2-fold degenerate energy band
corresponding reflection eigenvalue Mx = e�ikz/2(�e�ikz/2). Yang-
hao check. maybe it’s other way around. (b) two double nodal
rings appear at di↵erent energy levels. Green(purple) represents
Mx = e�ikz/2(�e�ikz/2) Check Mx eigenvalue. R point in (b) is �?
(c) (100) surface spectrum shows surface states connecting the pro-
jected double nodal ring. zoom in for the surface states (d) In S R
and UX, any two 2-fold degenerate bands merge in UR as a 4-fold
degenerate band.

the glide property of these two nonsymmorphic symme-
try operators. In UR of the BZ (⇡, ky, ⇡), the additional
phase vanish. As Mx|�±(k)i = ⌥i|�±(k)i, {Mz,Mx} =
0 lead to the states Mz|�±(k)i and MzPT |�±(k)i in dif-
ferent Mx eigenspaces (±i) from the Mx eigenspaces (⌥i)
of |�±(k)i and PT |�±(k)i. Hence, these four orthogonal
states |�±(k)i, PT |�±(k)i,Mz|�±(k)i,MzPT |�±(k)i share the
same energy due to the symmetries. Back to Bi2CuO4, first
due to PT symmetry, any band in BZ is two-fold degeneracy
and each band in UR is four-fold degeneracy, as shown in fig.
3(d), due to the interplay of PT , Mx, and Mz symmetries. This
analysis leads to that for the (magnetic) space group having a
subgroup of this magnetic space group #56.367, UR is always
4-degenerate. For example, BaP2(HO2)4 preserves time rever-
sal symmetry and belongs SG #56 and WO3 TaTe4 SG 130.

As this double nodal line is protected by reflection glide
symmetry, it is natural to ask if the surface states should
be robust under symmetry protection. Although as shown
in fig.3(c) (100) surface spectrum the boundary of the sur-
face states connect the projected double nodal ring, the sur-
face state cannot be protected by magnetic space group sym-
metries in the absence of spin S U(2) symmetry[13]. The
main reason is Mx operation, which is o↵-centered of the unit
cell, is always k-dependent in momentum space. Momentum-
dependence reflection unable to quantize Berry phase; hence,
the bulk cannot be described by well-defined topological in-
variant so the surface states are unstable. In the following, we
use 1D reflection-symmetric toy model (7) to show unquan-
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Constraints of non-symmorphic symmetry  
on band structure 

•Consider 2-fold screw rotation in 1D:
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FIG. 1. Illustration of nonsymmorphic symmetries in one-
dimensional lattices. (a) The nonsymmorphic symmetry is composed
of a π rotation followed by a half translation a/2, where a is the lattice
constant. (b) The nonsymmorphic magnetic symmetry is composed
of the two operations of (a) followed by the exchange of black and
white balls, which represents time-reversal symmetry.

pseudospin) followed by a half translation, as illustrated in
Fig. 1(a). Observing that G(k) anticommutes with σ3, the
Hamiltonian can be written as

H(k) =
(

0 q(k)
q∗(k) 0

)
. (3)

Without loss of generality, we have dropped the term pro-
portional to the identity, which only shifts the energy of
eigenstates. Inserting Eqs. (3) and (1) into Eq. (1), we find that
due to the nonsymmorphic symmetry G(k), q(k) must satisfy

q(k)eik = q∗(k). (4)

We claim that any periodic function q(k) satisfying Eq. (4) has
zeros, and thus any two-band model with the nonsymmorphic
symmetry (1) is required to be gapless. To see this, we
introduce f (z) = q(k) with z = eik , from which it follows
that zf (z) = f ∗(z). If q(k) or f (z) is nonzero on the unit
circle S1, then

z = f ∗(z)/f (z), (5)

which, however, is impossible. This is because for z ∈ S1 the
two sides of Eq. (5) both define functions from S1 to S1, but
the left-hand side has winding number 1, while the winding
of the right-hand side is even, since f ∗(z)/f (z) = e2iArc[f (z)].
Thus, q(k) must vanish at some momentum by contradiction.
For the topological argument to work for multiband theories,
we may replace q(k) in Eq. (3) by the determinant of the
off-diagonal entry, which is discussed in Sec. VIII.

III. NONSYMMORPHIC SYMMETRY COMBINED WITH
INVERSION SYMMETRY

We note that while a unitary nonsymmorphic symmetry
guarantees the existence of a band crossing point, it does
not fix the position of this degeneracy point in momentum
space. However, in the presence of an additional inversion
symmetry, the band crossings are pinned to either the origin or
the boundary of the BZ. To demonstrate this, let us consider the
inversion symmetry P̂ = σ2 î, where î inverses the momentum.
We find that

[H,P̂ ] = 0, P̂G(k)P̂ −1 = −GT (−k), P̂ 2 = −1. (6)

Since q(k) is a periodic function, we expand it as q(k) =∑
n qne

ink . It follows from Eq. (4) that q−(n+1) = q∗
n, which,

as a recursion relation, allows us to express q(k) as

q(k) =
∞∑

n=0

(qne
ink + q∗

ne−i(n+1)k). (7)

From Eq. (6) it follows that σ2H(−k)σ2 = H(k), which
implies q(k) = −q∗(−k) or equivalently qn = −q∗

n . Since qn

are all purely imaginary, we find that

q(k) =
∞∑

n=0

λn

i
(eink − e−i(n+1)k), (8)

with λn being real numbers. We observe that independent of
λn there always exists a band crossing point at k = 0. For
example, by keeping only the zeroth term in Eq. (8), one finds
as a simple concrete model

H0(k) = λ sin kσx + λ(1 − cos k)σy. (9)

We note that the nonsymmorphic symmetry G(k) relates
seemingly independent terms to each other in the Hamiltonian.
This is exemplified by Eq. (9), where all three terms (which are
usually independent) have the same coefficients. Obviously,
higher-order terms in Eq. (8), which constitute symmetry-
preserving perturbations, cannot split the band crossing point
ofH0 at k = 0. That is, the gapless mode at k = 0 described by
the low-energy effective Hamiltonian Heff(k) = λkσx is stable
against symmetry-preserving perturbations.

The fact that the Hamiltonian given by Eq. (8) exhibits a
band crossing at k = 0 can directly be seen by computing the
eigenstate of G(k) andH(k). Because G(k) andH(k) commute
[see Eq. (2)], they can be simultaneously diagonalized by the
same set of eigenstates

H(k)| ± ,k⟩ = E±(k)| ± ,k⟩, G(k)| ± ,k⟩ = g±(k)| ± ,k⟩,
(10)

where the eigenfunctions | ± ,k⟩ are given by

| + ,k⟩ = 1√
2

(
1

ei k
2

)
, | − ,k⟩ = 1√

2

(
1

−ei k
2

)
(11)

and the eigenvalues are

E±(k) = ±2
∞∑

n=0

λn sin
(

nk + k

2

)
, g±(k) = ±e−i k

2 . (12)

We find that the energy and nonsymmorphic symmetry
eigenvalues of | + ,k⟩ at k = ±π are continuously connected
to the corresponding eigenvalues of | − ,k⟩ at k = ∓π (see
Fig. 2). That is, we have

E+(−π ) = E−(π ), E−(−π ) = E+(π ),

g+(−π ) = g−(π ), g−(−π ) = g+(π ). (13)

We note that the eigenfunctions | ± ,k⟩ become degenerate in
energy at k = 0 [i.e., E+(0) = E−(0)], while their nonsymmor-
phic symmetry eigenvalue remains nondegenerate at k = 0
[i.e., g+(0) ̸= g−(0)]. Therefore the two bands | ± ,k⟩ must
cross each other.

To see the topological features of the band structure, we
first note that the eigenvalues g±(k) of the nonsymmorphic
symmetries G form a manifold as a function of momentum k.

195109-2

PHYSICAL REVIEW B 94, 195109 (2016)

Nonsymmorphic symmetry-required band crossings in topological semimetals

Y. X. Zhao* and Andreas P. Schnyder†

Max-Planck-Institute for Solid State Research, D-70569 Stuttgart, Germany
(Received 20 June 2016; revised manuscript received 9 October 2016; published 3 November 2016)

We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings
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algebra of the symmetry operators. To characterize these band degeneracies we introduce a global topological
charge and show that it is of Z2 type, which is in contrast to the local topological charge of Fermi points in, say,
Weyl semimetals. To illustrate these concepts, we discuss the π -flux state as well as the Su-Schrieffer-Heeger
model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic
two-band systems.
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously

*y.zhao@fkf.mpg.de
†a.schnyder@fkf.mpg.de

prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,

2469-9950/2016/94(19)/195109(6) 195109-1 ©2016 American Physical Society
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π
2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
of the eigenvalue g±(k) ∈ U (1), which indicates a nontrivial
topology [see Fig. 2(c)]. To better understand this nontrivial
topology, it is instructive to draw the mutual dependence of
the energy eigenvalues E±, the nonsymmorphic eigenvalues
g±, and the momentum k in terms of a trajectory in the three-
dimensional space (k,φ,E). For the two-band model (9) this is
shown in Fig. 2(d). The projections of this trajectory onto the
three orthogonal planes (E , k), (E , φ), and (k, φ) are shown
in Figs. 2(a), 2(b), and 2(c), respectively. We can see that
the two bands E± are connected as a circle in (k,φ,E) space,
corresponding to the element (2,1) in the homology group
H1(S1 × S1 × R,Z) ∼= Z ⊕ Z.

Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0⟩ + 1−i

2 | − ,0⟩ is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0⟩ + 1+i
2 | − ,0⟩

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
k = π P̂G = G†P̂ [G,T̂ ] = 0
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We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings
in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings
originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the
global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered:
(i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic
symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings
are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the
algebra of the symmetry operators. To characterize these band degeneracies we introduce a global topological
charge and show that it is of Z2 type, which is in contrast to the local topological charge of Fermi points in, say,
Weyl semimetals. To illustrate these concepts, we discuss the π -flux state as well as the Su-Schrieffer-Heeger
model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic
two-band systems.
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously

*y.zhao@fkf.mpg.de
†a.schnyder@fkf.mpg.de

prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π
2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
of the eigenvalue g±(k) ∈ U (1), which indicates a nontrivial
topology [see Fig. 2(c)]. To better understand this nontrivial
topology, it is instructive to draw the mutual dependence of
the energy eigenvalues E±, the nonsymmorphic eigenvalues
g±, and the momentum k in terms of a trajectory in the three-
dimensional space (k,φ,E). For the two-band model (9) this is
shown in Fig. 2(d). The projections of this trajectory onto the
three orthogonal planes (E , k), (E , φ), and (k, φ) are shown
in Figs. 2(a), 2(b), and 2(c), respectively. We can see that
the two bands E± are connected as a circle in (k,φ,E) space,
corresponding to the element (2,1) in the homology group
H1(S1 × S1 × R,Z) ∼= Z ⊕ Z.

Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0⟩ + 1−i

2 | − ,0⟩ is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0⟩ + 1+i
2 | − ,0⟩

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
k = π P̂G = G†P̂ [G,T̂ ] = 0
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
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leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π
2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
of the eigenvalue g±(k) ∈ U (1), which indicates a nontrivial
topology [see Fig. 2(c)]. To better understand this nontrivial
topology, it is instructive to draw the mutual dependence of
the energy eigenvalues E±, the nonsymmorphic eigenvalues
g±, and the momentum k in terms of a trajectory in the three-
dimensional space (k,φ,E). For the two-band model (9) this is
shown in Fig. 2(d). The projections of this trajectory onto the
three orthogonal planes (E , k), (E , φ), and (k, φ) are shown
in Figs. 2(a), 2(b), and 2(c), respectively. We can see that
the two bands E± are connected as a circle in (k,φ,E) space,
corresponding to the element (2,1) in the homology group
H1(S1 × S1 × R,Z) ∼= Z ⊕ Z.

Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0⟩ + 1−i

2 | − ,0⟩ is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0⟩ + 1+i
2 | − ,0⟩

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
k = π P̂G = G†P̂ [G,T̂ ] = 0
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2
classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π
2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
of the eigenvalue g±(k) ∈ U (1), which indicates a nontrivial
topology [see Fig. 2(c)]. To better understand this nontrivial
topology, it is instructive to draw the mutual dependence of
the energy eigenvalues E±, the nonsymmorphic eigenvalues
g±, and the momentum k in terms of a trajectory in the three-
dimensional space (k,φ,E). For the two-band model (9) this is
shown in Fig. 2(d). The projections of this trajectory onto the
three orthogonal planes (E , k), (E , φ), and (k, φ) are shown
in Figs. 2(a), 2(b), and 2(c), respectively. We can see that
the two bands E± are connected as a circle in (k,φ,E) space,
corresponding to the element (2,1) in the homology group
H1(S1 × S1 × R,Z) ∼= Z ⊕ Z.

Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0⟩ + 1−i

2 | − ,0⟩ is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0⟩ + 1+i
2 | − ,0⟩

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
k = π P̂G = G†P̂ [G,T̂ ] = 0
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2-fold screw rotation & inversion in 1D
•Consider 2-fold screw rotation G and inversion  
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π
2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
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Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0⟩ + 1−i

2 | − ,0⟩ is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0⟩ + 1+i
2 | − ,0⟩

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
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=) q(k) = �q⇤(�k), q(k) =
1X

n=0

�n

i

⇣
eink � e�i(n+1)k

⌘

=) band crossing at k = 0

(ii)

ˆP and G commute,

ˆPG(k) ˆP�1
= +G(�k):

=) q(k) = +q⇤(�k), q(k) =
1X

n=0

�n

⇣
eink + e�i(n+1)k

⌘

=) band crossing at k = ⇡



CuBi2O4: Dirac ring protected by glide reflection 
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• Important symmetries: 
 

 — time-reversal     inversion:  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• anti-ferromagnetic insulator w/ space group #56.367 (Pc’cn)



CuBi2O4: Dirac ring protected by glide reflection 
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• 4-fold degenerate ring protected by PT and glide reflection



CuBi2O4: Double drumhead surface states
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•Classification of crystalline topological materials 
 

— w/ reflection symmetry 
— w/ PT and CP symmetry

Conclusions & OutlookConclusions and Outlook

Review article: 
Rev. Mod. Phys 88, 035005 (2016)

• Topological nodal line semimetals 
 

 — Drumhead surface states Ca3P2, Zr5Si3

TI/TSC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

Reflection FS1 p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7

FS2 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

R A MZ 0 MZ 0 MZ 0 MZ 0

R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R+,R++

AI MZ 0 0 0 2MZ 0 MZ2 MZ2

BDI MZ2 MZ 0 0 0 2MZ 0 MZ2

D MZ2 MZ2 MZ 0 0 0 2MZ 0

DIII 0 MZ2 MZ2 MZ 0 0 0 2MZ
AII 2MZ 0 MZ2 MZ2 MZ 0 0 0

CII 0 2MZ 0 MZ2 MZ2 MZ 0 0

C 0 0 2MZ 0 MZ2 MZ2 MZ 0

CI 0 0 0 2MZ 0 MZ2 MZ2 MZ

R�,R��

AI 0 0 2MZ 0 TZ2 Z2 MZ 0

BDI 0 0 0 2MZ 0 TZ2 Z2 MZ
D MZ 0 0 0 2MZ 0 TZ2 Z2

DIII Z2 MZ 0 0 0 2MZ 0 TZ2

AII TZ2 Z2 MZ 0 0 0 2MZ 0

CII 0 TZ2 Z2 MZ 0 0 0 2MZ
C 2MZ 0 TZ2 Z2 MZ 0 0 0

CI 0 2MZ 0 TZ2 Z2 MZ 0 0

R�+ BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0

R+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0

R+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2

R�+ DIII MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0 2MZ� 2Z 0

R+� CII 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0 0 0

R�+ CI 0 0 2MZ� 2Z 0 MZ2 � Z2 MZ2 � Z2 MZ� Z 0

Tabelle I Classification of topological insulators and superconductors (“TI/TSC”) as well as of stable Fermi
surfaces (“FS1” and ”FS2”) and nodal points/lines in 27 symmetry classes with reflection symmetry, in terms of
the spatial dimension d of topological insulators and superconductors, and the codimension p of Fermi surfaces
(nodal lines). “FS1” denote Fermi surfaces (nodal lines) which are within mirror planes and at high-symmetry
points, whereas “FS2” denote those that are away from high-symmetry points. Z2, MZ2 and TZ2 invariants only
protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone. For entries
labeled with Z2, MZ2, TZ2, Fermi surfaces located within the mirror plane but away from high symmetry points
cannot be protected by a Z2 or MZ2 topological invariant. Nevertheless, the system can exhibit gapless surface
states that are protected by a Z2 or MZ2 topological invariant. For gapless topological materials the presence of
translation symmetry is always assumed. Hence, there is no distinction between TZ2 and Z2 for gapless topological
materials.

Figure 3: current generated in gapped nodal loop system by electrical field in ê
y

(left panel) and ê
z

(right panel) direction.

which is depicted in Fig. 3.
Electrical field can also be applied in ê

x

or ê
y

direction, the corresponding currents are

dj

d�
=

e2

~
ER

8⇡2Bk
cos�ê

z

, E = Eê
x

;

dj

d�
= �e2

~
ER

8⇡2Bk
sin�ê

z

, E = Eê
y

.

(9)

1.2.2 Gapped case

Next we calculate the current in the gapped case,

j =
e2

~

Z
d3k

(2⇡)3
⌦

k
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=
e2

~

Z
d3k

(2⇡)3
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kCz
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kkEê

�
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E

(10)

We consider angular di↵erential current,

dj
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e2

~
EB2

kCz
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ZZ

S

k2
k

�3
dkkdkzê�
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(11)

From above discussion, the integrand approximates delta function, which suggests contribution
around nodal loop dominates. By using kk = R

Bk
+ ⇢

2RBk
cos ✓ and k

z

= ⇢

C

z

sin ✓, the integration

becomes,
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◆
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�
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(12)

where the integration range is ⇢ 2 (0,
p

µ2 ��2), which comes from E 2 (�, µ). With this expres-
sion, we can calculate the currents and conductance with E in di↵erent direction.
Below, we calculate conductance when electrical field are in ê

x

, ê
y

and ê
x

directions.
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PRL 116, 156402 (2016)

PRB 93, 205132 (2016)  PRL 116, 156402 (2016)

• Quantum anomalies in nodal-line semimetals 
 

 — Parity anomaly & anomalous transport
arXiv:1703.05958

to be published

• Dirac line nodes with non-symmorphic symmetries 
 

 — CuBi2O4

3

momentum space the (anti)-commutation relations can be al-
tered as the centers of the two crystalline symmetry operations
are di↵erent. We first consider the operations Mx and PT in
two di↵erent orders

(x, y, z)
Mx��! (�x, y, z + 1/2)

PT��! (x + 1/2,�y + 1/2,�z � 1/2) (11)

(x, y, z)
PT��! (�x + 1/2,�y + 1/2,�z)
Mx��! (x � 1/2,�y + 1/2,�z + 1/2) (12)

Since in the x direction Mx and PT reflecting at di↵erent
centers and Mx has an additional half lattice shifting, the
commutation relation between these two symmetry opera-
tions posses an extra momentum-dependent phase ptsms

x =
ei(�kx+kz)ms

x pts. The relation for the entire symmetry oper-
ation is given by PT Mx = �ei(�kx+kz)MxPT [11, 12]. In
the reflection planes kx = 0, ⇡, due to the glide along
the z�direction the eigenvalues Mx = ±e�ikz/2. Since
PT 2 = �1 and PT H(k)PT�1 = H(k), the kramers the-
orem leads to 2-fold degenerate states (|�(k)i, PT |�(k)i)
at any momentum in Brillouin zone. As Mx|�±(k)i =
±e�ikz/2|�±(k)i at the Mx-reflection plane, MxPT |�±(k)i =
�ei(kx�kz)PT Mx|�±(k)i = ⌥ei(kx�kz/2)PT |�±(k)i. As kx =
⇡, MxPT |�±(k)i = ±e�ikz/2PT |�±(k)i. In this regard,
|�±(k)i, PT |�±(k)i in the same eigenspace of Mx lead to the
presence of 4-fold degenerate nodal lines protected by Mx
reflection-glide symmetry only in the kx = ⇡ plane. As
shown in fig. 3(a,b), the two two-fold degenerate bands cor-
respond to two di↵erent Mx eigenvalues. The 4-fold degen-
erate band crossing (nodal line) is robust under the Mx pro-
tection since the band hybridization mixes the Mx eigenval-
ues and breaks Mx symmetry. On the other hand, as kx = 0,
MxPT |�±(k)i = ⌥e�ikz/2PT |�±(k)i the two degenerate states
correspond to di↵erent Mx eigenvalues. If a 4-band cross-
ing occurs in kx = 0 plane, two pairs of the crossings can
be gapped without breaking any symmetries since each pair
is in the same eigenspace of Mx. Therefore, robust nodal
lines are absent in kx = 0 plane as a trivial case. Since in
most of the physical systems, time-reversal inversion operator
and reflection operator usually anticommutes with each other
(if ‘i’ is recovered in the reflection operator for spin-1/2 sys-
tems, the anti-commutation relation is changed to commuta-
tion relation); hence, symmetry-protected nodal lines is com-
monly absent. As the reflection has a di↵erent reflection cen-
ter than inversion symmetry, the emerge of the commutation
relation between Mx and PT protects nodal lines in URSX
plane (kx = 0). Bi2CuO4 is the first concrete material realiza-
tion (c.f. the early theoretical proposals [11,12]).

To show additional 4-fold degeneracy in UR, we further
include Mz symmetry by considering the relation between Mx
and Mz

(x, y, z)
Mx��! (�x, y, z + 1/2)

Mz��! (�x + 1/2, y + 1/2,�z � 1/2) (13)

(x, y, z)
Mz��! (x + 1/2, y + 1/2,�z)

Mx��! (�x � 1/2, y + 1/2,�z + 1/2)
(14)

Similarly, ms
zms

x = ei(�kx+kz)ms
xms

z leads to MzMx =
�ei(�kx+kz)MxMz. This additional phase stems from the
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FIG. 3. (a) bulk energy spectrum on the reflection plane kx = ⇡. en-
ergy scale is weird Blue(red) indicates 2-fold degenerate energy band
corresponding reflection eigenvalue Mx = e�ikz/2(�e�ikz/2). Yang-
hao check. maybe it’s other way around. (b) two double nodal
rings appear at di↵erent energy levels. Green(purple) represents
Mx = e�ikz/2(�e�ikz/2) Check Mx eigenvalue. R point in (b) is �?
(c) (100) surface spectrum shows surface states connecting the pro-
jected double nodal ring. zoom in for the surface states (d) In S R
and UX, any two 2-fold degenerate bands merge in UR as a 4-fold
degenerate band.

the glide property of these two nonsymmorphic symme-
try operators. In UR of the BZ (⇡, ky, ⇡), the additional
phase vanish. As Mx|�±(k)i = ⌥i|�±(k)i, {Mz,Mx} =
0 lead to the states Mz|�±(k)i and MzPT |�±(k)i in dif-
ferent Mx eigenspaces (±i) from the Mx eigenspaces (⌥i)
of |�±(k)i and PT |�±(k)i. Hence, these four orthogonal
states |�±(k)i, PT |�±(k)i,Mz|�±(k)i,MzPT |�±(k)i share the
same energy due to the symmetries. Back to Bi2CuO4, first
due to PT symmetry, any band in BZ is two-fold degeneracy
and each band in UR is four-fold degeneracy, as shown in fig.
3(d), due to the interplay of PT , Mx, and Mz symmetries. This
analysis leads to that for the (magnetic) space group having a
subgroup of this magnetic space group #56.367, UR is always
4-degenerate. For example, BaP2(HO2)4 preserves time rever-
sal symmetry and belongs SG #56 and WO3 TaTe4 SG 130.

As this double nodal line is protected by reflection glide
symmetry, it is natural to ask if the surface states should
be robust under symmetry protection. Although as shown
in fig.3(c) (100) surface spectrum the boundary of the sur-
face states connect the projected double nodal ring, the sur-
face state cannot be protected by magnetic space group sym-
metries in the absence of spin S U(2) symmetry[13]. The
main reason is Mx operation, which is o↵-centered of the unit
cell, is always k-dependent in momentum space. Momentum-
dependence reflection unable to quantize Berry phase; hence,
the bulk cannot be described by well-defined topological in-
variant so the surface states are unstable. In the following, we
use 1D reflection-symmetric toy model (7) to show unquan-


