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Abstract

From recent advances in solid state physics, a novel material classification scheme has evolved

which is based on the concept of topology and provides an understanding of different phe-

nomena ranging from quantum transport to unusual flavors of superconductivity. Spin-orbit

coupling is a major term in defining the topology of materials, and its interplay with electron-

electron correlations yields novel, intriguing phenomena. In the weak to intermediate cor-

relation regime, spin-orbital entanglement leads to the emergence of topological insulators,

which constitute Dirac materials with two dimensional spin-polarized helical edge or surface

states and an insulating bulk. The concept of topology has led to a more general view of

phenomena which previously seemed unrelated. In the specific case of topological insulators,

theory predicts that their unique band structure leads to a high thermoelectric performance,

which is of practical relevance for energy conversion applications.

In the strong correlation regime, the spin-orbit coupling removes the orbital degeneracy,

thereby enhancing quantum fluctuations of the spin-orbit entangled states. This in turn can

lead to the emergence of novel phases such as quantum spin liquids and unconventional

superconductivity. The Kitaev quantum spin liquid (QSL) is a topological state of matter that

exhibits fractionalized excitations in the form of Majorana fermions. The fractionalization

refers to the ability to describe the electrons as two well-defined independent quasiparticles.

The exotic Majorana particles may find future applications in robust quantum computation.

The main aim of this thesis was to study these novel states of matter in the form of two different

materials that fall in the weak and strong correlation regime, respectively. On this basis, it

should furthermore be explored whether benefit can be taken of their properties by combining

them with other quantum materials into heterostructures.

In the first part of this thesis, nanoplatelets of bismuth chalcogenide-based 3D topological

insulators were grown by chemical vapor deposition, and characterized by magnetotransport

experiments. Having established charge transport characteristics of the single components, in

the aim to exploit their high thermoelectric efficiency, the lateral heteroctructures of them

are fabricated. Their investigation by scanning photocurrent microscopy revealed strong
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photocurrent generation at the p-n junction, which could be explained by heating effects

due to the laser illumination. The obtained results demonstrate that such type of hybrid

heterostructure is a promising route to enhance the thermoelectric performance in nanos-

tructured devices.

In the second part of this thesis, the Kitaev spin liquid candidate,α-RuCl3, a spin-orbit coupled

material in the strong correlation regime, was studied. Raman spectroscopy on exfoliated α-

RuCl3 revealed a broad magnetic continuum at low energies which according to its particular

deviation from bosonic character is assigned to the fractionalized excitations. Furthermore, in

complementary charge transport experiments, it was found that the magnetic fluctuations

and structural changes in this material are highly entangled, and influence the emergence of

the fractionalized excitations.

Finally, it was investigated whether the magnetic insulator character of α-RuCl3 can be ex-

ploited to alter the graphene band structure through a proximity effect in vertical graphene/α-

RuCl3 heterostructures. Measurements of their low-temperature, nonlocal resistance con-

firmed the possibility to induce pure spin currents in this manner. At the same time, the

charge transport through the graphene served as a probe of the magnetic ordering in α-RuCl3,

although the complex magnetic behavior in this material necessitates further experimental

and theoretical studies.

Key words: Spin-orbit coupling, electron-electron correlations, topological insulators, Kitaev

spin liquid, photothermoelectricity, fractionalized excitations, Mott insulator, van der Waals

heterostructures.
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Zusammenfassung

In dieser Doktorarbeit wurden zwei Arten von Materialien mit starker Spin-Bahn-Kopplung

untersucht. Dabei handelte es sich zum einen um dreidimensionale (3D) topologische Isolato-

ren, die in das schwache Korrelationsregime fallen, und zum anderen um den magnetischen

Isolator α-RuCl3, der sich im starken Korrelationsregime befindet. Die starke Spin-Bahn-

Kopplung in topologischen Isolatoren als ein Beispiel für Dirac-Materialien führt zur Bildung

von topologisch geschützten Oberflächen- oder Randzuständen. Die unterdrückte Rückstreu-

ung von Ladungsträgern in diesen Zuständen macht solche Materialien vielversprechend

für neuartige Anwendungen in der Spinelektronik. Dazu gehören faszinierende Perspektiven

für die Optospinelektronik, da mittels zirkular polarisiertem Licht Spin-polarisierte Ströme

in toplogischen Isolatoren erzeugt werden können. Letztere sind darüber hinaus aufgrund

ihrer besonderen Bandstruktur von großem Interesse für thermoelektrische Anwendungen.

Bismutchalkogenid-basierte 3D topologische Isolatoren gehören zu den effektivsten thermo-

elektrischen Materialien, im Zusammenhang mit beispielsweise Graphen, in welchem unter

optischer Anregung die elektronische Temperatur über der des Gitters liegt, wodurch es für

die Erzeugung heißer Ladungsträger z.B. im Rahmen der Thermoelektrik in Betracht kommt.

Im schwachen Korrelationsregime haben Materialien wie das α-RuCl3 Interesse auf sich ge-

zogen, insbesondere aufgrund ihrer niederenergetischen Anregungen wie zum Beispiel den

ladungsfreien, auf Spin-Fraktionalisierung beruhenden Spinonen. α-RuCl3 ist besonders at-

traktiv in diesem Zusammenhang, da sein auf dem hexagonalen Gitter basiertes Kitaev-Modell

exakt lösbar ist und somit die eingehende Untersuchung von topologischen Spinflüssigkeiten

und fraktionalen Quasipartikeln gestattet. Von quantisierten Spinflüssgkeiten wird zudem

vermutet, dass sie eine wichtige Rolle in der Hochtemperatur-Supraleitung einnehmen. Der

Einbau dünner Schichten aus solchen Materialien in van der Waals-Heterostrukturen könnte

ferner zur Untersuchung neuartiger Kopplungsphämomene an den Grenzflächen dienen.

Der erste Teil dieser Arbeit beschäftigte sich mit der Herstellung und Charakterisierung von

Nanoplättchen aus Bi2Te2Se (BTS) als n-dotiertem bzw. Sb2Te3 als p-dotiertem dreidimen-

sionalen topologischen Isolator. Basierend auf ihrem erfolgreichen CVD Wachstum wurden

einzelne BTS und Sb2Te3 Nanoplättchen insbesondere auf ihre Magnetotransporteigenschaf-

ten hin untersucht. Für das zusätzliche Ziel, eine hohe Ladungsträgermobilität und verringerte
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Ladungsträgerkonzentration im Volumen zu erreichen, wurden die beiden Verbindungen auf

hBN Nanoschichten anstatt auf der Si/SiO2 Oberfläche gewachsen.

Auf Basis obiger Resultate zu den Einzelkomponenten-Bauelementen wurden dann auch He-

terostrukturen aus BTS und Sb2Te3 untersucht. Da die thermoelektrische Charakteristik von

Bauelementen durch die thermoelektrische Kraft ihrer Komponenten bestimmt ist, kommt

der Entwicklung und dem Einbau von weiter entwickelten Materialien eine wichtige Bedeu-

tung zu. Hierfür wurden laterale BTS/Sb2Te3 Heterostrukturen gewachsen, wobei die CVD

Wachstumsparameter gezielt eingestellt wurden, um die relativen lateralen Abmessungen

sowie Schichtdicken zu kontrollieren. Das kontrollierte Wachstum der lateralen Heterostruk-

turen aus topologischen Isolatoren ermöglichte es, die thermoelektrischen Eigenschaften der

Bauelemente einzustellen. In Untersuchungen des elektrischen Verhaltens unter Lichteinfluss

mittels Rasterphotostrommikroskopie wurden ausgeprägte Photoströme in der Größenord-

nung von mehreren hundert µA gefunden. Die Größe dieses Signals übertrifft dasjenige von

elektrostatisch definierten, lateralen p-n Übergängen in Graphen um ca. drei Größenordnun-

gen. Zudem zeigen die lateralen Heterostrukturen aus topologischen Isolatoren ein verstärktes

photothermoelektrisches Ansprechen mit Seebeck-Koeffizienten über 230 µV/K. Weitere Ver-

besserungen könnten durch das Wachstum verfeinerter Heterostrukturen auf hBN als Isolator,

oder durch parallele Integration mehrerer solcher thermoelektrischen Bauelemente erzielt

werden.

Der zweite Teil dieser Arbeit fokussierte auf die elektrischen Eigenschaften des Kitaev-Materials

α-RuCl3. Theoretischen Studien zufolge sollte dieses aufgrund seiner ideal hexagonalen, zwei-

dimensionalen (2D) Gitterstruktur Kitaev-Wechselwirkungen beinhalten. Überzeugende Be-

lege für das Vorhandensein fraktionalisierter Anregungen in α-RuCl3 wurden zuvor durch

Neutronenbeugung und Ramanspektroskopie erhalten. Im letzteren Fall handelt es sich um

eine ungewöhnliche Temperaturabhängigkeit der Breite bestimmter Ramanmoden, welche

sich vom konventionellen bosonischen Verhalten unterscheidet. Ein Ziel der vorliegenden

Arbeit war es, dieses Phänomen in mechanisch exfolierten, ultradünnen α-RuCl3 Schichten

eingehend zu untersuchen. Die erhaltenen Ramanspektren beinhalteten dieselben Hinweise

auf fraktionalisierte Anregungen, wie sie zuvor an makroskopischen Proben beobachtet wur-

den. Allerdings trat die Abweichung vom bosonischen Verhalten bereits bei etwas höheren

Temperaturen in Erscheinung.

Weiterhin wurde eine zuverlässige Methode zur elektrischen Kontaktierung einzelner, ultra-

dünner α-RuCl3 Schichten entwickelt, welche es ermöglichte, Änderungen in deren elek-

trischem Widerstand in Abhängigkeit der Temperatur zu detektieren. In Übereinstimmung

mit der Theorie wurde das typische Verhalten eines Mott-Isolators beobachtet, wobei im

Hüpfverhalten bei ungefähr derselben Temperatur eine Änderung auftrat, wie für das Ein-

setzen der Spin-Phonon Wechselwirkungen in den Ramanspektren. Diese Beobachtungen

deuten auf die Verknüpfung von Kristallstruktur und Magnetismus im α-RuCl3 hin. Die ver-

lässliche Kontaktierung dieses Materials eröffnet die Möglichkeit, es in nanostrukturierte

Bauelemente einzubauen, um die zugrundeliegenden fraktionalisierten Spinon auszunut-

zen. Als weitere Perspektive könnte das Wechselspiel zwischen Spin-Bahn-Kopplung und

elektronischer Korrelation Zugang zu einer ungewöhnlichen Art von Supraleitung in α-RuCl3
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bieten. Diese Option wird gestützt durch die kürzlich beschriebene Beobachtung einer su-

praleitenden Phase in Sr2RuO4, welches ebenfalls ein viel versprechender Kandidat für einen

Spinflüssigkeit-Grundzustand ist. Für α-RuCl3 könnte dies durch Einstellen der Elektronen-

korrelationslänge über den elektrostatischen Gate-Effekt erreicht werden. In zukünftigen

Experimenten ließe sich eine ausreichend große Änderung der Ladungsträgerkonzentrati-

on mithilfe eines Polymerelektrolyt-Gates erzielen, um somit das α-RuCl3 in die Nähe des

Spinflüssigkeit-Grundzustands zu bringen.

Die ultradünnen α-RuCl3 Schichten wurden schließlich mit Graphen kombiniert, um eine

neue Art von vertikaler van der Waals Heterostruktur zu realisieren. Das Hauptziel bestand hier-

bei darin, festzustellen, ob eine magnetische Austauschwechselwirkung an der Grenzfläche

zum Graphen erzeugt werden kann. Solch ein Effekt konnte tatsächlich in Magnetotransport-

untersuchungen an einzelnen Graphen/α-RuCl3 Heterostrukturen beobachtet werden. Er

zeigt sich in der Erzeugung von Spinströmen selbst in Abwesenheit eines äußeren magne-

tischen Felds. Dieser Erfolg öffnet die Tür für neuartige spinelektronische Bauelemente, in

welchen die Spinerzeugung auf rein elektrischem Weg erfolgt, ohne auf ein angelegtes Magnet-

feld angewiesen zu sein. Eine weitere Motivation zur Untersuchung der Graphen/α-RuCl3

Heterostrukturen bestand darin, über das Magnetotransportverhalten entsprechender Bau-

elemente Informationen über die Spinorientierung nicht im Volumen des α-RuCl3, sondern

speziell an seiner 2D Oberfläche zu gewinnen. An Heterostrukturen bestehend aus entwe-

der CVD-gewachsenem oder exfoliertem Graphen wurde beobachtet, dass die Stärke der

magnetischen Austauschwechselwirkung sensitiv von der Qualität der Grenzfläche abhängt.

Der Nachweis, dass der magnetische Isolator α-RuCl3 beachtliche Spineffekte in Graphen

auszulösen vermag, schafft eine nützliche Grundlage für die Untersuchung eines ähnlichen

Effekts in Kombination mit anderen 2D Quantenmaterialien. Eine hochinteressante Option

für die Zukunft wäre es, eine starke Spin-Bahn-Kopplung über Graphen/α-RuCl3 Grenzfläche

zu erzeugen. Auf diese Weise könnte es gelingen, die extrem kleine Bandlücke im Graphen

zu vergrößern, und somit seine eindimensionalen Randzustände robust zu machen. Die er-

folgreiche Überführung von Graphen in einen robusten Quanten-Spin-Hall-Isolator würde

weitreichende Perspektiven für Anwendungen in der Spinelektronik eröffnen.

Stichwörter: Spin-Bahn-Kopplung, Elektronenkorrelation, topologische Insulatoren, Kitaev

Spinflüssigkeit, Photothermoelektrizität, Mott-Isolator, van der Waals Heterostrukturen.
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1 Introduction

The recent discovery of new phases of matter has profoundly changed the way we interpret

manifestations of quantum physics in materials. The details of atomic bonding and the

interactions of the electrons fundamentally determines the macroscopic behavior of a material.

In particular, two aspects of quantum mechanics have forged a whole new ranges of quantum

materials. The first important aspect of quantum mechanics is the topological nature of

the wave function of a quantum system.[7] As an intriguing example of the manifestation

of this effect are topological insulators which are materials with insulating bulk which host

Dirac like surface states. Another familiar example is the existence of quantized vortices

in superconductors. Here the quantization arises because the superconducting condensate

phase can wind around a vortex only by an integer multiple of 2π.[8] In general, the topological

nature of the wave function, supports a broad range of phenomena which enable the study of

fractionalized excitations with possible applications like dissipationless charge transport and

quantum computation.

Another relevant feature of quantum mechanics is entanglement of the quantum states as

examplified by quantum teleportation experiments involving two photons. In principle, even

the wavefunctions of two electrons in a singlet state are entangled. Considering that a bulk

piece of metal contains a huge number of electrons on the order of 1023 electrons, it becomes

evident how complicated the whole system will be. However, based upon the Fermionic

statistics, it is often sufficient to take only the electrons at the Fermi surface which have access

to the available states into account. Even this will leave a massive number of electrons which

have entangled states.[8]

Combination of topology and entanglement will cause the emergence of new classes of

particles. For example in strongly correlated systems the existence of fractionalized excitations

has been predicted and signs of it has been detected in different experiments.[9, 10] Further

examples are Bogoliubov quasiparticles in superconductors, and the emergence of composite

fermions in quantum Hall conductors. Composite fermions [11] are known to be quasiparticles

which obey the fractional exchange statistics proposed by Laughlin.[12]
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Chapter 1. Introduction

High quality samples, providing materials with low amount of scattering centers together with

recent advances in measurement techniques has enabled the discovery and detection of these

novel states of matter.

How the above described effects determines material properties can be gleaned from the

interplay of the correlations between electrons due to coulomb interaction and spin orbit (SO)

interaction (see Figure 1.1).

Figure 1.1 – Schematic diagram of electronic materials in dependence of the electron-electron
correlation energy U /t and spin orbit coupling λ/t . The materials studied in this thesis belong
to the right side of the phase diagram where spin orbit interaction is intermediate or strong.
Figure from [1].

Transition metal oxides with partially filled 4d and 5d shells exhibit an intricate interplay

between spin orbit coupling (SOC), electron-electron correlations and crystal field effects.

The presence of strong spin orbit coupling in these materials, in the weak correlation regime

leads to the emergence of topological insulators including compounds like Bi2Te3, Sb2Te3

and Bi2Te2Se.[1] By comparison, the Coulomb interactions in Mott insulators in the strong

correlation regime are so strong that the electrons are localized at atomic sites. Mott insulators

with 4d or 5d orbitals show very different characteristics from corresponding materials with

3d orbitals.[13] In the former, the comparable relativistic spin orbit interaction and Coulomb

interactions lock the spin and orbital degrees of freedom, resulting in highly frustrated magnets.

Such a frustration will prohibit the formation of classical magnetic ordering, thus leading

to called spin liquid systems in analogy with liquid Helium. Among the materials which

are predicted to show spin liquid phase is α-Rucl3 as a promising candidate to manifest

Kitaev physics and spin liquid phase.[14, 15] Since these materials are predicted to host

Majorana quasiparticles with non-Abelian statistics, they may find application in novel types

of electronic devices.

Apart from investigating the materials in order to study new physical phenomena, implement-

ing them in device geometries introduces a whole new realm of challenges.
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The main aim of this thesis was to fabricate and characterize novel types of heterostructures

comprised of SO materials. A major emphasis was on exploring the suitability of the het-

erostructures as components of novel (in particular, thermoelectric or spintronic) devices,

as well as to identify possible new electronic features arising from the combination of two

differently doped TIs, or of a 2D quantum material (i.e., graphene) with a magnetic insulator

(i.e., α-RuCl3). The content of this thesis is divided into the following chapters:

Chapter 2 provides the necessary theoretical background related to the region in the phase di-

agram where SOC is strong and the electron-electron correlations are weak. These two effects

in the presence of time reversal symmetry lead to the emergence of topological insulators.

In this context, a closer look will be taken at the materials physics in this regime, and the

principles underlying the specific properties of topological insulators explained.

Chapter 3 addresses the physics of materials in the phase diagram where electron-electron

correlations gain relevance. It is described how SO interactions lead to enhanced quantum

fluctuations and as a result highly nontrivial magnetic ordering can emerge.

Chapter 4 outlines the experimental methods employed in this thesis and describes the imple-

mentation principles of the experiments in combination with device geometries and device

fabrication techniques.

In Chapter 5 the general electrical transport properties of the investigated topological insu-

lators are described, including the influence of external magnetic fields. Furthermore, the

fabrication methodology and characterization of lateral as well as vertical TI heterostructures

are described.

The focus of Chapter 6 is on the use of scanning photocurrent microscopy to investigate the

photocurrent generation mechanism in the topological insulator heterostructures. After intro-

ducing the principles underlying the photocurrent measurements, the obtained experimental

results are interpreted on the basis of the photo-thermoelectric effect.

Chapter 7 is devoted to the description and study of α-RuCl3, a newly emergent material

as a suitable candidate for the study of the Kitaev physics and spin liquid systems. We start

with the inelastic photon experiments and further investigate the material through electric

transport experiments.

Chapter 8 deals with the electrical behavior of graphene in proximity with the magnetic in-

sulator α-RuCl3. The obtained data indicate the presence of significant magnetic exchange

field coupling at the graphene/α-RuCl3 interface. At the same time, the graphene within these

heterostructures serves as a suitable probe for the magnetic properties and spin orientation of

α-RuCl3, which are the subject of intense current research.
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Chapter 1. Introduction

Finally Chapter 9 summarizes the work done in this thesis. In addition we will discuss about

the possible future experiments which according to the experiments done in this thesis and

conclusions driven could provide more information about the materials and ideas investigated

in this work.
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2 Theory of Topological Insulators

Spin-orbit coupling (SOC) is a relativistic effect which links the spin and angular momentum

of an electron. The fine structure suppresses this effect however the atoms with large number

of protons can have significant SOC. In weakly correlated materials, SOC entangles the crystal

momentum and spin of the electron, locking the kinetic and internal degrees of freedom

together leading to a whole new material phase.[5] The concept of topological order was

introduced to describe the quantum Hall effect (more precisely fractional quantum Hall

states) which requires a many body approach.[16] However, the simpler case of the integer

quantum Hall effect (IQHE) can also be explained by the topological order.[7] The quantum

Hall state has properties, such as quantized Hall conductivity and the number of conducting

edge states, which are insensitive to smooth changes of the system. In order to change these

properties, the system would have to pass through a phase transition. Accordingly these

properties can be interpreted in the topological order formalism. Reaching the quantum

Hall state requires applying a magnetic field, whereby the time reversal symmetry of the

system is broken. However, the emergence of topologically robust states does not necessarily

requires a symmetry breaking. Spin orbit interactions can alternatively lead to topological

insulating electronic phases. The bulk of a TI in a time reversal symmetric case like an ordinary

insulator has an energy gap, induced by spin orbit coupling, separating conduction and

valence band, whereas the surface or edge (in the case of 2D TI) features conducting states

protected by time reversal symmetry.[17] This chapter introduces the concept of topology

first as an alternative explanation for the integer quantum Hall effect, and subsequently as an

independent framework to classify materials.

2.1 Topology and Band Theory

2.1.1 Topology

Topology in a mathematical point of view is the study of geometrical properties of objects that

are invariant under smooth deformations. For example, a Möbius stripe is a geometrical object

which has only one surface and one edge. Another facet of topology becomes evident through

the distinction between a sphere and a doughnut. A sphere can be smoothly deformed to
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Chapter 2. Theory of Topological Insulators

many shapes but not shapes with holes in them, such as a doughnut. The relevant quantity in

this respect is genus which is essentially the number of holes in an object. Genus is an integer

topological invariant, and as a result surfaces with different genus can not transform into each

other smoothly. The Gauss-Bonnet theorem states that the integral of the Gaussian curvature,

K over a surface defines an integer topological invariant called the Euler characteristic,

χ= 1

2π

∫
S

K d A (2.1)

How the concept of topological invariance has evolved in physics, in particular regarding its

role in band theory, will be described in the following.

2.1.2 The Insulating State

Electronic band theory provides a language to describe the electronic structure of solids. One

of the simplest forms of electronic state occurs when electrons are strongly confined to the

atom they belong such that there is only very weak interactions with neighboring atoms. In an

insulator, a finite amount of energy is required to make an electron mobile. However covalent

bonding between atoms in some materials loosens the confinement of electrons to one atom.

In this case, the Bloch theorem provides Bloch states as a function of the crystal momentum

|U (K )〉 which are the eigenstates of the Bloch Hamiltonian H(K ) to describe such states

and their differences. The eigenenergies of these states En(K ) define the energy band that

collectively form the band structure. In an insulator there is a large gap between conduction

and valence band. Although in semiconductors this gap is smaller than in insulators, they

share the same band structure characteristic and hence belong to the same phase. In other

words, their band structure is interconvertible through smooth and continuous tuning of the

Hamiltonian, without closing the gap and any phase transition. In the TI language, there is a

topological equivalence between these states.

In the topological classification scheme, all conventional insulators are equivalent to each

other, and in turn equivalent to vacuum. Vacuum, according to relativistic quantum theory,

has a gap for pair production. [7] However, not all states with an energy gap are equivalent to

vacuum, as explained below by taking a look at the integer quantum Hall effect.

2.1.3 Integer Quantum Hall Effect

The Hall effect was discovered by H. Hall in 1879, upon the measurement of a voltage arising

from charge accumulation at the boundaries of the current-carrying sample subjected to a

perpendicular magnetic field. The ratio of the voltage drop to the electric current is called Hall

resistance:

RH = VH

I
= B

qρe
(2.2)
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Figure 2.1 – (a,d) Schematic of the insulating state and the corresponding band structure,
respectively. (b,e) Schematic of the quantum Hall state and the corresponding band structure.
The energy gap between the energy levels resembles that of a trivial insulator. (c) The electronic
density of states in the presence of a magnetic field and scattering events. (f) Longitudinal
and Hall resistance arising from such a density of states of electrons in a B-field.[2]

In practice, the Hall effect is used for determining either of the three quantities in the equation

(2.2). Von Klitzing, Dorda and Pepper discovered in 1980 that a strong magnetic field applied

to a 2D electron gas leads to zero longitudinal resistance while the Hall resistance displays

quantum plateaus at ne2/h, where n is an integer called filling factor.[2] The integer quantum

Hall effect is the quantum version of Hall effect and can be understood in a simplified picture

base upon the cyclotron orbits of electrons in a strong magnetic field. A magnetic field

introduces a cyclotron gap between Landau levels, which can be viewed as energy band in the

magnetic Brillouin zone (Fig. 2.1 b and e).

However, in contrast to a normal insulator in the presence of an electric field the electrons

in the quantum Hall system will drift. By now, it is realized that n is actually a topological

invariant which underlies the robustness of the quantized conductance values. The key feature

of the quantum Hall effect is that while the bulk electrons are localized, the edge electrons

form conducting edge channels as a characteristic of a topological phase. Figure 2.1f shows

the experimental Hall resistivity measured by von Klitzing, with Hall resistivity plateaus due to

the formation of discrete Landau levels.
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Figure 2.2 – (a) A two dimensional cylinder threaded with a magnetic flux which can be
changed adiabatically. The magnetic flux resembles the edge crystal momentum when the
circumference has the same value as a single lattice constant. (b) The time reversal invariant
fluxes Φ= 0 and Φ= h/2e correspond to edge time reversal invariant momenta Λ1 and Λ2.
(Figure adapted from [3])

To illustrate the connection to topology, Laughlin has argued that the quantum Hall state can

be described in analogy to a charge pump.[18] A charge pumped across a one dimensional

insulator is always an integer and can be defined as a topological invariant attributed to the

polarization. In the next section the relation between polarization and a charge pump will be

discussed. A 2D electron gas can be rolled into a cylinder along the y direction as depicted in

Figure 2.2a. The surface of the cylinder is one unit cell in the reciprocal lattice. A magnetic flux

threading through the cylinder can be considered as kx . As the magnetic flux is changed by the

unit of magnetic flux (Φ0 = h/2e) one charge will be transferred to the other side of the cylinder

(i.e., the edge of the 2D system). Figure 2.2 b shows the relation between the fluxesΦ= 0 and

Φ= h/2e corresponding to the edge time reversal momentaΛ1 andΛ2. Calculating the charge

pumping rate using the polarization operator yields the Hall conductivity of σx y = n e2

h , with n

as the Chern number. The relation between the Chern number and topology will be discussed

later in this chapter.

2.2 Polarization and Charge Pump

The electric polarization P of an infinite crystal or a crystal with periodic boundary conditions

is inherently ill-defined. This is because in a periodic solid, the polarization depends on

the choice of the unit cell. For example for covalently bonded atoms no natural unit cell

can be defined, and therefore the polarization cannot be uniquely defined, as illustrated in

Figure 2.3. An important observation made by R. Rasta is that although polarization by itself is

not well defined, the changes of the polarization is. Considering a 1D lattice with Bloch states

ψnk = e i kx unk , there are N lattice points at R` = `a where a is the lattice constant. The trick

for solving the problem is to define localized orbitals via Fourier transformation of the Bloch

8
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state.[19] Thus Wannier state,

|nR〉 = 1p
L

π∑
k=−π

e−i kRL |ψnk〉 (2.3)

is localized near a lattice point R. As can be intuitively seen, in an insulator the polarization is

related to the charge center of the Wannier function,

P = q
∑

f i l l edn
〈n0|x |n0〉 , q =−e (2.4)

= q

L

∑
n

∑
k,k ′

〈unk ′ |e i (k−k ′)x i
∂

∂k
|nnk〉 (2.5)

It can be shown that,

〈unk ′ |e i (k−k ′)x i
∂

∂k
|nnk〉 = Nδk,k ′ 〈unk | i

∂

∂k
|unk〉cel l (2.6)

= δk,k ′ 〈unk | i
∂

∂k
|unk〉 (2.7)

By substituting equation 2.7 into the equation 2.5, one obtains

P = q

L

∑
n

∑
k
〈unk | i

∂

∂k
|unk〉 = q

∑
n

∫ π

−π
dk

2π
An(k) (2.8)

In order to represent a real physical phenomenon, the polarization needs to be gauge invariant.

Under a gauge transformation |unk〉′ = e iχnk |unk〉, the polarization contribution from band n

is given by,

P
′
n = Pn −q

χnπ−χn−π
2π

(2.9)

However, since the wavefunctions are periodic, χnk+2π =χnk +2πm, hence,

P
′
n = Pn −qm (2.10)

From this result, it follows that the polarization can change by qm under the gauge transfor-

mation. That leads to the conclusion that only the fractional part of pn is physical.

The integral in the equation 2.8 is the Berry phase which will be introduced in the next section.

The Berry phase of a 1D Bloch state was first studied by Zak in 1989 and is accordingly called

the Zak phase.[20] If a lattice has inversion symmetry, then

An(−k) =−An(k) (2.11)

and if we apply the inversion,

Pn → P
′
n =

∫ π

−π
dk

2π
An(−k) =−Pn (2.12)

9
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unit cell
p

p

Figure 2.3 – For a periodic or infinite lattice polarization can not be uniquely defined and it
depends on the choice of the unit cell.

Considering that Pn can change by qm the constraint given by the inversion symmetry is

Pn = (−Pn mod q) → = 0 or q/2 mod q (2.13)

Correspondingly, in a lattice with inversion symmetry the charge center defined by Wannier

functions in a unit cell can only be at 0 or 1/2. As changes of the polarization are well defined

under an adiabatic deformation, it is convenient to introduce the parameter λ for the degree

of the ion displacement. It varies from 0 to 1 as the ion shift adiabatically from an initial point

to a final position. The difference in the polarization according to the control parameter λ is,

P (λ2)−P (λ1) =
∫ π

−π
dk

2π
[A(k,λ2)− A(k,λ1)] (2.14)

The change in the polarization can be written as a counter-clockwise line integral,

∆P =− q

2π

∮
dk.A(k),k ≡ (k,λ) (2.15)

=− q

2π

∫
d 2kFz (k) (2.16)

where Fz = ∂k Aλ−∂λAk and Aλ = i 〈uk|∂λ |uk〉. If the control parameter λ is periodic, then

the opposite edges have the same states, and hence,

∆P = qC1 (2.17)

This equality indicates that under a periodic parametric variation the charge transport is

quantized. The resulting quantized charge pump was first suggested by Thouless et al. in

1982 for adiabatic conditions.[19] Interestingly, the value C1 is a Chern number, which will be

10



2.3. Berry Phase and the Chern Number

introduced in a general term in the following section.

2.3 Berry Phase and the Chern Number

In the Schrödinger equation the choice of |un,k〉 is not unique. In fact, the Berry phase arises

due to the intrinsic ambiguity of the quantum mechanical wave function. For example, there

is always a U (1), i.e., a phase uncertainty,

|un,k〉→ e iΦ(k) |un,k〉 (2.18)

which keeps the Schrödinger equation invariant. A definite phase choice in the Brillouin zone

is called a definite gauge. For a time reversal invariant system there always exists a continuous

gauge throughout the Brillouin zone. Analogous to the electromagnetic gauge transformation,

the Berry curvature is defined as following:[21]

A =∇k 〈u(k)| i∇k |u(k)〉 (2.19)

and the Berry phase is defined as the integral of the Berry connection in the Brillouin zone:

γc =
∫

B Z
dk.〈u(k)| i∇k |u(k)〉 (2.20)

The Chern invariant is the total Berry flux in the Brillouin zone,

nm = 1

2π

∫
d 2kFm . (2.21)

which is an integer quantized number. The total Chern number, summed over all occupied

states n =∑N
m=1 nm is invariant, provided that the gap remains finite.

A mathematical analogy of the Chern number is genus. 2D surfaces can be classified by genus

which counts the number of the holes. For instance a sphere has genus 0 while a donut has

g=1. The Gauss and Bonnet theorem in mathematics states that the integral of the Gaussian

curvature over a closed surface is a quantized topological invariant proportional to its genus.

The Hall conductance in a two dimensional band insulator can be expressed in terms of the

Berry curvature:

σx y = e2

ħ
∫

B Z

dk

(2π)2Ωkx ,ky = n
e2

h
(2.22)

where the integer n is again the Chern number.[19, 21]

2.3.1 Quantum Hall Effect and Band Theory

In 1988 Haldane proposed that the integer quantum Hall effect can be realized in a lattice

system of spinless electrons in a periodic magnetic flux. Under this condition, the total

11



Chapter 2. Theory of Topological Insulators

magnetic flux is zero, while the electrons form conducting edge channels. Since in this model

no net magnetic field is considered the edge channels arise from the band structure the

electrons are in and not from the formation of Landau levels.[22] The system studied in the

Haldane’s model was graphene. In this 2D material, the conduction and valence band touch at

two distinct points in the Brillouin zone. Near these two points, the electronic band structure

resembles that of massless relativistic particles described by the Dirac equation:

H(k) = h(k).~σ (2.23)

where~σ= (σx ,σy ,σz ) are Pauli matrices and h(k) = (hx (k),hy (k),0). Considering that inver-

sion symmetry takes (hz (k)) to (−pz (-k)) and time reversal symmetry takes it to (+pz (-k)) ,the

third component of Hamiltonian has to be zero. In graphene the zeros of (hz (k)) occur at two

points, K and K’ =−K. For wave vectors close to the zero points of p(k) (q) the Hamiltonian

has the form of a 2D massless Dirac Hamiltonian:

H(k) =ħυ f q.~σ (2.24)

The degeneracy of the Dirac points is protected by both the time reversal symmetry and

inversion symmetry. If any of these two symmetries is broken then the Hamiltonian would be

that of a massive Dirac Hamiltonian:

H(k) =ħυ f q.~σ+mσz (2.25)

where m = hz (K). Time reversal symmetry requires that m’ = hz (K’) has the same magnitude

and sign as m, and hence this state represents a trivial insulator. The dispersion relation

Eq =±
√

|ħυ f q|2 +m2 indicates an energy gap of 2|m|.
Haldane assumed lifting the time reversal symmetry by an oscillating magnetic field which

is zero on average over the surface and has the symmetry of the lattice. This perturbation

allows a nonzero (hz (k)) and as a result introduces a mass to the Dirac equation.[17] However

inversion symmetry requires that the masses at K and K’ have opposite signs. Haldane showed

that this state is not an ordinary insulator but a quantum Hall state with each Dirac point

contributing σx y = e2

2h to the conductivity.

2.3.2 Edge States and Bulk Boundary Correspondence

A fundamental consequence of the topological classification is the existence of gapless edge

states at the interface where topological invariant changes. As already described above, a well

known example of such robust edge states occurs at the interface of an integer quantum Hall

state and vacuum (an ordinary insulator). A common simplification is to picture these states

to form when electron trajectories at the edges bounce off the edge. This motion is chiral,

meaning that along the edge electrons move in a certain direction. Backscattering is forbidden

due to the absence of available states which in turn accounts for the accuracy of quantized

electronic transport across the edge. The origin of the edge states is intimately related to

12



2.3. Berry Phase and the Chern Number

the topology of the bulk of the quantum Hall state. Specifically when a system undergoes a

continuous interfacial transition between a quantum Hall state (n = 1) and a trivial insulator

(n=0), somewhere the energy gap has to close, in order to change the topological invariant.

A simple theory of the chiral edge states based on the Jackiw and Rebbi approach can be

developed using a band Dirac model. Assuming that mass is a function of y , m = m(y), so that

for a fixed positive m’, m > 0 for y > 0 and m < 0 for y < 0.[19] The Schrödinger equation for

this condition has an exact solution, with the following dispersion relation:

E(qx ) =ħυ f qx (2.26)

The Fermi level intersects this energy band with a positive group velocity dE
d qx

= ħυ f , thus

defining a right moving chiral edge mode.

Insulator

Quantum Hall State

Valence Band

Conduction Band

(a) (b)

EF

E

0      /a-   /a

Figure 2.4 – (a) The edge chiral mode at the interface of a quantum Hall state and a normal
insulator. (b) Energy band diagram of the system showing the electronic structure of the semi
infinite stripe described by Haldane.

Such a chiral edge state is shown in figure 2.4. In the corresponding band diagram of figure

2.4b the edge state connects the bulk valence band to the bulk conduction band with a positive

group velocity. By tuning the Hamiltonian the dispersion of the edge state can be modified,

for instance to add a kink so that the Fermi level intersects the edge states three times, two

times with positive velocity and one time with negative velocity. At the same time, however,

the difference between the number of left and right moving modes is protected and must

remain unchanged. This condition is called the bulk-boundary correspondence:[23]

NR −NL =∆n (2.27)

where ∆n is the difference in the Chern number across the interface, which is governed by the

bulk topology.
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Chapter 2. Theory of Topological Insulators

2.3.3 Quantum Spin Hall Effect

In the following year after the discovery of Hall effect, the anamolous Hall effect was discovered

which is the Hall resistance in a ferromagnetic or even paramagnetic metal.[24] The Hall

resistance in ferromagnets typically has a linear term and a term arising from the intrinsic

magnetization (M):

RH = R0B +RA M (2.28)

The explanation for the origin of this effect took almost one century and is being related to the

topology of band structure in solids. The anomalous quantum quantum Hall effect (AQHE)

can have either an extrinsic origin arising from disorder-related spin-dependent scattering or

an intrinsic origin arising from spin orbit coupling of the electrons which can be expressed in

terms of the Burry phase in the momentum space.

Although the absence of magnetic flux and magnetization leads to the absence of the Hall

effect, the spin dependent deflection of motion can lead to measurable effects. This leads to

the accumulation of oppositely oriented spins in the two opposite boundaries of a current-

carrying sample. Actually the role of the periodic magnetic flux in the Haldane model can be

replaced by spin orbit coupling. The resulting quantum spin Hall effect is a spin version of the

quantum Hall effect and can be considered as a combination of the two quantum anomalous

Hall effect of spin-up and spin-down electrons with opposite chirality.

In the SQHE, while no net charge transport occurs, there is a nonzero spin Hall conductance.

As illustrated in Figure 2.5a the spin and orbital directions are locked, which is known as

helicity. In terms of band theory, in the bulk gap region of the dispersion diagram the two edge

states with locked spin directions are crossing[25] (Figure 2.5c).

After its theoretical prediction by Bernevig, Hughes, and Zhang in 2006[26], the QSHE was

experimentally realized in CdTe/HgTe/CdTe quantum wells by König et al. They showed that

in the absence of an external magnetic field and in high mobility CdTe/HgTe/CdTe quantum

wells the insulating regime features a residual conductance plateau of 2e2/h, as depicted in

Figure 2.5 b and d.

2.4 3D Topological Insulators

Since in three dimensions electrons are not constrained to a surface there is no quantum

Hall effect. The QSHE cannot be extended to three dimensions by simply generalizing the

transverse transport of electron charge or spin from 2D to 3D. Instead it is the evolution of the

bound states near the system boundary based on the intrinsic bulk band structure. The one

dimensional helical edge states in a 2D quantum spin Hall system evolve into 2D surface states

surrounding the 3D topological insulator.[19] The simplest form of the Hamiltonian describing

such states can be considered as, h = νσ.p where the particle momentum is represented by a
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Figure 2.5 – (a) and (c) Interface between a QSHI and a normal insulator and schematic of the
band diagram for the SHI.(b) Hall resistance for a HgTe/(Hg,Cd)Te quantum well at different
gate voltages showing a transition from n-type to p-type by decreasing the gate voltage. The
sample undergoes an insulating phase for −1.9V <Vg <−1.4V . (d) Experimental observation
of the 2D QSHE in HgTe/(Hg,Cd)Te quantum wells. In the insulating regime in the presence of
a small magnetic field samples III and IV show quantized conductance associated with edge
states. (Adapted from König et al [4] )

two-dimensional vector on the surface:

p = (px , py ,0) (2.29)

The surface Hamiltonian can then be written as a 2 × 2 matrix,

h = ν(σx px +σy py ) (2.30)

The energy Ep of a surface state with momentum p is obtained by solving the eigenvalue

equation,

νσ.pψ= Epψ,ψ=
(
ψ↑
ψ↓

)
(2.31)
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Chapter 2. Theory of Topological Insulators

whereψ is a spinor with two components for spin up and spin down. Solving the equation 2.31

for Ep yields,

Ep =±ν ∣∣p∣∣≡±ν
√

p2
x +p2

y (2.32)

This dispersion relation has the form of a cone with the signs ± refering to positive and negative

energy branches. The conical energy spectrum is reminiscent of an ultra-relativistic Dirac

electron and accordingly the surface states in 3D TIs are often called Dirac fermions.

In analogy to the charge pump cylinder in the 2D case, a 3D system can be generalized

to a torus as depicted in Figure 2.6a with two magnetic fluxes corresponding to the two

components of the surface crystal momentum (Figure 2.6b). There are eight time reversal

ky

kz

kx kx

ky

L2

L4

L1

L3

F  ~ k1 x

z
F  ~ k2 yx

y

(a) (b)

Figure 2.6 – (a) Generalized cylinder in 3D can be visualized as a corbino donut, with two
fluxes corresponding to the two components of the crystal surface momentum. (b) The four
time reversal invariant fluxesΦ1 andΦ2 = 0,h/2e corresponding to four 2D surface momenta
Λa .

invariant momenta for 3D systems and the projections of pairs of these points reside within the

2D BZ, whereby the problem is reduced to a 2D Brillouin zone. Kane and Mele proposed a Z2

index to classify the materials with time reversal invariance into strong and weak topological

insulators[19, 17] (as described in further detail in section 3.3.1).

Among the four possible Z2 topological invariants (ν0;ν1ν2ν3), ν0 generally determines

whether an odd or even number of pair of Kramer points are enclosed in a Fermi arc. The four

time reversal symmetry protected pointsΛ1,2,3,4 in the surface Brillouin zone are degenerate

due to Kramers theorem. Away from these points spin orbit coupling lifts the degeneracy.

These Kramer degenerate points form 2D Dirac points in the surface band structure, and

the way these points are connected determines whether the state is trivial or topologically

protected. The first experimentally proven 3D TI to be reported was Bi1−x Sbx whose surface

states were mapped in an angle-resolved photoemission spectroscopy (ARPES) experiment

(Figure 2.7a). Later on, many other 3D topological insulators including Bi2Te3, Bi2Te2Se and

Sb2Te3 were documented.[27]
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Figure 2.7 – (a) ARPES intensity for Bi2Se3 as a function of energy and momentum revealing
surface states with a single spin polarized Dirac cone. (b) The Fermi surface as a function of
kx and ky showing a chiral spin texture.[5]

2.4.1 Weak and Strong Topological Insulators
In a 2D system there are four time reversal invariant moments in the first Brillouin zone

(Figure 2.2).[3] In this case the Z2 invariant is given by

(−1)ν =
4∏

i=1
δi (2.33)

δi is generally determined by:

δi =
√

det [w(Γi )]

P f [w(Γi )]
(2.34)

where the function w is a 2N ×2N unitary matrix which is closely related to the time reversal

operator ,Θ, and is given by:

wmn(k) ≡ 〈um,−k|Θ |un,k〉 (2.35)

For a 2D system, there is only one value for ν which determines whether the system is topo-

logically invariant or not. A 3D TI has eight time-reversal invariant points which leads to four

independent Z2 topological invariants (ν0;ν1ν2ν3). Among these, ν0 is the product over all

eight points (−1)ν0 = ∏8
i=1δi while the other three are given by the products of four δi for

whichΛi reside in the same plane. Depending on the value of the ν0 the 3D TIs can be divided

into weak and strong TIs. The four time reversal symmetry protected points Λ1,2,3,4 in the

surface Brillouin zone are degenerate due to Kramers theorem. Away from these points spin

orbit coupling lifts the degeneracy. These Kramer degenerate points form 2D Dirac points

in the surface band structure and the way these points are connected determines whether

the state is trivial or topologically protected.[3, 7, 17] Figure 2.8 compares the two simplest
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Figure 2.8 – Fermi arcs in the surface Brillouin zone for (a) a weak topological insulator and
(b)a strong topological insulator. (c) In the simplest form of a strong topological insulator the
Fermi arc is a circle and encloses a single Dirac point.

cases of 3D weak and strong topological insulators labeled according to ν0,ν1ν2ν3. In the

case of weak TIs, the Fermi arc contains an even number of Dirac points, whereas strong TIs

feature only one Dirac point. For a weak TI the surface states are not stable against disorder or

impurities. The simplest weak TI may be built by stacking 2D quantum spin Hall insulators

on each other. In comparison, strong TIs are closely related to the quantum spin Hall effect

and their surface states are robust as they are protected by time reversal symmetry against

disorder.
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3 Kitaev Physics

As discussed in the introduction the combined influence of electron-electron correlations

and spin-orbit coupling (SOC) leads to emergent quantum phases and transitions in heavy

transition metal compounds with 4d and 5d elements. Especially the effects of spin-orbit

entanglement introduced by SOC influence the electronic and magnetic characteristics of

these materials.[1] In the weak correlation regime this leads to the emergence of nontrivial

band structures like that of topological insulators. In the strong correlation regime, in contrast,

spin-orbit entanglement partially or fully removes the orbital degeneracy, which can lead to

enhanced quantum fluctuations, highly nontrivial magnetic structures as well as possible

realization of spin liquid systems. The increasing interest in this field has been driven by several

motivations. Not only the realization of the spin liquid systems with Majorana fermions as

their quasi-particle can be an effective candidate for the fault-tolerant topological quantum

computation, it has also deeply invoked the pursuit of physics of such systems. To name a few

it has thrived the pursuit of the synthesis of spin liquid materials, the discovery of Majorana

fermions and a direct probe of underlying Z2S gauge physics.[28] In this chapter we briefly

introduce the concept of spin-orbit entangled Mott insulators and its connections to Kitaev

physics, complemented with an overview of the thus far most experimentally investigated

materials.

3.1 Spin Orbit Assisted Mott Insulators

Referring to the phase diagram in chapter 1 (Figure 1.1), in the strong SOC regime by increasing

the electron-electron correlation above the topological insulator phases, spin-orbit assisted

Mott insulators can be realized. The transition metal materials with d shells have stronger

spin-orbit interactions, making them suitable building blocks for the aforementioned phases.

Several energy scales are to be considered in such materials, specifically atomic interactions

U , Hund’s coupling JH , the SOC λ, the crystal field∆ and the electron kinetic energy described

by hopping integral t . [1, 28, 13] Theoretical and experimental studies of 3d shell transition

metals have focused on high temperature superconductor cuperates, as well as manganites

and vanadium oxides. In 3d shell materials the atomic interactions, kinetic energy and crys-
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Figure 3.1 – (a) An illustration of the octahedral geometry of a transition metal. (b) Formation
of t2g and eg orbitals in the presence of the crystal field. The t2g state in the presence of spin
orbit coupling splits into j = 1/2 and j = 3/2 states. In the presence of a strong electron-
electron correlation such a j = 1/2 state is localized, leading to an insulating behavior. (c) The
composition of the j = 1/2 states with spin up or down configuration as a result of the spin
orbit coupling.

tal field can compete while the SOC remains relatively small. In contrast to 3d transition

metal materials, in the 4d and 5d materials SOC is strong as well, and depending on the

slight tilt toward the strength of any of the competing energy scales, can drive the system to

another phase, leading to the existence of a rich phase diagram. In the solids of interest here,

the d orbitals are split into a t2g triplet and an eg singlet due to the octahedral crystal field

potential.[29] As depicted in Figure 3.1 b, the degeneracy of the t2g orbitals is further lifted

due to the SOC, which splits the t2g multiplet to a j = 3/2 quartet and j = 1/2 doublet orbitals

with an energy gap of 3λ/2. The interactions of the j = 1/2 electrons are governed by the

atomic interactions of the t2g orbitals and the associated hopping terms. It is only because

of an enhanced spin-orbit term that the effective electronic band width of these materials is

reduced to such an extent that the largely suppressed electronic correlations can still drive the

system to a Mott insulating regime. Accordingly, these j = 1/2 Mott insulators are called "spin

orbit assisted Mott insulators".[28, 1] The perovskite materials such as Sr2I r O4 where the first

to be experimentally realized as spin-orbit assisted Mott insulators.[30] Remarkably, Sr2I r O4

is an isostructure of La2CuO4 which is the parent compound of the cuperate superconduc-

tors. The ground state of Sr2I r O4 resembles the cuperate superconductors, including the

formation of long-range antiferromagnetic order. This compound comprises corner-shared

octahedra with tetragonal distortions and octahedral rotations. Owning its resemblance to the

superconductor cuperates, there is currently an intense study searching for superconductivity

in this material.

There is also increasing interest in the study of j = 1/2 Mott insulators with strong bond-

20



3.1. Spin Orbit Assisted Mott Insulators

(a) (b) (c)

Figure 3.2 – Illustration of possible geometric orientation of neighboring I r O6 octahedra (a)
corner sharing like Sr2I r O4 (b) edge sharing like N a2I r O4, α−Li2I r O3 and α−RuC l3. (c)
parallel edge sharing.

directional exchange interactions. It has been suggested that these materials exhibit uncon-

ventional forms of magnetism such as the emergence of spin liquid systems. However despite

tremendous efforts the realization of a quantum spin liquid remains unresolved. Significant

attempts have been directed toward geometrically frustrated antiferromagnets, such as those

on Kagome or triangular lattices. However, most of thus far investigated materials show

Heisenberg-like exchange interactions with geometrical distortions, leading to experimental

and theoretical ambiguities. A promising approach to deal with the latter has been the exactly

solvable Kitaev model. It is a highly anisotropic compass model where frustration arises not

from the geometry of the lattice, but from the intertwining of spatial and orbital degrees of

freedom.

3.1.1 Bond-Directional Interactions

A major assumption of the Kitaev model is the presence of the bond-directional exchange

interactions. This means that Ising-like exchange terms with the exchange easy axis depending

on the spatial orientation of the bond which dominates in coupling strength over all other

exchange types. Khaliullin and Jackeli in their pioneering work realized that the geometric

orientation of neighboring I r O6 octahedra plays a crucial role in determinging the exchange

term associated with the I r atom located at the center.[31] Three general scenarios regarding

the exchange are possible. As illustrated in Figure 3.2a in the case of corner sharing geometry

there is only one Ir-O-Ir exchange path available. This geometry, which is also referred to

as ’180◦ bond’, leads to a dominant Heisenberg exchange coupling between two spin-orbit

entangled j = 1/2 moments. Conversely, in the case of edge sharing geometry(Figure 3.2b)

two Ir-O-Ir exchange paths with 90◦ bond angles are available. The existence of two possible

exchange paths turns out to be crucial as these two symmetric Heisenberg interactions de-

structively interfere and cancel each other. The effective Kitaev interaction for this type of

bond-directional coupling is given by:

∼−8t 2 JH

3U 2 Jγ1 Jγ2 (3.1)
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where t is the hopping term mediated by oxygen ions, JH is the Hund’s coupling and U is the

strength of the electron electron interactions. The third type of geometry in Figure 3.2 c, has

been realized in triangular Kitaev materials such as Ba3IrTi2O9.

However, finding a system that exactly fulfills the Kitaev honeycomb model is challenging

since no symmetry principle prohibits other interaction terms such as symmetric Heisenberg

exchange terms. The generic Hamiltonian describing the interactions between j = 1/2 spin-

orbit entangled moments takes the form:

H =− ∑
γ−bond s

JSi S j +K Sγi Sγj +Γ(Sαi Sβj +Sβi Sαj ) (3.2)

where α and β indicate the two spin directions distinct from the edge type γ. The first term

in this Hamiltonian is the isotropic Heisenberg coupling with the strength J , and the bond-

directional interactions are (i) the Kitaev term with strength K that couples the component of

the spins along the bond γ, and (ii) a symmetric off-diagonal exchange term that couples the

two orthogonal spin terms α and β⊥ γ. The common characteristic of Kitaev materials is the

dominance of the Kitaev exchange term over the other terms, K > J ,Γ. [31]

3.1.2 Kitaev-Heisenberg Model

Experimental evidence suggests that in order to gain an understanding of the physics of

Na2IrO3 and α-Li2IrO3, large Kitaev interactions should be considered. However, the low

energy physics of these materials crucially depends on the details of the distortions which

takes it away from a pure Kitaev model. In this case they are best described by the Kitaev-

Heisenberg (KH) model with the Hamiltonian:[32]∑
〈i j 〉

Ji J j +K Jγi Jγj . (3.3)

This model has attracted strong attention since it describes well the stability of the spin liquid

phase and its neighboring phases. The model can be reliably understood in terms of Klein

duality which maps the HK model into itself upon a change of the parameteres, J ′ =−J and

K ′ = K +2J as depicted in Figure 3.4. The phase diagram is parametrized with J = cosφ and

K = si nφ.[33] It comprises five phases encompassing all the phases in the KH model. The

stripy phase at K =−2J < 0 is dual to the ferromagnet and the zigzag phase at K = 2J > 0 is

dual to the antiferromagnetic phase. The spin liquid phase, on the other hand, is stable and

under the Klein duality maps to itself.

3.1.3 Kitaev Honeycomb Model

The Kitaev honeycomb model is one of the most important examples of a Z2 quantum spin

liquid. The pure Kitaev model, in which there is no symmetric Heisenberg term, is described

only by the first term of Hamiltonian as:

HK i t aev =− ∑
γ−bond s

KγSγi Sγj (3.4)
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Figure 3.3 – (a) Kitaev interactions on the honeycomb lattice, the grey circles show the Ru+3

ions while the red ones indicate the position of Cl−1 ions. (b) Phase diagram of the Kitaev
model. The phase digram depicts a plane Kx +Ky +Kz = c in which around the point of equal
Kitaev exchange terms, a gapless spin liquid is formed.

The solution of this model is accomplished through representation of the spin operators

in terms of four types of Majorana fermions, specifically bx
i ,by

i ,bz
i ,ci , such that Sγi = i

2 bγi ci .

Since bonds of any given type are disconnected from other bonds of the same type, the bγ

fermions are local identities. On this basis, it can be shown that, ui j = i bγi bγj =±1 is a constant

of motion and hence the Hamiltonian can be written in the form of a quadratic Hamiltonian

as:[29, 28, 31]

H = −i

4

∑
i j
〈ui j 〉ci c j (3.5)

The states in this representation are therefore defined by the configuration of "flux" variables

ui j and "matter" c fermions. By fixing the gauge, the system effectively reduces to a non-

interacting Majorana hopping Hamiltonian in a static background Z2 gauge field. Figure 3.3

depicts the bond-directional dependent Kitaev interactions and the resulting phase diagram

for the plane of Kx+Ky+Kz = const . If one of the three couplings dominates, the system will be

in a gapped spin liquid phase. For approximately equal strength of the exchange interactions, a

gapless spin liquid emerges. In case of a honeycomb lattice this state is a semimetal with Dirac

cone dispersion, referred to as Majorana metal. The Kitaev interactions along neighboring

bonds can not be satisfied simulatanously, giving rise to "exchange frustration" and driving the

system into a QSL phase. It is noteworthy that Kitaev model is one of the few Hamiltonians that

can be exactly solved. Thereofore, it allows one to describe and monitor the franctionalization

of the original spin-orbit entangled degrees of freedom into a fermionic degree of freedom,

corresponding to a Majorana fermion and a Z2 gauge field.[1]
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3.1.4 Honeycomb Kitaev Materials

The pioneering work of Jackeli and Khaliuillin in 2009 in precise terms laid out the neces-

sary criteria for identifying materials which can be considered as Kitaev materials.[31] They

specially proposed iridates of the form A2IrO3 such as α-Li2IrO3 or Na2IrO3 as promising

Kitaev material candidates.[34, 9] Promising candidates thought to be proximate to the Kitaev

physics are the honeycomb iridates Na2IrO3 and α-Li2IrO3 and more recently α-RuCl3.[35, 34]

In their ground states these maerials however won’t reach spin liquid phase but they rather

magnetically order. However they show proximity to Kitaev physics with different degrees,

making Kitaev interactions as primary interactions to understand their properties.

Experimental Status

Na2IrO3 was first synthesized by the groups of Takagi et al. and Gegenwart et al. with the aim

of studying the associated Kitaev physics.[36, 37] Todate, Numerous experimental evident sug-

gest that Na2IrO3 is a Mott insulator with an insulating gap of ∆= 340meV as determined by

optical transmission measurements.[38, 39] Moreover, evolution of the magnetic susceptibility

has confirmed the effective s = 1/2 picture with the magnetic moment of ∼1.82µB with a high

antiferromagnetic Curie-Weiss temperature ofΘCW ∼−116K .[40, 37, 41] The low temperature

antiferromagnetic ordering transition seen at TN ∼ 15K suggests substantial frustration.[37]

Neutron scattering and X-ray scattering experiments identified this ordered phase as a zigzag
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3.1. Spin Orbit Assisted Mott Insulators

ordering.[42] Although the applicability of inelastic neutron scattering is limited by the large

absorption by Ir atoms, two key features below the Neel temperature could be observed. In

particular, scattering near the magnitude of the zigzag ordering wave vector is present down

to 2 meV while there is no scattering at smaller wave vectors and energy.[43] In addition,

diffuse magnetic X-ray scattering in the paramagnetic phase has revealed an experimental

confirmation of dominant Kitaev interactions, validating the theoretical predictions. Several

strategies have been devised to bring Na2IrO3 closer to a spin liquid phase including the

fabrication of thin films and integrating them in heterostructure. However the most practical

scheme has been to replace Na with a ligher atom such as Li.[28]

For α-Li2IrO3 an antiferromagnetic transition is seen at ∼ 15 K, similar to Na2IrO3, although

the Currie-Weiss temperature is lower,ΘCW ∼ -33 K. [41] Further analysis of these compounds

has proved to be challenging since the synthesis of bulk single crystals is not straightforward.

One of the most promising materials that recently entered the spotlight is α-RuCl3 which

crystalizes in a close-to-perfect honeycomb lattice. It consists of very weakly bounded layers

of edge sharing RuCl6 octahedra with central Ru3+ ions. While originally thought to be a

semiconductor, following the spectroscopic measurements in mid 1990s it was found to be

a Mott insulator.[44] Optical spectroscopy experiments revealed an optical gap of 200 meV

and a SOC strength of λ∼ 100 meV.[11, 45] Although the SOC strength in 4d elements is in

general weaker than in 4d elements, calcualtions have shown that the ratio of SOC strength

and electronic bandwidth (though smaller than iridate) still suffices to realize a spin-orbit

entangled j = 1/2 Mott insulator.[1] Two successive magnetic ordering transitions at 7 K

and 15 K have been experimentally observed, albeit further investigations resolved the latter

one as a consequence of stacking faults in the single crystals. What sets αRuCl3 apart from

other Kitaev material candidates is its closer proximity to a spin liquid phase and its unusual

excitations above the magnetic ordering transition. In inelastic light and neutron scattering

measurements on the bulk of this material, fractionalized excitations associated with the

Kitaev interactions have been observed.[34, 10] In chapter 6, the study of thin sheets of α-

RuCl3 using Raman spectroscopy and electrical transport measurements is described.
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4 Experimental Techniques

4.1 Chemical Vapor Deposition

For the topological insulator experiments, first high quality materials needed to be prepared. A

major issue in studying the TIs is the elimination of the bulk contribution to the conductance.

One possibility to achieve this is to reduce the thickness(i.e., to increase the sureface-to-

volume ratio) of the material. An alternative is electrostatic gating; however, when only a

back gate is available, the gating efficiency is often too low. Another method relies on suitable

doping to compensate for the unwanted extra carriers that are introduced by lattice defects.

Established techniques to fabricate TI thin sheets include mechanical exfoliation, molecular-

beam epitaxy (MBE), chemical vapor deposition (CVD), solvothermal synthesis and metal-

organic chemical vapor deposition (MOCVD). Among them, the CVD technique combines

ease of use with access to sheets of reasonable quality. The development of the CVD method

dates back to the 1880s when it was used to coat the incandescent lamps with carbon or

metal to improve the strength of the filaments. Since then it has advanced significantly,

although some challenges still remain, such as the precise control of the stoichiometry and

the crystal structure of the deposited compounds. The CVD method finds main application in

the semiconductor and so-called metallurgical coating industries.

Fundamentals of Chemical Vapor Deposition

CVD is a synthesis process involving some chemical constituents which react in the vapor

phase near or on a heated substrate to result in a solid deposit on it. Its mechanism is governed

by aspects of several scientific disciplines like thermodynamics, kinetics and chemistry. The

theoretical description of this process involves the (i) chemistry of the reaction including

intermediate steps and by-products, (ii) the reaction mechanism (iii) composition of the

deposit and finally (IV) the lattice structure of the deposit. A CVD reaction is controlled

by thermodynamics and kinetics. Thermodynamics determines the direction in which the
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Figure 4.1 – The schematic of the steps occurring in a CVD growth mechanism.

reaction is going to proceed and kinetics defines the transport process and determines the rate

control mechanism meaning how fast the reaction is going to take place. Thermodynamics is

concerned with the interrelation of various energy terms for a given chemical system, in the

framework of the first and second laws of thermodynamics. In particular the transfer energy

which is the free energy change of the reaction ∆Gr should be negative. The free energy of a

reaction (also known as Gibbs free energy) is given by:[46]

∆Gr =
∑
∆G f pr oduct s −∑

∆G f r eact ant s (4.1)

The free energy is not a fixed value and varies as a function of several parameters such as

type of reactants, the molar ratio of the reactants, the process temperature and the process

pressure. Once the thermodynamic feasibility of a reaction is ensured, the next question is

how these reactants reach the deposition surface. This mass transport mechanism determines

the reaction rate of the deposition process. In fact CVD process involves a complicated fluid

dynamics. The fluid, comprised of a gas mixture is forced through pipes and valves, and

experiences variations in temperature and pressure. The basic steps of a CVD process are

illustrated in Figure 4.1. After introducing the reactant gases to the chamber (reactor), they

diffuse through the boundary layer and reach the substrate surface, where then the deposition

takes place. In the last step, the gaseous by-products are diffused away from the surface

through the boundary layer. The relevant (dimensionless) parameter that characterizes the

fluid flow is the Reynolds number, Re .[47] To good approximation, it can be assumed that

the gas flow is laminar, meaning that the gaseous layers flow parallel to each other without

disturbance. For laminar flow the velocity of the gas in contact with the substrate is zero. The
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Figure 4.2 – The schematic of the CVD set up. The cold trap serves merely as a trap for heavy
elements for the protection of the pump.

boundary layer as depicted in Figure 4.1 represents the region where the gas velocity changes

from the main bulk flow to zero. The reactant gases flowing over this layer have to diffuse

through it in order to reach the surface of the substrate. The thickness of this boundary layer

in inversely proportional to the square root of the Reynolds number:

∆=
√

x

Re
(4.2)

where Re = ρux

µ and ρ is the mass density , u the flow density , x the distance from the inlet in

the flow direction, and µ the viscosity. [48] Most importantly, the thickness of the boundary

layer increases with lower gas-flow velocity and with the increased distance from the tube

inlet.

4.2 Growth of Bi2Te2Se and Sb2Te3

We have used the CVD method to prepare thin films of the two different 3D TIs like Bi2Te2Se

(BTS) and Sb2Te3. The schematic of the CVD growth set up used in thesis is depicted in

Figure 4.2. It consists of a glass tube wherein the carrier gas flows and the longitudinal

temperature profile is controlled by surrounding furnace. The sources and substrates are

placed in the hot and cold zone of the tube, respectively. Argon serves as carrier gas to transport

the evaporated compounds along the tube. For the growth of BTS, the powder-like sources of

Bi2Te3 and Bi2Se3 were placed in the hot zone of the tube, with a final growth temperature of

about 580°C. The distance between the sources is about 6 cm, and the substrates are located

in the colder zone, about 12 cm distance from the sources. The furnace heats the tube during

different ramping stages to a final temperature distribution. The Argon flow was adjusted

to 150 sccm and the pressure constantly held at about 60 mbar. Once the final stage was

reached, the temperature was kept constant, and depending on the final desired geometry
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Figure 4.3 – (a) and (c) Atomic force microscopy image of two exemplary BTS flakes. (b) and
(d) line profile across the white line in the AFM image showing the thickness of the nanoflakes.

and thickness of the BTS nanostructures, growth time was chosen. Figure 4.3 shows some of

obtained nanoplatelet geometries, along with the corresponding AFM cross-sectional profiles.

4.3 Growth of Topological Insulator Heterostructures

For the CVD growth of lateral TI heterostructures, BTS was chosen as n-type and Sb2Te3 as

the p-type component. The available CVD set-up only allows for an ex-situ process, as after

the growth of the first compound, the sample has to be exposed to air before its transfer to

a second CVD furnace. The growth order is determined by the fact that BTS has a higher

melting point, and thus needs to be grown first, in order to minimize thermal evaporation

of the material during the growth of the second material. The BTS/Sb2Te3 nanoplatelets

were synthesized through two consecutive steps of vapor-solid growth. In the first step, BTS

nanoplatelets were grown on a Si/SiO2 substrate, as this compound has a higher melting

point than Sb2Te3, and is hence able to sustain the growth conditions required for the latter

compound. The BTS growth was performed using a source temperature of 582°C with the

deposition substrate kept at 480°C. After cooling to room temperature, the substrate was

transferred into another furnace where Sb2Te3 was grown using a source temperature of 570°C

29



Chapter 4. Experimental Techniques

1.0µm

1
.0

µ
m

1.6µm

1
.9

µ
m

1.5µm

6543210

70

60

50

40

30

20

10

0
6543210

60

50

40

30

20

10

0
43210

40

35

30

25

20

15

10

5

0

Length (µm)

H
e
ig

h
t 

(n
m

)

Length (µm)

H
e
ig

h
t 

(n
m

)

Length (µm)

H
e
ig

h
t 

(n
m

)

a

c

d

b c

e f

Figure 4.4 – (a,d) AFM image and the corresponding height profile across a Sb2Te3/Bi2Te2Se
lateral heterostructure, (b,e) AFM image and height profile of another heterostructure with
pronounced lateral growth, (c,f) AFM image and height profile of the same heterostructure as
in panel (b) after dry Ar etching to better visualize the two components.

and a deposition substrate temperature of 420°C. For shorter Sb2Te3 deposition times, lateral

heterostructures were obtained, while prolonged deposition yielded vertical heterostructures

wherein a closed Sb2Te3 film completely covers the underlying BTS nanoplatelets. Figure 4.4

shows various examples of grown heterostructures with different height and lateral extent

ratios. The thickness ratio between the central BTS nanoplatelet and the Sb2Te3 frame at the

periphery could be adjusted by the growth parameters. The respective n- and p-type doping

character of the single-component BTS and Sb2Te3 nanoplatelets could be confirmed by Hall

measurements on individual platelets (see chapter 3). In the growth experiments, it proved

possible to favor lateral over vertical growth during the second growth step. By optimizing the

growth parameters, lateral BTS- Sb2Te3 heterostructures with a smooth transition between the

two different regions could be obtained. In order to clearly visualize the boundary between the

two materials by AFM, argon etching was performed with the aim of exploiting the different

etching rates of the two materials. The lateral extension of the peripheral Sb2Te3 region could

be further increased through optimization of the growth time. While a growth time of 3 min

resulted in 260 nm of lateral growth, a growth time of 5 min yielded an extension by 880 nm,

which is sufficient for reliably positioning electrical contacts by e-beam lithography.
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Figure 4.5 – (a) The basic parts of a Raman spectroscopy system. (b) Schematic of Rayleigh
and Raman scattering processes. m state indicated the vibrational ground state and n the first
excited state.

4.4 Raman Spectroscopy

Raman and infrared spectroscopy are two widely used techniques to gather information

about the vibrational properties of substances, from which indirect conclusions about their

chemical composition and structure can be drawn. Samples can be examined in the form

of solids , liquids or vapors. The main principle of these spectroscopy techniques is based

on the interaction of light with matter. The incoming light can interact with the investigated

sample in two different manners. In the first case, the photons have the exact difference in

energy between the ground state and an excited state. In this case light will be absorbed and

the amount of absorbed light plotted in dependence of the incoming light energy yields the

infrared spectrum. However this may not be the case and there can be a mismatch between

energies, as a result the light only scatters from the matter. The second scenario comprises

elastic or inelastic light scattering as the processes which underlie Rayleigh scattering and

Raman spectroscopy, respectively. In Raman spectroscopy, the incoming photons excite a

short-lived (virtual) electronic state, and are then re-emitted with an energy that has decreased

or increased by one unit of vibrational energy difference. The scattered photons with decreased

(increased) energy give rise to the Stokes (anti-Stokes) line, respectively, (see Figure 4.5b). In

general, Rayleigh scattering has a larger cross-section than the Raman process and is hence

dominant in the spectrum.

The Raman scattering intrinsically is weak since generally only one in 106 to 108 photons will

be scattered inelastically.[49] The relative intensities of the Stoke and anti-Stoke scatterings

depend on the population of the vibrational ground state and vibrational excited states.

However at room temperature it is expected to have a higher population of ground states as a
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result stronger Stokes scattering than anti-Stokes. Regarding the instrumentation, visible lasers

are commonly used for excitation. The scattered light is usually collected in one of two possible

configurations (i.e., 90° and 180°), which can be adjusted by appropriate mirror systems.

Detecting the Raman signal requires the removal of the Rayleigh scattering, which can flood

the detector especially if the Raman signal is close to the laser frequency. This is achieved with

the aid of notch and edge filters. A notch filter is a filter that passes most frequencies unaltered,

but significantly attenuates those in a specific, narrow range. After passing through the filter,

the scattered light is focused into a monochromator which separates out the different photon

energies. In this thesis Raman spectroscopy was used to characterize the CVD grown materials,

and furthermore to spatially resolve the material characteristics of the TI heterostructures.

Moreover, Raman measurements were used to study the unconventional magnetic excitations

in α-RuCl3 as described in chapter 6.

4.5 Scanning Photo Current Microscopy

Scanning photocurrent microscopy (SPCM) was performed with a confocal laser microscope

(Leica TCS SP2), equipped with a piezoelectric table to control the movement of the stage

during scanning across the sample, as depicted in Figure 4.6. The Leica microscope can be

operated with Helium-Neon (HeNe operating at 633 nm), GreNe (543 nm) or Ar/ArKr (458 nm,

488 nm and 514 nm) laser at powers in the range of 1 µW to 430 µW. The spatial resolution for

this system is about 400 nm, which is roughly the laser spot size. Upon raster scanning the

HeNe
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Ar/ArKr
laser

beam expander

CCD 
photodetector

piezo stage

beam splitter

mirror

objective lens

preamplifier

Keithley 2000 Keithley 2400Keithley 2400

Figure 4.6 – Schematic of a scanning photocurrent microscopy set-up. The system is comprised
of different laser lights and a piezo-electric stage used to scan the sample with confocal laser.
The electronic set up is added to measure the generated photocurrent in the sample.
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laser spot through the sample, the extra carriers generated by the incoming light are collected.

In this thesis, a preamplifier is used to amplify the collected current and a Keithley to measure

it. The measurements are generally carried out under zero-bias conditions.

4.6 Cryogenic Charge Transport Measurements

The electrical measurements described in chapters 4,5 and 6 were performed using an Oxford

cryostat system equipped with a magnet that can provide upto 12 T magnetic field. The

temperature of the sample is measured and controlled by the ITC temperature controller.

This cryogenic system comprises an internal vacuum chamber (IVC) inside a 4He bath with a

temperature of 4.2 K. The IVC and bath are in contact through a needle valve, which controls

the flow of 4He to the IVC. When the IVC is continuously pumped, the boiling temperature

of the 4He is reduced and a temperature down to 1.3 K is reached. The IVC and the 4He are

surrounded by an outer vacuum chamber (OVC) to reduce the heat exchange.

4.7 Atomic Force Microscopy

In this thesis, Atomic Force Microscopy (AFM) is used mainly to study the topography of

the synthesized and electrically contacted nanostructures. AFM is a versatile microscopy

which not only provides information about the surface topography, but also can be used to

investigate various surface properties of the nanostructure. The most common AFM operation

modes are contact mode, tapping mode and noncontact mode. In the contact mode the AFM

tip is in contact with the sample and the cantilever bending due to the resulting repulsive

force gives information about the height of the sample. Non-contact AFM (NC-AFM) is one of

the several established techniques in which an AFM cantilever is vibrated near the surface

of a sample. The spacing between the tip and the sample for the NC-AFM mode is typically

on the order of tens to hundreds of Ångstroms. Tapping mode is an alternative technique to

non-contact mode in which the cantilever oscillates just above the surface, but at a much

larger oscillation amplitude. Figure 4.7 illustrates a typical AFM setup along with the different

working regimes according to the potential energy-distance diagram. The bigger oscillation

makes the deflection signal large enough for the control circuit, allowing for an easier control

for topography feedback. It produces modest AFM results but blunts the tip’s sharpness at a

higher rate, ultimately speeding up the loss of its imaging resolution.

4.8 Kelvin Force Probe Microscopy

Kelvin force microscopy (KFM), an AFM-based method, allows determining the surface po-

tential distribution of a sample, consequently acquiring information about the material com-

position or doping profile. The electric potential landscape of the sample surface is detected

via cantilever deflection caused by an electrostatic force between the tip and the sample. The

measured signal is actually the contact potential difference (CPD) between tip and sample,
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Figure 4.7 – (a) Schematic of an AFM set up. (b) The diagram of the potential between the tip
and the sample as a function of distance.

i.e., the work function difference between the two. Figure 4.8 shows the operation principle of

KFM method. Initially, tip and the material are far apart and hence their Fermi level have not

equilibrated (Figure 4.8a). When they are brought together in contact mode, an electron flow

occurs to bring the system to equilibrium (Figure 4.8b and c). The current flown is measured

by the analyzer and it applies a potential to compensate for the contact potential. At the end

this is this compensated contact potential that is shown in KFM image.

4.9 Nanostructure Patterning by E-beam Lithography

Electron beam lithography (EBL) is used to pattern the nanostructures under study. Compared

to optical lithography, EBL offers a better spatial resolution enabled by the smaller wavelength

of the electrons.

An EBL is composed of several essential parts which produce the electron beam (source-beam

gun), a deflection unit to control and guide the electron beam and a laser interferometer-

controlled stage. After growing the nanosheets of TIs or heterostructures of them, AFM imaging

is done to estimate their thicknesses. Using a graphic software position of the electrodes is

defined. The substrate is first coated by an e-beam resist (PMMA), used as a patterning mask.

Two PMMA layers are subsequently coated to reduce the undercut effect due to the electron

scattering of the electron beam incident on the sample. Electron beam will break the PMMA

atomic chain in the exposed area defined as an electrode. Solving the brocken PMMA chain

using a developer (MIBK for the case of PMMA), it will be washed away and will be ready for

the metal deposition. The next step is to load the sample in an evaporation chamber to deposit

metallic electrodes. The best contact resistances are achieved under low base pressure of the

chamber (10−8 mbar). The thickness of the evaporated metal has to be individually adjusted

34



4.10. Electrical Measurement Geometries

dsample tip sample sampletip tip

fs
ft

fs

fs
ft ft

i

VCPD

VDC

Ev Ev

Ev

Ev Ev

(a) (b) (c)

Figure 4.8 – Working principle for a KFP measurement, (a) sample and tip are far away, (b) in
contact and (c) the compensation DC voltage is applied.

to the thickness of each nanosheet. Finally, the last step is lift-off, whereupon the metal film

on top of the PMMA is removed with a solvent. Figure 4.9 illustrates the steps involved in

patterning the nanosheets. It is necessary to mention that in contacting the TI heterostructures

another lithography step had to be incorporated to bridge across one material and reach the

desired material in the middle of the structure. The bridging has been done using an oxide

layer, in this case SiO2, evaporated in a second lithography step.

4.10 Electrical Measurement Geometries

The electrical resistance of the samples was measured either in two terminal or four terminal

configuration, depending on the sample geometry. A disadvantage of the two-terminal mea-

surements is that the obtained resistance contains the contact resistance in addition to the

sheet resistance:

R2T = RC 1 +RC 2 +Rsheet (4.3)

In order to attain the true resistance of the material it is necessary to implement four terminal

measurement method to subtract the contact resistances. Since the voltage drop is measured

using a voltmeter and no current is flowing through it, the contact resistances won’t contribute

in the resistance measurements. A simple way to estimate the contact resistances is to subtract

the two-terminal from the four-terminal resistance.
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Figure 4.9 – electron beam lithography steps (a) spin coating the substrate (b) defining the
electrode area using EBL and developing (c) evaporation of metals and (d) lift off of the metal
evaporated.
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Figure 4.10 – (a) and (b) Two terminal configuration and its equivalent electrical circuit includ-
ing the contact resistances, respectively. (c) and (d) four terminal configuration excluding the
contact resistances and measures the resistance of the channel between the voltage electrodes.

4.11 Magnetoresistance Measurements

Valuable information about the electronic properties of a quantum material can be gained

from the magnetic field-dependent resistivity. Two different contact geometries were used

to measure magnetoresistance of the nanosheets under study. The first one is the standard

Hall bar geometry which allows the simultaneous measurement of the longitudinal and Hall

resistance of the device. The determination of the longitudinal resistance is based on the same

principle as the above described four-terminal measurements, while the Hall resistance is

measured with the aid of the opposite electrodes across the Hall bar, as depicted in Figure 4.11a.

Accuracy of the resistivity measurements is sensitive to the geometry of the Hall bar. One
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4.11. Magnetoresistance Measurements

important geometrical error in Hall bar samples is the tendency of the end contacts to short

out the Hall voltage. To reduce this error to less than 1%, the aspect ratio of the sample length

to width should be larger than 3.[50] The Hall resistance can be calculated from the voltage

measured between the opposite electrodes devided by the current passing through the bar,

Rx y = VH
I .

The other contact geometry widely used to probe the magnetoresistance of nanosheets is the

van der Pauw geometry. The main advantage of the van der Pauw method over the Hall bar

geometry is the freedom of choice over the geometry of the sample. Thus, time consuming

additional etching steps can be avoided which are otherwise needed to obtain a suitable Hall

bar geometry. The conductivity of the sample in van der Pauw geometry is obtained from:[51]

e−πRPQ,RSσxx +e−πRQR,SPσxx = 1 (4.4)

and the Hall resistivity can be simply calculated by:

ρx y =
RPR,QS(B)−RPR,QS(0)+RQS,RP (B)−RQS,RP (0)

2
(4.5)

in which the points P,Q,R and S are four arbitrary edges of the sample.

Vxx
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Vxy
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Vxy

(a) (b)
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R

Q

S

Figure 4.11 – (a) Hall bar geometry for measuring Rxx and Rx y , (b) Van der Pauw geometry for
measuring Rxx and Rx y of a non geometric sample.
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5 Electronic Transport Study of Topolog-
ical Insulators

5.1 Growth of Single Component Topological Insulators

The surface states of TIs have been detected in angle-resolved photoemission spectroscopy

(ARPES) revealing the Dirac cone of the topologically protected surface states. By contrast,

probing the surface states by electrical transport experiments has remained a challenge, as

the typically strong doping of the material leads to a pronounced conductivity contribution of

its bulk states. Among the methods to reduce the bulk contribution are electrostatic gating,

chemical doping, alloying and also increasing the surface-to-bulk ratio. In this thesis two

strategies are used, one is making thin sheets of topological insulators and the other is alloying

them to reduce the vacancies which have caused the extra carrier generations. The materials

of choice here are Bi2Te2Se (BTS) as n-type and Sb2Te3 as p-type TI. For both materials, ARPES

measurements have confirmed the existence of Dirac cones.[52, 53] The CVD grown BTS and

Sb2Te3 nanosheets were characterized by low temperature electrical transport measurements.

Figure 5.1 shows exemplary AFM images and Raman spectra of as-grown BTS and Sb2Te3

nanoplatelets.

Depending on the growth time and conditions (see chapter 4) nanoplatelets with different

thicknesses and geometries were obtained. Raman spectroscopy is a valuable tool to examine

nanoplatelets’ vibrational properties. Symmetry group analysis of BTS yields the following

irreducible vibrational representation:[54]

Γvi b = 2A1g +2Eg +2A2u +2Eu (5.1)

Among the allowed vibrational modes, the A1g and Eg modes are Raman active, whereas the

A2u and Eu modes are infrared active along the c axis and the a-b planes, respectively. The

Raman spectrum of BTS displays two isolated modes at 65 cm−1 and 109.5 cm−1 corresponding

to A1g and Eg modes, respectively. In addition, there are two overlapping peaks at 140 cm−1

and 155 cm−1 with Ag2 symmetry. While the origin of 140 cm−1 peak is somewhat controversial

it is commonly attributed to anti-site defects.[55]

38



5.2. Magnetotransport of Single Component Topological Insulators

1.4µm1
.4

µ
m

6543210

30

20

10

0

1.5µm

6543210

40

30

20

10

0
50 100 150 200

0

200

400

600

50 100 150 200
0

200

400

600

800

distance (mm)

distance (mm)

h
e

ig
h

t 
(n

m
)

h
e

ig
h

t 
(n

m
)

-1Raman shift (cm )

-1Raman shift (cm )

In
te

n
si

ty
 (

a
rb

. 
u

n
its

)
In

te
n

si
ty

 (
a

rb
. 

u
n

its
)

(a) (b) (c)

(d) (f) (g)

Figure 5.1 – (a) and (d) AFM images (b) and (e) the height profile across the blue line in
indicated in AFM image (c) and (f) the Raman spectrum taken using a 532 nm laser light at
ambient conditions for typical BTS and Sb2Te3 nanosheets, respectively.

5.2 Magnetotransport of Single Component Topological Insulators

The surface states of TIs can be probed by magnetotransport measurements. The topologically

protected surface states are expected to give rise to the weak antilocalization (WAL) effect due

to their spin orbit locking character. The magnetoresistance of BTS and Sb2Te3 nanoplatelets

was determined using either the van der Pauw method, or Hall bar geometry whenever

possible by the sample geometry. For BTS nanosheets grown on SiO2/Si substrates a Hall

mobility on the order of 100 to 200 cm2/V s and a carrier density on the order of 10−19 cm−3

is measured at 1.4 K. The sign of Hall resistance clearly indicates n-type doping of the grown

BTS nanoplatelets. An analytical expression to describe the localization effect in 2D diffusive

systems has been derived by Hikami, Larkin and Nagaoka (HLK model) as:[56]

∆σ (B) =αe2

h
[l n(

Bφ

B
)−ψ(

1

2
+ Bφ

B
)] (5.2)

where ψ is the digamma function, lφ = √
Dτφ is the phase coherence length and Bφ = h

4el 2
φ

.

The value of the constant α assumes a value of 0 in the case of strong magnetic scattering

centers, 1 for the weak localization and -0.5 for the case of weak antilocalization. Figure 5.2a-c

shows the magnetoresistance of a typical BTS nanoplatelete with a thickness of 10 nm. The

plot of Rxx vs magnetic field exhibits a clear antilocalization cusp. From fits according to the

HLK model, a value of -0.513 in good proximity to the value expected for a topological insulator

is extracted. However, generally this value varies between -0.3 to -0.7. Magnetoresistance
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Figure 5.2 – (a) and (d) Hall resistance (b) and (e) the relative magnetoresistance (c) and (f)
∆σxx vs magnetic fiels for BTS and Sb2Te3 nanosheets respectively.

measurements were also performed on the binary topological insulator Sb2Te3 nanoplatelets

of the similar thickness of 10nm (see Figure 5.2d-g). From the Hall measurements a carrier

density of 7.1.1020cm−3 is calculated showing higher doping of this material in comparison

to ternary compound BTS. Also the mobility is substantially lower than the mobility of BTS,

i.e., about 30cm2/V s. Moreover the sign of the Hall resistance verifies the p-doping character

of Sb2Te3. The Hall measurements furthermore revealed a non-linear Rx y vs. B-field (see

Figure 5.2d) pointing toward two channel contribution to the conductivity.

5.3 Magnetotransport of TIs Grown on hBN

The structural quality of the material grown by CVD is strongly dependent on the type of

substrate. In complementary measurements, with the aim of reducing the defect density in

BTS and Sb2Te3, they are grown on the exfoliated hBN nanosheets. BTS consists of close-

packed atomic layers of five atoms (quintuple layer) arranged along the c-axis. The alignment

of the BTS layers on hBN layered crystal structure yields a lattice mismatch of about 1.5%.

For the BTS nanoplatelets on hBN, significantly enhanced carrier mobility was found in

comparison to BTS grown on SiOx /Si. This reflects the smoother lattice match of hBN as a

growth substrate. Owing to the enhanced mobility, it became possible to observe the so-called
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5.3. Magnetotransport of TIs Grown on hBN

Shubnikov de Haas oscillations in the magnetic field dependence of Rxx , as described in detail

in the next subsection.

5.3.1 Shubnikov-de Haas Oscillations

Electrons in a 2D electron gas in the presence of a perpendicular magnetic field will have

quantized cyclotron orbits. By analogy of a classical picture, the electrons can be visualized as

waves that propagate around a circle and interfere with themselves, leading to quantization of

the orbits. However, a proper insight can be gained by solving the Schrödinger equation. The

effective mass Hamiltonian for an electron in the presence of a magnetic field reads:

H = (p+eA)2

2m∗ +V (z) (5.3)

where V (z) is a confinement potential restraining the electrons in the volume of the ma-

terial. Assuming a magnetic field in the z direction B = (0,0,B) with the vector potential

A = (−By ,0,0), the Hamiltonian in the z direction will be

Hz =− ħ2

2m∗
∂2

∂z2 +V (z) (5.4)

which is independent of the magnetic field. In the xy-plane the Hamiltonian has the form

Hx y =
(px −eBz y)2 +p2

y

2m∗ (5.5)

which contains the magnetic field and is independent of the confinement potential. The

eingenvalues in the plane can be derived using the Ansatz[51]

ψ(x, y) = e i kx xη(y) (5.6)

which leads to the eigenvalue equation of the form of a 1D quantum mechanical harmonic

oscillator,

[
p2

y

2m∗ + 1

2
m∗ω2

c (y − ħkx

eBz
)2]ηkx (y) = Eηkx (y) (5.7)

withωc = eB/m∗ as the cyclotron frequency. As apparent from equation 5.7 the kx -dependent

center coordinate is

y0 = ħkx

eB
(5.8)

and the eingenenergies are,

En =ħωc (n + 1

2
) (5.9)
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independent of kx . An important implication of equation 5.9 is that the states of different

quantum number kx but same quantum number n, are energetically degenerate. These

states are called Landau levels. The energy of the Landau levels according to the equation 5.9

EF

B

E

n = 0

n = 1

n = 2n = 3n = 4

n�=�2n�=�4n�=�6 D(E)

E

hwc

(a) (b)

Figure 5.3 – (a) Landau fan diagram, showing the energy levels for electrons in a magnetic field
and (b) density of states for electrons in a magnetic field, braodened in the presence of the
scattering centers.

increases with increasing the magnetic field leading to the formation of the so-called Landau

fan, as depicted in Figure 5.3a. The degeneracy of a Landau level can be determined based

upon the information about the center coordinate y0 and the fact that it should be in the width

of the 2D electron gas, 0 ≤ħkx /eB ≤W . The density of kx states in a 2D electron gas of length

L is L/2π; as a result the allowed kx values obey the relation 0 ≤ kx L/2π≤ eB/h A with A =W L

being the sample area. Consequently, the number nL of allowed states per unit area is,

nL = eB

h
. (5.10)

For a 2D electron gas with the electron density of ns in a given magnetic field, the integer

ν= ns/nL indicates the number of the Landau levels that are filled at zero temperature. The

value, ν= hns/eB is called the filling factor corresponding to the magnetic field B . The Fermi

energy of a 2D electron gas with density of state of ns oscillates with ν with a period of 1/B .

If the Zeeman splitting is negligible in comparison to the Landau level splitting, ħωc , each

level will be doubly degenerate and the Fermi level jumps between Landau levels of even

numbers. However, in real samples the degeneracy of the Landau levels is lifted by spatial

potential fluctuations arising from the scattering centers. The scattering limits the lifetime of

the electrons in a certain Landau level, leading to the broadening of the states as illustrated in

Figure 5.3b.

It was shown by Tsuneya Ando in 1974 that the envelope function of the oscillation in resistance
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5.3. Magnetotransport of TIs Grown on hBN

(RL) is well described in terms of,[57]

∆Rxx (T )

Rxx (0)
= 4λ(T )

si nh(λ(T ))
e

−π
ωc τQ ,λ(T ) = 2π2KB T

ħeB
mc yc (5.11)

the so-called Ando formula. Here, τQ is the total scattering time and ∆Rxx is the difference

between R0 and RL at the resistance oscillation extrema. Using equation 5.11, information

about the effective mass and scattering time of the 2DEG can be gained.

5.3.2 Magnetotransport of BTS on hBN

In Figure 5.4a, the sheet resistance of a 10 nm thick BTS nanoplatelet on hBN is shown as a

function of perpendicular B-field at base temperature. At higher B-fields, pronounced SdH

oscillations become visible. The oscillatory nature of the MR with period of 1/B is illustrated

in Figure 5.4b for different temperatures.
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Figure 5.4 – (a) Sheet resistance of BTS/hBN nanosheet revealing prominent Shubnikov de
Haas oscillations at B = 10 T, (b) the ∆Rxx vs inverse of the magnetic field indicating the
periodic nature of this oscillation.

The values of 1/B for the extrema in Figure 5.4 b can be assigned to different filling factors.

Figure 5.5a shows the corresponding plot together with the filling factor assignment. Using the

formula ∆ν= hn
e .∆ 1

B a surface carrier density of n2D = 4.4.1016cm−2 is obtained. The relation

between the Fermi surface area and the carrier density in the presence of a magnetic field can

be expressed by,[58]

2πn = AF
ħ

eB
, AF =πK 2

F (5.12)
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Using the plot in Figure 5.5a and the above equation, the value of KF = 0.075Å−1 is obtained.

To further calculate the Fermi velocity, the information about the cyclotron mass is needed, as

apparent from

νF = ħKF

mc yc
. (5.13)

The cyclotron mass can be gained using the temperature smearing factor in Ando formula by

evaluating the amplitude of the resistance oscillations at different temperatures. The resulting

plot in Figure 5.14b yields the value of mc yc = 0.2m0.

The scattering time of a 2DEG is accessible from the logarithmic form of equation 5.11,

l n(
∆R

R0
.
si nhλ

4λ
) =− π

ωcτ

1

B
. (5.14)

The dependence of ln(∆R
R0

. si nhλ
4λ ) vs. 1/B is called Dingle plot.[51] The Dingle plot in Figure 5.5c

yields the scattering time τ= 80 f s.
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Figure 5.5 – (a). The indices of magnetoresistance minima are plotted on the horizontal axis,
the corresponding values of 1/B are plotted on the vertical axis. The slope of the line 2|e|/hn
determines the electron density. (b) Ando plot for different temperatures at 11 T, (c) the Dingle
plot, yielding a quantum scattering time of 80 fs.

Since the mobility and the scattering time are closely related through the relation µ= eτ/m∗,

the surface carrier mobility of 700 cm2/V s is calculated. Remarkably, the bulk carrier mobility,

as determined from the Hall measurements, is µ= 17170cm2/V s, much larger than for the

case of BTS grown directly on SiOx /Si substrates.

Figure 5.6 a and b demonstrate that the as-grwon BTS/hBN nanosheets can be electrostatically

gated. The nonlinearity of the Hall resistance arises from the contribution of the different

bands in the conduction (i.e., bulk and surface states).

Similar measurements were done on the nanosheets of Sb2Te3 grown on hBN, See Figure 5.7a

and b. While the mobility of Sb2Te3 on SiOx /Si was found to normally be in the order of tens of

cm2V /s, the Sb2Te3 on hBN sheets reached significantly larger values of hundreds of cm2V /s.
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Figure 5.6 – (a) Hall (Rx y ) and (b) longitudinal (Rxx ) resistance vs magnetic field of BTS/hBN
nanoflakes for different gating values.

However, this increase in mobility was still insufficient for the emergence of SdH oscillations.
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Figure 5.7 – (a) Hall (Rx y ) and (b) relative longitudinal (Rxx (B)−Rxx (0))/Rxx (0) resistance vs.
magnetic field of Sb2Te3/hBN nanoflakes, showing a pronounced WAL cusp.

5.3.3 Magnetotransport of Lateral Heterojunctions

Besides the single component TI nanoplatelets, also the magnetotransport behavior of the

lateral BTS/Sb2T3 heterostructures was investigated. This behavior is of interest, since ac-

cording to theory the presence of the p-n junction may generate a topologically protected 1D

electronic state at the interface between the two components.[59] However, these measure-
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ments provided only little new insights. The resistance across the junction in dependence of

an external perpendicular B-field showed for all investigated samples a pronounced WAL cusp.

As another observation, the two-terminal magnetoresistance turned out to be dependent on
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Figure 5.8 – The magnetoresistance of the same heterostructure measured in two different
electrode arrangements.

the chosen electrode combination. This dependence may be due to the various electron paths

through the junction being influenced by different scattering effects. Furthermore, in Hall

measurements Rx y changed sign from sample-to-sample, indicating that the relative carrier

concentrations in the BTS and Sb2Te3 components depend sensitively on the CVD growth

conditions.
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6 Scanning Photocurrent Microscopy of
Lateral TI Heterostructures 1

Direct heat-to-electricity conversion has attracted great interest because the conventional

energy resources are rapidly deployed and it is necessary to find more effective ways to utilize

the energy available. In this sense, thermoelectricity is highly promising since it can use huge

amount of otherwise wasted energy and convert it into electricity. Consequently, there is

an intense effort to develop and indentify efficient thermoelectric materials which can be

used in a wide range of applications. Interestingly the chalchogenide binary and ternary

materials such as Bi2Te3, Sb2Te3 and Bi2Te2Se3 compounds are among the best thermoelectric

materials. Toward their device implementation, benefit can be taken from recent advances

in the fabrication of novel nanomaterials and their heterostructures. An additional impetus

stems from the recent development of novel types of photodetectors and photovoltaic devices

which effectively convert photons to electrical currents. [60]

Compared with traditional 3D photonic materials such as gallium arsenide (GaAs) and silicon

(Si), 2D materials exhibit many interesting properties. The first point is that quantum confine-

ment in the direction perpendicular to the 2D plane leads to novel optoelectronic features,

distinct from their 3D counterparts.[60, 61] Secondly, the 2D materials are suitable for integra-

tion in applicable optoelectronic devices such as waveguides and cavities.[62, 63] Moreover,

it is possible to make heterostructures of 2D materials using stacking techniques without

being worried about the lattice mismatching. Another issue is that although 2D materials

are thin, they can nevertheless strongly interact with light. There are two major mechanisms

which lead to photocurrent (PC) generation, as depicted in Figure 6.1. In semiconductors, this

mainly occurs via the separation of the excited electron-hole pair by a built-in electric field,

which corresponds to the so-called photovoltaic effect (Figure 6.1a and c). Another possible

mechanism is photothermoelectric effect PTE. If a temperature gradient is generated by light

1Parts of this chapter are based on our publication "Efficient Photothermoelectric Conversion in Lateral
Topological Insulator Heterojunctions", publication 2 in Curriculum Vitae (page 97).
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Figure 6.1 – (a) and (b)schematic of photocurrent generation mechanism in a semiconductor
junction and a thermoelectric material. (c) and (d) Schematic of simple devices working with
photovoltaic and thermoelectric concepts respectively.

across an interface between two materials of different thermoelectric power (S) the PC will be

generated by photothermoelectric (PTE) effect. The underlying mechanism can be understood

in terms of different population of electrons at the hot and cold sides of the structure leading

to a voltage drop across the sample (Figure 6.1b and d). Practical devices normally are made

of a number of thermocouples connected electrically in series and thermally in parallel. [64]

Thermoelectric performance is typically quantified in terms of dimensionless figure of merit

Z T defined as:[64]

Z T = S2σT

κ
(6.1)

where S is the Seebeck coefficient or thermopower, σ is the electrical conductivity, T is the

absolute temperature and κ the thermal conductivity. The Seebeck coefficient is in principle a

measure of the magnitude of an induced thermoelectric voltage ∆V in response to an applied

temperature difference ∆T expressed as,

S = ∆V

∆T
(6.2)
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Microscopically, in a conductor the Seebeck coefficient is expressed by the Mott relation,[65]

S = π2

3
(

kB

q
.kB T )

d(ln[σ(E)])

dE
|E=EF (6.3)

It shows that Seebeck coefficient is inversely dependent on the electrical conductivity. How-

ever, equation 6.1 indicates that the figure of merit has a direct dependency on the conductivity.

This leads to an inherent problem in this field, meaning that a fine balance between these

two dependencies is needed to achieve an optimal figure of merit. The Mott formula also

indicates that the Seebeck coefficient primarily depends on the energy derivative of the density

of states at the Fermi level. Any technique or material which increases this slope will enhance

the Seebeck coefficient.[66] A major hurdle for a systematic optimization is the often highly

nontrivial dependence of the material’s electronic structure on its atomic structure. Several

successful concepts, including nanostructuring and inclusion of loosely bound rattlers have

been developed to systematically reduce the lattice thermal conductivity. Well-established

thermoelectric materials such as Bi2Te3 display a large Seebeck coefficient of up to 150 µV/K at

room temperature. Interestingly, they belong to the material class of three-dimensional (3D)

topological insulators (TIs). TIs share several common features with topologically trivial ther-

moelectric materials, including the presence of heavy elements which impart strong spin-orbit

coupling, and a small bulk band gap. Bi2Te3 has been known to be an excellent thermoelectric

material and routinely used in devices.[65] Theory suggests that hybridization between the

nontrivial (helical) surface states from the top and bottom surfaces of a 3D TI induces a band

gap in the surface states which can enhance the thermoelectric performance by controlling

the conductivity.[67] A positive impact of the gapped topological surface state on the ther-

moelectric transport has been corroborated by ab initio electronic structure calculations on

Sb2Te3.[68]

Experimentally, various types of 3D TI nanostructures have been investigated with respect

to their thermoelectric performance. Along these lines, scanning photocurrent microscopy

(SPCM) of step-terraced two-dimensional (2D) crystals of Bi2Te3 and Sb2Te3 has revealed ther-

moelectric conversion at monolayer steps of the same material by exploiting of the quantum

nature of the material.[69] This observation has been attributed to the different derivative of

the density of states at steps with different number of layers. In addition, it has been experi-

mentally demonstrated that the excitation of spin-polarized currents by circularly polarized

light leads to an enhancement of the photothermoelectric effect in Bi2Se3 nanoribbons.[70]

Supporting evidence for the role of the spin-helical surface states in 3D TIs has recently been

gained for ultrathin sheets of (Bix Sb1−x )2Te2, which display an enhanced spin Seebeck effect

signal.[71] It has furthermore been demonstrated that the thermoelectric performance of

ultrathin Bi2Se3 nanosheets can be optimized through thickness control and reducing the

thermal conductivity.[72]

Although sufficient evidence on promising thermoelectric conversion efficiency of single-

component 3D TI nanostructures is provided, photothermoelectric devices implementing the

corresponding n- and p-type components at the nanoscale have not yet been realized. Exper-

imentally, lateral and vertical TI p-n heterostructures have been successfully fabricated by
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Chapter 6. Scanning photocurrent microscopy of lateral TI heterostructures

molecular beam epitaxy[73], solvothermal synthesis[74] or vapor phase growth[75], however

only their general electrical properties have been studied.

In this chapter the photo-thermoelectric response of individual lateral heterostructures com-

posed of two different 3D TIs, specifically Bi2Te2Se (BTS) as n-type component and Sb2Te3 as

the p-type component is investigated.

6.1 Structural and Compositional Analysis

In the BTS crystal, ordered hexagonal Te-Bi-Se-Bi-Te quintuple layers are stacked via van der

Waals interactions, while Sb2Te3 is made of stacked quintuple layers of Te-Sb-Te-Sb-Te. The

two tetradymite materials share the rhombohedral crystal structure of the same space group

R3m rendering them suitable candidates for fabricating lateral TI heterojunctions.[27]
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Figure 6.2 – (a) Topographic AFM image of a lateral Bi2Te2Se/Sb2Te3 heterostructure, obtained
by two consecutive vapor solid growth steps.The central Bi2Te2Se nanoplatelet is surrounded
by a significantly higher frame of Sb2Te3. (b) Cross-sectional profile along the white line in
the AFM image of panel a. (c) Overview TEM image of a Bi2Te2Se/Sb2Te3 nanoplatelet. (d)
Corresponding EDX profiles for Sb, Bi, Te, and Se, taken across the Bi2Te2Se/Sb2Te3 interface
along the white line in panel c.

The CVD growth of lateral TI heterostructures is described in detail in chapter 3 (see section

3.3). An exemplary atomic force microscopy (AFM) image of a heterostructure comprising BTS

and Sb2Te3 regions of notably different thickness is shown in Figure 6.2a. The line profile in

Figure 6.2b indicates that the central platelet has a thickness of 15 nm which is surrounded by

a ∼40 nm thick frame region of Sb2Te3. The edge growth mechanism was further confirmed
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6.1. Structural and Compositional Analysis

by AFM characterization of individual BTS nanoplatelets before and after Sb2Te3 growth. After

the growth of Sb2Te3, the AFM measurements revealed that the thickness of BTS is largely

preserved, signifying an edge-induced growth mechanism for the Sb2Te3.

To further study the composition of the as-grown lateral heterostructures, transmission elec-

tron microscopy (TEM)-based energy dispersive X-ray (EDX) analysis is done as exemplified

for the nanoplatelet in Figure 6.2c. The grown TI heterostructure are first transferred via a

water transfer method on to a TEM grid. The SiOx /Si growth substrates with grown TI het-

erostrucures on were spin coated and were put in distilled water of 90◦C temperature. After

about one hour the hydrophobic PMMA can be easily removed and transfered on a TEM grid.

The PMMA is subsequently dissolved with Acetone. Figure 6.2c shows such a TEM measure-

ment and the corresponding EDX line profiles across the interface between the two regions of

different thickness (Figure 6.2d) show that Bi is present only in the central region, whereas Sb

exists only in the outer frame reaching almost zero atomic percentage in the center.
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Figure 6.3 – (a) Raman map of a lateral BTS/Sb2Te3 heterostructure, displaying the scattered in-
tensity at ∼ 71 cm−1 associated with the A1g1 mode of Sb2Te3. (b) Raman spectrum recorded at
the position marked in panel a, which lies within the Sb2Te3 region at the periphery. The blue
line is the Lorentzian fit of the lowest energy peak. (c) Raman map of the same nanoplatelet
as in panel a, displaying the scattered intensity at ∼ 65 cm−1 belonging to the A1g1 mode of
Bi2Te2Se. (d) Raman spectrum collected from the center of Bi2Te2Se region of the heterostruc-
ture (open circle) . The blue line is a Lorentzian fit of the lowest energy peak. All of the above
maps and spectra were acquired under ambient conditions with λ= 514nm.

The heterostructure composition could be further probed by confocal Raman spectroscopy

(Figure 6.3). To this end the whole area of the TI heterostructure is scanned at room tem-

perature and at each point the Raman spectrum is recorded. The Raman spectrum of BTS
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Chapter 6. Scanning photocurrent microscopy of lateral TI heterostructures

consists of two isolated modes at 65 cm−1 and 109.5 cm−1 corresponding to Ag1 and Eg modes,

respectively. In addition, there are two overlapping peaks at 140 cm−1 and 155 cm−1 associ-

ated with Ag2 mode. The Sb2Te3 Raman spectrum shows three peaks at 71 cm−1, 115 cm−1

and 168 cm−1, which can be assigned to the A1g1, Eg2, A1g2 vibrational modes, respectively.

To analyze the composition of the heterostrucure, the final Raman map is plotted for the

prominent peaks of the two materials. Raman maps depicted in Figure 6.3 show that the A1g1

mode characteristic of Sb2Te3 (peak at ∼ 71 cm−1, see the spectrum in Figure 6.3b) appears

predominantly within the frame region, while the corresponding mode belonging to BTS (peak

at ∼ 65 cm−1, see Figure 6.3d) resides within the central region.
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Figure 6.4 – (a) Kelvin probe force microscopy image of the periphery of a Bi2Te2Se/Sb2Te3

nanoplatelet. The image was taken under ambient conditions. (b) Corresponding surface
potential profile along the white line in panel a. The starting point belongs to the right end of
the line.

In addition, indirect proof for the chemical composition of the heterostructures was obtained

by Kelvin probe force microscopy (KPFM) described in chapter 3, as illustrated in Figure 6.4.

The line profile in Figure 6.4b along the white line in the KPFM image in Figure 6.4a, indicates

a surface potential difference of ∼130 mV between the inner BTS and the outer Sb2Te3 region.

The work function of BTS (∼5.2 eV[76]) exceeds that of Sb2Te3 (∼4.6 eV[77]), accordingly a

lower surface potential is detected on the Sb2Te3 area surrounding the inner BTS.[78]

6.2 Electrical Characterization

For electrical characterization, individual BTS/Sb2Te3 nanoplatelets were contacted with two

separate metal contacts on the inner BTS and the outer Sb2Te3 region. The contacts were

defined by e-beam lithography, followed by thermal evaporation of Ti/Au. The amount of

evaporated metals is dependent of the thicknesses of the both BTS and Sb2Te3. In order to

avoid contact between the BTS electrode and the Sb2Te3, the bridging technique described

in chapter 3 was used. The thickness of thermally evaporated SiOx layer has been about 90

nm. One important observation was the linearity of the current(I)-voltage(V) characteristics

measured across the p-n heterojunction, as depicted in Figure 6.5a at both high (T = 290 K) and

low (T = 1.4 K) temperatures. The resistance decrease upon cooling reflects a metallic character,
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which is due to the high doping degree of both heterostructure components, with the Fermi

energy positioned within in the bulk conduction (valence) band for BTS (Sb2Te3). Similar

metallic behavior has been documented for nanostructures made of the single components.

Remarkably, the fully linear I/V behavior of the devices was preserved even for a large bias

window of ±1 V at T = 1.4 K showing no conventional diode behavior. If we assume that the
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Figure 6.5 – (a)Current−voltage characteristics of a Bi2Te2Se/Sb2Te3 nanoplatelet at 1.4 and 290
K. The current was measured across the interface between the two components, using separate
electrical contacts on the central Bi2Te2Se region and the Sb2Te3 frame at the periphery. The
inset shows the resistance of the same heterostructure nanoplatelet as a function of the
magnetic field recorded at T = 1.4 K. The B-field is oriented perpendicular to the sample plane.

heterojunction is composed of two degenerately doped semiconductors, the devices would

be expected to behave like an Esaki diode, exhibiting a negative differential resistance (NDR)

peak in the backward bias direction. However, the presence of the topological surface states is

likely to cause deviation from the NDR characteristics in the tunneling regime, which could

explain the smooth, linear I-V curves observed for the present samples. In order to investigate

further the properties of the junction, the vertical heterostructures of BTS and Sb2Te3 are

fabricated using a stacking technique. Interestingly the same linearity was observed in most

cases. This linearity points toward the different behaviour of topological insulator junctions

in comparison to the semiconductor case. It is noteworthy that a small number of devices

showed a weak rectifying behavior along with tiny wiggles, however, in all cases the origin of

these features can be attributed to asymmetric Schottky barrier contacts on the two materials.

Moreover, the two-probe magnetoresistance across the p-n junction (Figure 6.5b) displays

a close-to-quadratic dependence for higher B-fields, along with a dip around zero B-field.

The latter is due to the weak-antilocalization (WAL) effect, occurring due to the spin-orbit

coupling in 3D TIs, and manifests itself also in the present heterostructure devices.[78]
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6.3 Photothermoelectric Measurements

6.3.1 SPCM on Single Components

In order to get insight into the photocurrent mechanism of the lateral heterostructures, the

photocurrent generation is first studied for single component BTS and Sb2Te3. Figure 6.6 shows

a photocurrent measurement on a 10 nm Sb2Te3 nanosheet. In every scanning measurement

a reflection image is also recorded guiding the map of the photocurrent generated on different

areas of the device. Figure 6.6a and b shows the reflection image and the photocurrent map,

respectively. As it is clear from Figure 6.6c that the PC profile across the metal−Sb2Te3 junction
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Figure 6.6 – (a) Reflection image of the Sb2Te3 device (b) photocurrent map of the device using
two electrodes (c) the photocurrent profile across the line line indicated in the PC map.

shows a Gaussian profile (the red line is the Gaussian fit). In the interpretation of the sign

of photocurrent one important issue is the assignment of the drain and ground electrodes.

Generally, in photocurrent measurements the electrode connected to a measurement unit is

called source and the electrode used as a ground or connected to a source unit is considered as

drain electrode. According to the convention flow of the electrons from the source electrode to

the drain electrode, this gives a negative photocurrent. In Figure 6.6b the blue color indicates

a negative and red color the positive sign of current.

Figure 6.7 is the same PC measurement on a BTS nanosheet with a the same thickness as

the Sb2Te3 nanosheet . The comparison of Figure 6.6b and Figure 6.7b indicates that the

sign of photocurrent in the same setup configuration is opposite for the two materials, in

accordance with the opposite carrier sign of the two. If a photovoltaic mechanism for the

photocurrent generation is to be considered, the opposite sign of the currents are expected at

the metal−electrode junctions. Furthermore, the Gaussian distribution of the photocurrent

hints towards the thermal photocurrent generation mechanism.
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Figure 6.7 – (a) Reflection image of the BTS device (b) photocurrent map of the device using
two electrodes (c) the photocurrent profile across the line line indicated in the PC map.

6.3.2 SPCM on TI Lateral Heterojunctions

After studying the chemical composition and basic electrical behavior of the p-n heterojunc-

tions, as well as investigating the PC generation mechanism at the TI−metal junction, the

SPCM measurements are done on the heterojunctions. In order to gain spatially resolved infor-

Bi Te Se2 2Sb Te2 3 Sb Te2 3

A

SiOx

Figure 6.8 – Schematic depiction of a scanning photocurrent microscopy (SPCM) measure-
ment, where a confocal laser spot is scanned across a Bi2Te2Se/Sb2Te3 device.

mation about the photo-electric behavior of the devices, scanning photocurrent microscopy

(SPCM) is used, whose principle is illustrated in Figure 6.8. The SPCM set-up is operated

under ambient with a focused green laser (530 nm) and a spatial resolution (laser spot size)

of about ∼ 400 nm. The photocurrent generated during a scan is collected through the two

electrodes as a function of the laser spot position. The green color beneath the metal electrode

shows the evaporated SiOx on top of the Sb2Te3 region. Upon illumination of the p-n region

within a lateral heterostructure (Figure 6.9) with the green laser (λ = 514 nm, laser power of 35

µW), the original I-V curve (black line) is slightly down-shifted along the y-axis. This indicates
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lines are drawn based on the overlap of the reflection and photocurrent image. The map was
recorded under ambient conditions using λ= 514nm. (b,c) the PC line profile across the black
line and the gray line, respectively.

a very small open circuit voltage Voc on the order of 10 µV. Since the open circuit voltage

is the potential difference of the two materials, this small Voc is consistent with the lack of

conventional diode like behavior.

Another observation is that upon illumination a substantial resistance increase of ∼230Ω is

caused which makes these devices suitable candidates for photodetectors. This prominent

resistance increase under the laser illumination and applied bias indicates the coexistence

of the thermoelectric and bolometric effect. The photocurrent dependence on light power,

Figure 6.10b, shows a close-to-linear increase. In Figure 6.9a, the zero bias photocurrent map

of a representative p-n heterojunction device is shown. It displays pronounced photocurrents

at the source and drain contacts, as well as at the p-n junction. The photocurrents generated

at the two contacts have identical sign, which is opposite to that of the photocurrent at the

junction. In general, two major mechanisms can be responsible for photocurrent generation

in such devices. The first one is the photovoltaic effect which involves the separation of

photo-excited electron-hole pairs by a built-in electric field, while the second one is the photo-
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Figure 6.10 – (a) Current-voltage curves of Bi2Te2Se/Sb2Te3 nanoplatelets, acquired in the
dark (black curve) and under laser illumination (λ = 514nm) of the interfacial region (red
curve). The curves were measured using Sb2Te3 as the drain contact. All measurements
were performed under ambient conditions. The inset is a plot of photocurrent vs laser power
(λ= 514nm) for local illumination of the p−n junction.

thermoelectric effect arising from the temperature gradient across an interface between two

materials with different Seebeck coefficients. To clarify the mechanism responsible for the PC

generation in TI lateral heterostructure device, following points should be considered.

First, as apparent from the overlap between the photocurrent map and the reflection image

in Figure 6.9a, the generated PC close to the contact regions extend several µm away from

them. This behavior is in contrast to the more localized response typically detected in case

of the photovoltaic effect. Second, the full linearity of the I-V curves over a wide bias range

does not support the presence of sizeable Schottky barriers at the contacts as well as a built-in

potential at the junction. Third, a stronger photocurrent signal at the contact to the BTS was

reproducibly observed. This can be understood in accordance with the Seebeck coefficient

difference between gold and BTS being larger compared to that between gold and Sb2Te3.

Furthermore, based upon the electron affinity of Sb2Te3 of between 4.1 and 4.5 eV and gold’s

work function of ∼5 eV, the photovoltaic mechanism would be expected to result in an opposite

sign of the photocurrent at the electrode than observed by experiment. Considering all the

mentioned points, it follows that due to the laser-induced local heating, generated hot carriers

are diffusing from the p-type Sb2Te3 to the n-type BTS, leading to a negative photocurrent in

the junction of the depicted experimental setup.[78]

The photothermal current generated upon illumination at the junction is proportional to the

difference between the Seebeck coefficients of the components, according to the following

equation:

S1−S2 = ∆V

∆T
(6.4)
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where S1 (S2) is the Seebeck coefficient of the p (n)-type material, ∆V is the generated voltage

(∆V =∆I R with ∆I as the induced photothermal current and R as the sample resistance), and

∆T is the temperature difference induced through local heating by the laser spot.

To estimate the temperature difference between the laser spot and the electrodes, the differen-

tial resistance change upon local heating is derived. For this purpose the BTS nanoribbons of

1.5 to 2.5 micrometers in length are grown. Laser illumination of the middle of the nanoribbon

causes a resistance increase. The resistance of the same nanoribbon is measured in a cryogenic

system for the temperature range of 1.4 to 300 K, Figure 6.11. Assuming a sufficiently small

temperature raise, ∆R ≈ dR
dT δTav can be estimated. To obtain dR

dT , the temperature dependent

resistance was fitted by[79]

R = R0 +αe−
θ
T +βT 2 (6.5)

and the derivative of this equation

dR

dT
=−αθ e−

θ
T

T 2 +2βT (6.6)

for a temperature range 50 to 300 K. Measurements of the dark resistance of the BTS nanorib-

bons as a function of temperature (between 1.4 and 298 K) yielded a temperature coefficient

of dR/dT = 3.2Ω/K . This approach was followed for three different nanoribbons using the

same laser power, resulting in similar changes in temperature.

Assuming that the laser-induced resistance change ∆R under this condition originates from

local heating, the temperature difference ∆T between the illuminated spot and the electrodes

is estimated to be 0.3 ± 0.05 K for a laser power of 5.2 µW (0.4 ± 0.02 K for a power of 8.7

µW) averaged over different samples. It should be emphasized that the above estimation is

limited to a maximum laser power of 20 µW. For higher power, the appreciable concentration

of photo-excited carriers enhances the optical absorption and thereby favors further heating,

which would lead to an overestimation of temperature. For the lateral heterostructure device,

inserting the measured resistance R, the magnitude of the photocurrent ∆I detected at the

p-n junction, and the estimated temperature ∆T difference into equation 6.4 yields a Seebeck

coefficient difference of ∼200 µV/K. This value exceeds those reported for single component

bismuth chalcogenide nanostructures such as Bi2Te3 and Sb2Te3 nanowires (∼150 µV/K)[70,

80].

To assess the accuracy of this estimation, the Seebeck coefficient was numerically derived

by a semi-classical transport approach using the BoltzTrap code. These calculations were

performed by Dinh Loc Duong at Sungkyunkwan University, South Korea. The band structure

and density of states (DOS) of BTS and Sb2Te3 were calculated using the Quantum Espresso

package. The bulk structure was fully optimized until an energy and force convergence below

0.003 eV and 0.05 eV/Å were reached, respectively. The band structure of the optimized struc-

tures was calculated by including spin-orbit interaction. Moreover, 24×24×3 uniform grids

were used, and the exchange-correlation was estimated by the general gradient approximation

(GGA) in terms of the PBE functional. The ultrasoft potential with a cut-off energy of 60 Ry was
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Figure 6.11 – Sheet resistance of a BTS nanoribbon measured over a temperature range of 1.4
to 300 K. The red line is the fitting curve as described in the text.

used for Sb2Te3 while the projector augmented wave potential with a cutoff energy of 80 Ry

was implemented in case of BTS. The DOS was calculated using a denser grid with 48×48×6

k-points. Thus obtained DOS was then imported into the BoltzTrap code to calculate the

Seebeck coefficient.[78]

As apparent from Figure 6.12, the simulated Seebeck coefficient for both compounds shows,

as expected, a strong dependence of the Fermi energy. From separate Hall measurements on

individual BTS and Sb2Te3 nanoplatelets, an electron concentration of n = 1.2 × 1019 cm−3

for BTS, and a hole concentration of p = 7.4× 1020 cm−3 for Sb2Te3 is derived, confirming the

strong (degenerate) doping degree of both compounds. Based upon the effective mass of

0.11 me [81] for electrons in BTS and 0.78 me [82] for holes in Sb2Te3, and assuming for both

compounds an approximately quadratic band structure close to the Fermi level, we estimate

from the equation

EF = ħ2

2m
(3π2n)(3/2) (6.7)

the Fermi level of BTS to be 0.17 eV above the conduction band edge, and the Fermi level

of Sb2Te3 to be 0.23 eV below the valence band edge. Combined with the calculated data

in Figure 6.12, this yields a Seebeck coefficient of about -120 µV/K for BTS and +65 µV/K

for Sb2Te3. The corresponding difference S2−S1 = 185µV /K is in good agreement with the

experimental observation.

Overall, the above measurements demonstrate that the well-defined composition and elec-
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Figure 6.12 – (a) and (c) Density of states (b) and (d) Seebeck coefficient for Sb2Te3 and BTS.

tronic structure of the BTS/Sb2Te3 nanoplatelets endows them with a high thermoelectric

performance. It may be possible to further improve the device performance by tuning the

Fermi levels through local molecular surface doping. The heterostructures are amenable to

implementation into a more elaborate device configuration that allows directly harnessing

environmental temperature gradients. Moreover, it would be interesting to evaluate their

performance as photodetectors. Another degree of freedom to control the PC generation is

to change (reduce) the thickness of the both materials in order to hybridize bottom and top

surface states to open a band gap.
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7 Electronic and Magnetic studies of
α-RuCl3

1

7.1 Background on α-RuCl3

The exactly solvable Kitaev model on the honeycomb lattice represents a class of 2D quantum

spin liquids which supports fractionalized excitations.[83] It consists of a set of spin-1/2 mo-

ments Si arranged on a honeycomb lattice. However, in real materials a Heisenberg interaction

is also generally expected to exist, giving rise to the Kitaev-Heisenberg (KH) Hamiltonian[1]

H =∑
i j

(K Sm
i Sm

j + JSi .S j ) (7.1)

in which m is the projection of the spin along the bond connecting the spins i j . Impor-

tantly, the Hamiltonian 7.1 has proposed to precisely describe the edge shared octahedrally

coordinated magnetic systems with dominant SOC.[83] Among a variety of QSL candidate

compounds, the honeycomb semiconductor ruthenium(III) chloride (RuCl3) has proven espe-

cially promising to fulfill the requirements by the Kitaev-Heisenberg (KH) model.[84, 85, 86]

Two types of Majorana fermions have been predicted in Kitaev model and shown by quantum

Monte-Carlo simulations based on the KH model.[87] The majorana fermions around the

point of equal coupling strength (Kx = Ky = Kz ) are itinerant and form a gappless majorana

metal. However, if these coupling do not share the same strength a gapped spin liquid state

will emerge. [1, 87]

Especially signatures of the gapless majonara fermions are expected to be experimentally

observable due to the onset of spin-spin correlations and the emergence of fractionalized

excitations in the QSL host material.[88, 89]

What makes α-RuCl3 an interesting system to study in this field is the unusual features above

the magnetic ordering temperature which has been interpreted to the proximity to the Kitaev

1Parts of this chapter are based on our manuscript "Electrical Transport Signature of the Magnetic Fluctuation-
Structure Relation in α-RuCl3 Nanoflakes", publication 1 in Curriculum Vitae (page 97).
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spin liquid.

7.1.1 Experimental Evidence

Possible fingerprints of Kitaev interactions in α-RuCl3 have been observed in different types

of experiments. Inelastic light scattering experiments revealed the existence of fermionic

excitations in a broad energy and temperature range which also emphasized the importance

of magnetic materials as hosts of Majorana fermions.[89] Raman measurements reveal a broad

continuum as well as a significant line shape broadening of the low energy peaks below 100

K.[88] Since all the known magnets in more than 1D posses magnons as their elementary

excitations, a bosonic excitation behavior is expected. As a result the deviation from bosonic

distribution hints towards mixed fermionic bosonic excitations. [89]

Another important experimental feature has been observed in the magnetic scattering ob-

served in inelastic neutron scattering. At low energies the scattering is consistent with the

spin waves on a zig-zag ordered background, however, at higher temperatures a broad scat-

tering continuum was observed. The analytical calculations based on Kitaev-Heisenberg

Hamiltonian has produced similar features.[34, 90]

7.1.2 Structure and Magnetism

X-ray diffraction data has indicated that the crystal structure at low temperatures is described

by C2/m space group with some degree of stacking faults (see Figure 7.1).[6] The STEM and

(a) (b)

Figure 7.1 – (a) Schematic depiction of the in-plane α-RuCl3 crystal structure in C2/m space
group symmetry, (b) ABAB stacking along the c direction, perpendicular to the honeycomb
in-plane structure. The blue dashed lines indicate slight shift of the layers occurring after the
orange dashed line. Figure adapted from [6]

neutron scattering experiments confirmed a structural transition about 150 K which also

explains the kinks observed in the susceptibility measurements.[91] This high temperature

feature has been observed in different experiments. A nuclear magnetic resonance (NMR)

study on the spin-lattice relaxation rate T −1
1 of the 35Cl isotope revealed a transition tempera-

ture of 160 K.[92] Furthermore, based on the deconvolution of the phononic and magnetic
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contributions to the thermal conductivity, a transition temperature of 140 K was found.[93]

The α-RuCl3 single crystals required for mechanical exfoliation were grown from commer-

cially available powder (Roth, 99.9+ % purity) following a modified literature procedure 2.[94]

Specifically, an evacuated quartz ampoule containing the powder was heated to 700 ◦C at

the hot end. At the cooler end (600 ◦C) of the tube the crystal platelets with a size of up to

4-8 mm2 were formed. The elemental composition of the crystals was verified by an energy

dispersive X-ray spectrometer (Si/Li detector by Oxford Instruments) on a scanning electron

microscope Vega TS 5130 MM (Tescan). The samples displayed an elemental ratio of Ru : Cl =

1 : 3. The crystal structure was confirmed by single crystal X-ray diffraction on a three circle

diffractometer (Bruker AXS) equipped with SMART APEX I CCD using Mo-Kα radiation. The

crystals were indexed in the C 2/m space group with the lattice parameters a = 5.9917(13) Å,

b = 10.367(2) Å, and c = 6.0543(13) Å with the presence of approximately 4 % stacking faults,

similar to crystals reported previously.[6]

The magnetic properties, evaluated by SQUID magnetometry, are consistent with previous

reports on α-RuCl3 with some degree of stacking faults.[6, 95] Three characteristic magnetic

features were observed upon cooling, specifically a high temperature transition at 170 K,

followed by two low temperature transitions at 7 K and 14 K, respectively. The high temperature

transition at 170 K has been ascribed to a change in the stacking order as well as transition to a

Kitaev-paramagnetic state,[91, 15] while the low temperature transitions at 7 and 14 K most

likely arise from the stacking disorder and the emergence of the complex magnetic structure,

respectively.[6]

To study the α-RuCl3 in reduced dimension, they were mechanically exfoliated from large

α-RuCl3 crystals onto Si substrates covered by 300 nm SiO2. The thickness of the resulting

flakes ranged from a few up to 50 nm, as determined by atomic force microscopy (AFM). In

order to explore the existence of the fermionic excitations in the thin sheets of α-RuCl3, they

were first investigated by temperature dependent Raman spectroscopy.

7.2 Inelastic Light Scattering of α-RuCl3 Nanosheets

7.2.1 Laser heating and substrate background
The Raman spectroscopy measurements were done using a green laser (532 nm) with a spot

size of ∼400 nm and a laser power of 330 µW. Before investigating the temperature dependent

Raman spectroscopy of α-RuCl3, two important issues should be addressed. The first one is

the choice of appropriate laser power in order to avoid the extra heating effect by the laser.

Secondly, since the thin sheets of the material on a substrate is measured, the substrate

background contribution should be taken in account.

To find the right laser power, the Raman spectra of a thin flake of α-RuCl3 with different laser

powers are taken, (see Figure 7.2a). Upon increasing the power stepwise from 40µW up to 4500

µW, at about 700 µW the Raman peaks start to shift toward lower energy. This mode softening

2The growth of the material as well as crystal analysis was done by Daniel Weber, Lotsch Department, Max
Planck Institute with the help of the institute service group.
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Figure 7.2 – (a) Raman spectra of a thin sheet (10 nm) of RuCl3 measured using different laser
powers, the table show the peak positions of the three Lorentzian peaks. b) Raman spectrum
of the same nanosheet measured using 530 µW laser power at 70 K.

hints toward heating of the sample by the laser light, (see the Table in Figure 7.2). Furthermore,

another method to detect heating of the sample is the appearance of the anti-Stoke peaks,

since the anti-Stoke radiation gains energy from the lattice. To study the presence of the

anti-Stoke modes a Notch filter was used. The nanoflake spectra acquired at 70 K using 530 µW

laser power, as shown in figure 7.2b, display no distinguishable anti-Stoke peaks, indicating

negligible heating. Generally, upto 530 µW no observable shift of the modes or presence of

clear anti-Stoke peaks was noticed. Nonetheless, still lower power of 330 µW is used to safely

exclude any laser heating effect which otherwise may affect the data.

Regarding the substrate subtraction, at each temperature spectra from both, the nanoflake

and the bare substrate is recorded, using the same laser parameters and accumulation times.

Normally with 330 µW laser power, 60 seconds exposure was required to get a high signal to

noise ratio which is three times accumulated. For peak analysis, first the general background

from both spectra should be subtracted. Then the substrate peak at 520 cm−1 can be used

to find the contribution of the substrate to the spectrum. Finding the ratio of substrate

Raman peak in the α-RuCl3, this ratio is then multiplied by the substrate spectrum and

finally this spectrum will be subtracted from the α-RuCl3 Raman spectrum. Figure 7.3a

shows the Raman spectra of an exemplary α-RuCl3 nanoflake taken with both xx and xy

polarizations. Both spectra show narrow phonon modes as well as a broad continuum at low

energies. Measurements on the bare SiO2/Si substrate shows that, the substrate background

in the low energy region (where the broad continuum due to fermionic excitations is most

pronounced is weaker for xx- than for xy-polarization. Due to this lower substrate contribution
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Figure 7.3 – (a,b) Schematic depiction of the crystal structure of α-RuCl3 along the [010] and
[001] direction respectively, (c) polarized Raman response of α-RuCl3 thin sheet , (d) detail of
the low energy regime of the Raman spectrum, with the blue shading added to highlight the
low energy background continuum.

with xx polarization, all the temperature dependent measurements are performed using this

polarization.

Figure 7.3b highlights the spectrum of the nanoflake at 120K only in the low energy regime

after background subtraction. The blue area indicates the broad continuum extending upto

about 20 meV.

7.2.2 Temperature Evolution of the Raman Spectrum
To see the effect of the exfoliation on the structure of the α-RuCl3, its Raman spectra is

compared with the one for bulk. Raman spectra recorded from the bulk and a 10 nm thick
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Figure 7.4 – (a) Comparison of the Raman spectra ofα-RuCl3 bulk and a 10 nm thick nanoflake
at high (bottom) and low (top) temperatures, (b) Temperature dependent Raman spectra of
the nanoflake from 283 to 123 K.
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α-RuCl3 nanoflake are compared as depicted in Figure 7.4a. Since the Raman intensity of the

nanoflake using low laser power is in general much weaker than bulk, the minor peaks at 28

and 43 meV, although present, are difficult to distinguish from the noise level. Beside that

no major change of the peak positions or shapes due to the exfoliation can be discerned at T

∼290 K (top panel) and T ∼100 K (bottom panel). The close agreement between the bulk and

nanoflake spectra in these experiments testifies that the in-plane crystal structure is largely

preserved during the mechanical exfoliation.

As it was mentioned the Raman spectra of the bulk α-RuCl3 show a broad continuum in the

low energy range (blue background in the spectrum of Figure 7.3b).

The broad continuum, which in the bulk case has been attributed to the fractionalized excita-

tions originating from Kitaev interactions, is also observable in the nanoflake spectra. Since

the two low energy lattice vibrations at 14 and 20 meV lie on the magnetic continuum, they

have an asymmetric peak shape of the Fano type. The evolution of the Raman peaks upon

cooling is displayed in Figure 7.4b.

For further analysis, the Raman peaks were fitted in accordance with literature procedures.[89,

15] To this end, the peaks at 14 and 20 meV, which are superimposed on a broad continuum,

are fitted with a Fano-like peak shape, while the peaks at 33, 36 and 38 meV are fitted with

symmetric Lorenz functions.

As apparent from Figure 7.5a the peaks at 14 and 20 meV, respectively, can be well fitted with

Fano like function of the form F (ω) = F0
(ε+q)2

1+ε2 in which q is the asymmetry parameter and

ε = ω−ω0
Γ . The Fano shape of the peaks indicates the coupling between the continuum of

excitations and the sharp lattice vibrations. The mode frequency, the linewidth and the Fano

asymmetry parameter derived from the fitting of the 20 meV phonon mode are plotted as a

function of temperature in Figure 7.5b,c and d, respectively. The errors are within the symbol

size. Normally in equilibrium conditions a crystal is described within the theory of harmonic

lattice. However, when crystal is subjected to temperature changes, a static lattice of ions will

not apply anymore and the anharmonic model should be taken in account. While cooling

results in a general decrease of the peak width, the slope of this change is seen to decrease

below 200 K, deviating from the anharmonic model. The temperature dependence of the

phonon frequency and self-energies are generally determined by the lattice anharmonicity

which is a monotonic function of the form:

Γ(T ) = Γ0 + A[1+2n(ω0/2)] (7.2)

in which n(E) = 1/eE/KB T −1 is the thermal bosonic factor, and Γ0 and ω0 are the FWHM and

frequency, respectively, at zero Kelvin. First the frequency temperature evolution is fitted, with

the frequency value at T = 0 K obtained by extrapolation. Using this value it is possible to fit

the FWHM with the anharmonicity model for the temperature range 200K < T < 300K and

gained the values for Γ0 and ω0. The anharmonicity function is monotonic down to very low

temperatures as confirmed by the calculations as well. The deviation from this monotonic

behavior can be clearly observed.

Such deviation from the anharmonic model has also been observed in bulk α-RuCl3 near T =
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Figure 7.5 – (a) Raman spectrum and corresponding Fano function fit of the low energy range,
(b) , (c) and (d) temperature evolution of the energy, linewidth and the Fano asymmetry
parameter of the 20 meV peak, respectively.

140 K and attributed to the emergence of the fractionalized excitations with mixed bosonic

and fermionic character, leading to spin-phonon scattering.[15, 88] Also similar observations

were reported for harmonic-honeycomb iridates β− and −γ Li2IrO3.[9] The 14 meV phonon

mode shows essentially the same behavior upon cooling like the 20 meV phonon. Figure 7.6

shows the time evolution of the remaining peaks.

It is furthermore noteworthy that upon cooling, the spectral weight of all these peaks first

decreases and then increases again (Figure 7.7). A similar trend has been reported for α-RuCl3

bulk samples as well as a recent work on few layer α-RuCl3 as a fingerprint of the structural

phase transition, influencing the bond directional Kitaev interactions. [89, 96]
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Figure 7.7 – Change of the integrated Raman intensity IT relative to IT=283K of the Eg peaks at
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7.3 Electrical Transport Measurements of α-RuCl3 Nanosheets

7.3.1 Contact resistance
Despite the notable progress on this material, the onset of Kitaev interactions in α-RuCl3 has

not yet been addressed by charge transport experiments and only little is known about how

these interactions are influenced when the sample dimensions are reduced. To study α-RuCl3

nanosheets, it is essential to fabricate low resistance electrode contacts to the material. A

reliable electrical contacting procedure which yields high quality metal contacts on individual

α-RuCl3 nanosheets with a thickness down to ∼10 nm is reported in this chapter. Having

demonstrated the onset characteristic of the Kitaev interactions in the nanoflakes by spectro-

scopic means, they are further investigated by electrical transport measurements. In early elec-

trical experiments on bulk crystals of α-RuCl3, a band gap of ∼0.25 eV was determined.[97, 91]

More recent bulk charge transport studies did not yield information about the potential onset

of Kitaev interactions in α-RuCl3, as the electrical resistance became immeasurably high

already above the expected transition temperature.[98] A major issue in such experiments is

the difficulty to achieve reliable electrical contacts to them.

In this thesis the temperature dependent electrical resistivity of α-RuCl3 nanoflakes with a

thickness down to ∼10 nm is measured. Based upon the thickness of 0.57 nm for a single slabs

of α-RuCl3,[99, 6] it follows that a 10 nm thick nanoflake comprises approximately 18 slabs.

As an essential prerequisite for the charge transport measurements, a contact resistance (Rc )

below 10 kΩ through an Ar milling pretreatment of the contact regions is achieved.

Individual nanoflakes were electrically contacted by a standard e-beam lithography process,

followed by an Ar milling step (300 mW, 10 s) to clean the contact region, and subsequent

thermal evaporation of Ti/Au (2/40 nm) under a pressure of 10−8 mbar. It is noteworthy that
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Ar milling has no destructive effect on the area of the material under measurement.

7.3.2 Temperature Dependent Resistance Measurements

Both DC and AC measurement methods can be used to measure the resistivity in a wide

temperature range. However, since the sample undergoes a Mott transition and becomes

insulating, a DC or semi DC measurements yields more accurate results. The DC electrical

measurements were performed in a liquid helium cryostat (Oxford) by recording I-V curves

using slow sweep rates (∼ 1 K min−1) within a small bias voltage (few mV) in order to maintain

equilibrium conditions. In total more than 20 samples were measured with both DC and AC

techniques.

An exemplary α-RuCl3 nanoflake device is shown in Figure 7.8a, with a thickness of ∼ 14 nm,

as concluded from the corresponding AFM section profile in Figure 7.8b.

The temperature dependent resistivity of the device is measured with different cooling rates.

Figure 7.8c shows such a measurement along with the same curve measured with 1 and 3 K

min−1 (inset). At room temperature, the resistivity is on the order of 10−1Ω cm. The resistance
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temperature cycles for two different rates, (d) Semi-logarithmic plot of the resistivity ρ vs.
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of the nanoflake rapidly increases by cooling, as expected for a Mott insulator. For all of the

devices an insulating behavior was observed below approximately 120 K and the resistance

was not measurable. In all temperature regimes the resistance of the sample upon cooling

always increases indicating an insulating behavior. The conduction in this material happens

by hopping of electrons between neighboring impurities. At sufficiently low temperatures,

hopping conduction occurs due to the states whose energies are in a narrow band near the

Fermi level. [100] The thermally activated electrical conduction behavior can be accounted

for in the framework of the two-dimensional variable range hopping (2D VRH) model, which

predicts the following dependence:

ρ = ρ0 exp(T0/T )1/n+1 (7.3)

where n is the transport dimensionality, and T0 is the characteristic temperature given by:

T0 = 21.2

kB N (EF )ξ3 (7.4)

where kB is the Boltzmann constant, N (EF ) is the density of states at the Fermi level and ξ is

the localization length. The linearity of the semi-logarithmic plot of ρ vs. T −1/3 in Figure 7.8d

indicates n = 2, confirming the 2D nature of the in-plane conduction.

However, in the plot of Figure 7.8d two different regions of slightly different slope can be

distinguished, with a transition temperature of approximately 180 K. The same measurements

were performed on a series of nanoflakes with thickness as small as 7 nm; all revealing the

same change of slope occurring between 170 and 180 K.

This temperature range is remarkably close to the expected structural transition temperature of

α-RuCl3 which is intimately coupled to the onset of Kitaev interactions. The individual linear

fits using equation 7.3 yielded T0 = 5.3 ·105 for the temperature range of 180 K < T < 284 K, and

T0 = 1.58 ·106 for the range of 125 K ≤ T ≤ 180 K. Both these values are in reasonable agreement

with those reported for other Mott insulators. [101, 102] Assuming a constant density of

states at EF , it would follow that the localization length increases by a factor of 1.4 at higher

temperatures, which in turn decreases the sample resistance. Such variations in localization

length is suggestive of enhanced electron-electron correlations as a consequnece of the change

in the lattice structure. As a result it establishes a link between the change in hopping behavior

of the material and the onset of Kitaev interactions detected in the Raman experiments.

According to theory such correlations can influence the electron hopping probability and

hence cause a slope change in the temperature dependence of conductivity.[103] In bulk

α-RuCl3 this onset has been experimentally observed at lower temperature (between 100 and

160 K during the cooling cycle; see the literature data collected in Table 7.1). One explanation

for this might be the presence of surface strain in the nanoflakes, in analogy to observations

made on thin films.[104, 105].

Another relevant observation in our all devices is the small hysteresis in the temperature

dependent resistivity of the α-RuCl3 nanoflakes. This observation is in contrast to the pro-

nounced hysteretic behaviour of α-RuCl3 bulk samples as observed by various experimental

71



Chapter 7. Electronic and Magnetic Studies of α-RuCl3

Table 7.1 – High temperature transitions in bulk α-RuCl3, hysteresis and method of determina-
tion.

Onset Hysteresis Method of

Tt [K] ∆T [K] determination

100 not given Raman scattering[88]

140 25 Neutron diffraction[91]

115 50 Neutron diffraction[106]

70 100 Raman scattering[15]

115 50 Reflectivity[107]

160 not given 35Cl NMR

100 not given Heat capacity[14]

150 not given THz spectroscopy[98]

100 not given Thermal conductivity[93]

methods (see the literature data collected in Table 7.1). However, it should also be taken into

account that the material does not go under a metal insulating transition.

In general, a structural transition occurring between a low-temperature insulating phase and

a high-temperature hopping conduction phase exhibits a hysteresis whose width depends on

the density of defects acting as nucleation sites for the transition. A higher defect density is

correlated with a wider temperature range over which the two phases coexist. Accordingly,

sample annealing that improves the crystal perfection has been shown to lead to a steeper

transition and larger hysteresis, as a consequence of the reduced number of defects within the

volume. [108, 109] In the transport measurements of α-RuCl3 nanoflakes the small resistivity

hysteresis in Figure 7.8c is characteristic of an enhanced defect density which increases the

coexistence range of the two different phases. Similar observations have been made for the

magnetic susceptibility of bulk α-RuCl3, in which case the introduction of crystal stacking

faults via thermal annealing resulted in significantly smaller and broader hysteresis loops.[93]

The enhanced defect density in the α-RuCl3 nanoflakes is most likely due to the shear forces

generated during mechanical exfoliation, which are known to introduce stacking faults into 2D

van der Waals materials.Notably, α-RuCl3 is very easy to exfoliate, owing to the weak van der

Waals interaction between the layers, which should render this layered material particularly

sensitive against the mechanical forces exerted during exfoliation.

A low heating/cooling rate of 1 K min−1 used in the present experiments ensures that the

sample remains close to thermal equilibrium. Faster rates introduce stronger hysteresis arising

from nonequilibrium conditions and were thus avoided.

According to the above results and discussion, charge transport measurements can be a

complementary approach to probe the high temperature phase transition in the Kitaev spin
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liquid candidate material α-RuCl3.

The reliably low Ohmic contacts could be obtained by Ar milling of the contact regions on the

mechanically exfoliated α-RuCl3 nanoflakes prior to contact metal deposition. The onset of

Kitaev interactions in the nanoflakes induces a change of the peak intensities and width in

the temperature dependent Raman experiments while in the charge transport measurements

it manifests itself in a slope change in the conductivity measurements. The Raman spectra

furthermore enable the important confirmation that in the nanoflakes the α-RuCl3 crystal

structure is preserved, albeit the mechanical exfoliation introduces additional defects which

together with surface strain slightly increase the phase transition temperature. The ability to

reliably probe the electrical properties of α-RuCl3 opens up intriguing further perspectives,

for instance toward tuning the Kitaev-interactions via electrostatic gating.
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8 Interfacial Exchange Field in
Graphene/α-RuCl3 Heterostructures

Graphene continues to attract immense attention due to its unique electrical properties.

Specifically, Dirac-like charge carriers with linear dispersion and zero rest mass impart high

conductivity of this material. An intriguing feature of graphene is its unique band diagram

which shows several degeneracies making it suitable for the observation of a diverse range

of phenomena.[110] There is now ample experimental evidence that graphene’s electronic

characteristic can be effectively modified by exploiting the proximity with other 2D quantum

materials. From a different perspective, graphene can be considered as a valuable probe of

electronic phenomena occurring within the adjacent 2D material.[111, 112, 113] To provide the

relevant background for the present experiments, the basic electronic properties of graphene

are described in the following section.

Basic electronic properties of graphene

Graphene is a single layer of carbon atoms arranged in a hexagonal structure. The latter can

be seen as a triangular lattice with a basis of two atoms per unit cell. The lattice vectors can be

written as:

a1 = a

2
(3,

√
(3)), a2 = a

2
(3,−

√
(3)) (8.1)

where a ≈ 1.42Å is the distance between the carbon atoms. The reciprocal lattice vectors are

given by:

b1 = 2π

3a
(1,

√
(3)),b2 = 2π

3a
(1,−

√
(3)) (8.2)

Of particular interest are the two different corner points in the reciprocal lattice, namely K

and K ′. Using a tight binding Hamiltonian considering that electrons can hop between the

74



(a) (b)

(c) (d)

Figure 8.1 – (a) Honey comb lattice of graphene displaying zigzag and armchair edges. (b)
lattice structure of graphene made out of two interpenetrating triangular lattices. (c) Electronic
dispersion in graphene, the zoom shows the dispersion close to one of the Dirac points, (d)
the corresponding Brillouin zone.

nearest and the next-nearest neighboring atom, the Hamiltonian can be written as

H =−t
∑

<i , j>,σ
(a†
σ,i bσ, j +H .c.)− t ′

∑
<<i , j>>,σ

(a†
σ,i aσ, j +b†

σ,i bσ, j +H .c.) (8.3)

where aσ,i , (a†
σ,i ) annihilates (creates) an electron with spin σ(σ=↑,↓) on site Ri on sublattice

A, t is the nearest neighbor hopping, and t ′ is the next nearest neighbor hopping energy. The

energy bands derived from this Hamiltonian have the form

E±(k) =±t
√

3+ f (k)− t ′ f (k) (8.4)

in which f (k) is given by

f (k) = 2cos(
p

3ky a)+4cos(

p
3

2
ky a)cos(

3

2
kx a) (8.5)

where the plus sign applies to the upper (π∗) and the minus sign the lower (π) band. The

dispersion relation close to the Dirac points is given by expanding the equation as k = K+q ,

E±(q) ≈±νF |q| (8.6)
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where q is the momentum measured relative to the Dirac points and νF ' 1× 106 is the

Fermi velocity. Graphene has both, spin and valley degeneracy, with the valley degree of

the freedom referring to the inequivalent pair of conical valence/conduction bands in the

Brillouin zone which touch at the two Dirac points (K and K’). It is furthermore noteworthy

that geometric termination of graphene results in two possible edge geometries with quite

different electronic properties. Zigzag edges display a sharp density-of-states peak at the

Fermi energy, endowing them with principal metallic behavior, while armchair edges can

assume metallic or semiconductor behavior. From the chemical point of view, zigzag edges

are more reactive than armchair edges.[110]

8.1 Nonlocality Near Graphene’s Dirac Point

Nonlocal measurements have been used to probe the dynamics of population imbalance

for edge modes in quantum Hall systems, as well as the spin diffusion and magnetization

dynamics.[114] The main advantage of nonlocal measurements is that they allow filtering out

the Ohmic contribution due to charge flow. In this manner more subtle effects that otherwise

can remain unnoticed are detectable. Furthermore, the charge neutral degrees of freedom

in graphene (i.e., spin and valley), which are elusive to classical electric measurements, can

be accessed. Figure 8.2a displays the device geometry and electrode configuration suitable

for nonlocal resistance measurements on graphene. The current flows through contacts 1

and 2 and the voltage is collected from contacts 3 and 4 leading to the resistance R(NL)12,34.

Figure 8.2c shows the nonlocal resistance of an exemplary device (R(NL)12,34) at B = 0 and

12 T as a function of carrier density. At zero B-field the nonlocal resistance is about 200 Ω.

However, upon applying a B-field, it strongly increases to 10 kΩ. Although the resistance

magnitude varies somewhat from device-to-device and with contact geometry, nonetheless

a reproducible trend was observed. In particular, The nonlocal resistance at high magnetic

field generally follows the same pattern as longitudinal resistance, showing quantum Hall

oscillations. However, the magnitude of the resistances at different filling factors (i.e., different

carrier concentrations) are different than longitudinal resistance magnitude. This observation

hints toward an additional mechanism contributing to the resistance beside the quantum Hall

edge conduction channel.

As one possible explanation for the detected nonlocal resistance, a fraction of the current

may flow sideways and reach the voltage electrodes. To test this assumption, using the Van

der Pauw formalism it can be shown that this contribution is approximately proportional

to ρxx e
−πL

w for both zero and nonzero B.[115] Normally the devices fabricated here have a

relatively long Hall bar shape with close voltage electrodes (typical L/w > 2). Consequently a

value of RN L < 10−1Ω is estimated which is much smaller than the measured RN L .

An alternative, more fitting explanation for this effect is called Flavor Hall effect (FHE), in

which nonlocality is mediated by neutral excitations such as spin and valley flavors, and which

can occur in both classical and quantum Hall regime.[115] The principle behind this effect is

illustrated in Figure 8.2b which is explained for the relevance to the work done in this thesis

for the case of spin. Under an applied B field, the Zeeman splitting shifts the Dirac cones for
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opposite spin directions relative to each other. As a result, at the neutrality point there will

exist two populations of electrons and holes with opposite spin projections. When an electric

field is applied, the generated current will have a specific spin projection. The Lorentz force

then creates two currents with spin-up and -down, flowing in opposite directions as depicted

in Figure 8.2a.

This effect closely resembles the spin Hall effect (SHE), in which case it is the spin-orbit

interaction that induces the spin currents. In graphene, the SHE can produce long range

spin currents since the spin relaxations are very slow. With relaxation and scattering effects

taken into account, RN L depends on the device configuration, specifically on the distance

between the current and the voltage electrodes (L). A general trend which is also intuitive

is the decrease of RN L with the distance (L). Likewise placing extra electrodes between the

current and voltage electrodes causes a rapid decrease of the nonlocal resistance, such that in

some cases no nonlocal resistance could be measured.
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Figure 8.2 – Spin Hall effect in graphene and nonlocal transport mediated by spin diffusion.
(a) Schematic of the device configuration and flow of current with different spin orientation in
two different directions, (b) Zeeman spin Hall effect lifts the spin degeneracy by producing
two packets of electrons and holes with different spin orientations, (c) nonlocal resistance
measured in graphene.

8.1.1 Zeeman Spin Hall Effect in CVD Grown and Exfoliated Graphene

For a more detailed study of the Zeeman spin Hall effect (ZSHE) in a controlled manner, devices

comprising CVD or exfoliated graphene were compared. The CVD graphene on copper, was

first transferred onto SiOx /Si substrates. Then, the clean regions of the transferred graphene is

patterned into a Hall bar with desired dimensions using e-beam lithography. After patterning

graphene Hall bars, another step of lithography is added to define electrodes followed by the

evaporation of the metal electrodes. Figure 8.3b shows the nonlocal resistance measured from

the configuration illustrated in Figure 8.3a. Without magnetic field a RN L of about 1 kΩwas

measured which upon applying a 12 T magnetic field increased to about 4 kΩ. That in the
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Figure 8.3 – Comparison of SHE in CVD grown and exfoliated graphene. (a) Schematic of the
device configuration, (b),(c) Nonlocal resistance in CVD and exfoliated graphene, respectively,
in a magnetic field and in the absence of a magnetic field, (d) comparison of the nonlocal
resistances.

absence of a magnetic field, there is still a nonzero nonlocal resistance indicates the presence

of the possible electron-hole puddles as well as unwanted doping in the CVD graphene. The

results fo analogous measurements on the exfoliated graphene are shown in (Figure 8.3c).

The nonlocal resistance at zeor B field is almost negligible as expected for clean graphene.

Upon applying a magnetic field, a high nonlocal resistance of about 10 kΩ is reached, which

is characteristic of the ZSHE. A direct comparison of the nonlocal resistances is provided by

Figure 8.3d.

8.2 Magnetic Exchange Field

The spin of the electrons in graphene can be manipulated through the proximity of a mag-

netic material. This enables to locally modify graphene’s properties without compromising

its structural integrity.[116] According to the discussion in the previous section, graphene

in the presence of an external magnetic field hosts the ZSHE. However, the same effect can

be induced by bringing graphene in close proximity to a magnetic insulator. The magnetic

exchange field (MEF) implemented in this manner allows for spatial control of spin genera-

tion, which is attractive for spintronic device applications. Vice versa, the graphene in such
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heterostructures can serve as a versatile probe of the magnetic state of the interface-coupled

insulator. Theoretically, the MEF can reach tens or even hundreds of Tesla. In general, owing

to the short-ranged nature of the MEF, its effect will be strongest on the thinnest materials (i.e.,

single layers).

8.3 Graphene/α-RuCl3 Heterostructures

As detailed in Chapter 6, α-RuCl3, although a spin liquid material candidate, undergoes a mag-

netic transition at about 7 K. Moreover, it undergoes a Mott insulator transition, such that its

electrical conductivity below 80 K is negligible and the material becomes effectively insulating.

These properties render α-RuCl3 into a promising magnetic insulator to be combined with

graphene. One important issue in these experiments is the cleanness of the interface and

generally the quality of the underlying graphene. The first measurements were carried with

CVD graphene, which later on was substituted by mechanically exfoliated graphene.

To perform the measurements in a controlled manner, always two identical CVD graphene

Hall bars were fabricated (from the same CVD batch). In the next step, the α-RuCl3 nanoflakes

were exfoliated from the bulk crystal on top of a PDMS stamp. Having the final graphene
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Figure 8.4 – (a) The nonlocal resistance of both CVD graphene and G/α-RuCl3 Hall bars at 27
K. The onset shows the device configuration for both Hall bars. (b) The nonlocal resistance in
CVD graphene and G/RuCl3 at 1.3 K, below the RuCl3 magnetic transition temperature.

Hall bar, the exfoliated α-RuCl3 flakes are transferred on top of the Hall bar using a transfer

stage. The home-built transfer stage used for this purpose comprises a micromanipulator with

piezoelectric stages for positioning. The optical microscope the position of both graphene Hall

bar and the exfoliated α-RuCl3 is determined and a heating system gives the ability to control

the adhesion of the PDMS stamp. By Raman spectroscopy, the integrity of the underlying

graphene could be confirmed. The exfoliated α-RuCl3 nanosheet was transferred only on top

of one of the CVD graphene Hall bars while the other Hall bar on the same substrate remained

intact. Figure 8.4a compares the measured nonlocal resistance of both Hall bars without
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magnetic field at T = 27 K, above the magnetic ordering temperature of the α-RuCl3. There

is no clear enhancement of the nonlocal resistance in the G/α-RuCl3 heterostructures. By

contrast, as depicted in Figure 8.4b, upon further cooling the sample, the nonlocal resistance

of the latter exceeds that of graphene. The same observation was reproducibly made on several

devices.
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Figure 8.5 – (a) The normalized RN L and Rxx of a G/α-RuCl3 at 1.3 K and in the presence of a 2
T magnetic field. (b) The nonlocal resistance evolution in the presence of an external magnetic
field at base temperature.

From the normalized resistance ifn Figure 8.5a, a narrower curve is seen for the nonlocal vs.

longitudinal resistance, indicating a negligible contribution of the contact resistances in the

nonlocal resistance. According to Ohm’s low, the nonlocal resistance is proportional to Rxx

and the relation between the two is given by:[115]

Rnl ,Ω ∼ Rxx
w

πl
l n[

cosh(πl
w +1)

cosh(πl
w −1)

] (8.7)

where w is the channel width and l is the distance between the current and voltage probes.

For the device in Figure 8.7, w/l = 1/2. Inserting this value into equation 8.7, at B = 2T Rnl ∼
70Ω, which is much smaller compared to Rnl = 2 kΩ. Figure 8.7b displays the magnetic field

evolution of the nonlocal resistance at 1.3 K. By increasing the magnetic field RN L increases as

expected from the ZSHE.

The above measurements were repeated on the graphene/RuCl3 heterostructure comprising

mechanically exfoliated graphene which is expected to have a better quality and hence higher

mobility.

As exemplified from Figure 8.6a for such a sample, a significant enhancement of the nonlocal

resistance is observed already in the absence of an external magnetic field. Moreover, the RN L
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for the bare graphene at zero magnetic field now is almost zero indicative of less scattering

centers in graphene. Upon increasing the temperature to T = 30 K, the nonlocal resistance of

the heterosturcture device almost completely vanishes, (Figure 8.6b). In Figure 8.7, the B-field

dependency between the two different types of bare graphene, as well as the corresponding

heterostructures are compared. Generally, by increasing the magnetic field, the nonlocal

resistance increases much stronger in the heterostructure than the case of pristine graphene.
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In the quantum Hall regime the exfoliated graphene shows pronounced oscillations of Rxx

with values approaching zero between the filled Landau levels at high B-field (see Figure 8.8).
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Figure 8.8 – (a) Longitudinal resistance (Rxx ) of exfoliated graphene at different magnetic
fields. (b) Rxx of G/α-RuCl3 at T=1.3 K for different magnetic fields.

As an important difference, the corresponding heterostructure displays a reduced Rxx at the

charge neutrality point (see Figure 8.9a). This decrease becomes stronger with increasing

B-field, in sharp contrast to the pristine graphene, for which Rxx,D slightly increases with

B-field due the magnetically induced energy gap and as a result absence of a conducting

channel. However, in the case of the graphene/α-RuCl3 heterostructures, the reduction of the

Rxx,D with magnetic field points toward the existence of a conducting channel at the Fermi

level.

An explanation for this effect is provided in Figure 8.9b and c. In principle, the insulating

behavior of the graphene at the neutrality point (ν= 0) can have two possible reasons. One

option is that the valley energy exceeds the Zeeman splitting with the resulting valley polar-

ization opening a gap at the Fermi level. Toward the sheet edges, the valley polarized states

would separate even further in energy, such that insulating behavior emerges within the entire

sheet including the edges. In the second option, the Zeeman splitting would be so strong that

it exceeds the valley splitting, and as a consequence the Dirac cones of opposite spin would

shift in respect to the Fermi energy. As depicted in Figure 8.9c, this leads to the crossing of the

states near the graphene’s sheet edges, which in turn would make the edge states available for

conduction. This second option is in agreement with the experimentally observed reduction

of Rxx in the exfoliated graphene/α-RuCl3 heterostructures.
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In this thesis, two different types of spin-orbit coupled materials, namely 3D topological

insulators (3D TIs) in the weak correlation regime and the magnetic Mott insulator α-RuCl3

in the strong correlation regime, were investigated. The strong spin-orbit coupling in TIs

as an example of Dirac materials gives rise to topollogically protected surface states. The

suppression of back scattering in the edge or surface states renders these materials promising

for novel and exciting spintronic device applications. This includes intriguing perspectives for

optospintronic, as helical light can be used to generate spin-polarized currents in TIs. Further-

more, owing to their unique energy band structure they are of interest to be impelemented

in thermoelectric applications. In fact, bismuth chalcogenide-based 3D TIs are among the

best thermoelectric materials. TIs share this interesting character with other Dirac materials

like graphene, which has been shown to have a higher electronic temperature than lattice

temperature under optical excitations, thus rendering it suitable for hot carrier generation

and thermoelectrics.

In the weak correlation regime, materials like α-RuCl3 have attracted great attention due to

their exotic low energy excitations including chargeless spinons emergent from spin frac-

tionalization. α-RuCl3 is particularly appealing as its exactly solvable Kitaev model on the

honeycomb lattice enables a detailed study of possible topological spin liquids and frac-

tional quasiparticles. In addition, quantum spin liquid states have been suggested to play

a crucial role in high-temperature superconductivity. Furthermore, by implementing thin

sheets of such type of material into van der Waals heterostructures novel interfacial coupling

phenomena could be explored.

The first part of this thesis was devoted to the fabrication and characterization of nanoplatelets

made of Bi2Te2Se as n-type and Sb2Te3 as p-type 3D TI. After their successful CVD growth,

individual BTS and Sb2Te3 nanoplatelets were studied mainly by magnetotransport measure-

ments. Furthermore, with the aim of achieving high quality TIs with high carrier mobility and

reduced bulk charge carriers, the two compounds were grown on hBN nanosheets instead of

the Si/SiO2 substrates.
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Building upon the above results on the single component devices, also heterostructures

composed of BTS and Sb2Te3 were investigated. Since the thermoelectric efficiency of devices

is limited by the thermoelectric power of the materials incorporated, the need for designing

more sophisticated materials and incorporating them in heterostructures is apparent. To this

end, lateral BTS/Sb2Te3 heterostructures were grown using specifically adjusted CVD growth

parameters to control the relative lateral extensions and thicknesses. The controlled growth

of the TI lateral heterostructures enables tuning the thermoelectric response of the devices.

Investigation of the photoresponse of the heterostructure devices by scanning photocurrent

microscopy revealed pronounced photocurrents of hundreds ofµA. This response exceeds that

reported for lateral p-n heterojunctions of gated graphene by about three orders of magnitude.

Moreover, the TI lateral heterostructures show an enhanced photothermoelectric response

with Seebeck coefficients exceeding 230 µV/K.

Besides the efficient thermoelectric power generation of such heterojunctions, they could be

used as coolers in integrated circuits. It is known that the efficiency of solar cells degrades with

an increase of the local temperature and hence under strong sunshine a cooling mechanism is

necessary. In thermoelectric power generation, diffusive heat flow and the Peltier effect are

additive. Both these effects reduce the temperature difference between the hot and cold zone.

Integrating the TI p-n junctions fabricated and studied in this thesis into photovoltaic solar

cells not only could enhance the efficiency of the solar cells, but at the same time the extra

heat could be converted into electricity. Further improvement may be achieved by growing

the TI p-n junctions on hBN sheets. The advantage of such a configuration is the simultaneous

increase of electrical and thermal conductivity which is expected to lead to a better cooler

through an enhanced Peltier effect. In addition, by tuning the Fermi level of the constituent

TIs in the heterostructure, the electronic properties of the surface states could be exploited to

achieve even higher efficiencies.

The second part of this thesis focused on the electrical properties of the Kitaev material α-

RuCl3. Theoretical studies indicate that due to its close-to-perfect 2D honeycomb lattice

structure, it harbors the Kitaev interactions. Substantial experimental evidence for fractional-

ized excitations in the bulk of this material has been gained by neutron scattering experiments

as well as Raman experiments. Specifically, an unusual temperature evolution of the width of

certain Raman peaks, which deviates from conventional bosonic behavior has been reported.

In this thesis, the aim was to explore this phenomenon in mechanically exfoliated thin sheets

of α-RuCl3. The recorded Raman spectra exhibited the same signatures of fractionalized

excitations like for the bulk. However, the onset of the deviation from the bosonic behavior

occurred at somewhat higher temperature.

Furthermore, a reliable method was developed to electrically contact individual α-RuCl3

thin sheets, which enabled evaluating subtle changes of their resistivity with temperature.

In agreement with theory, a Mott insulator behavior was observed, with a change of the

hopping transport characteristic occurring at approximately the same temperature as the

onset of spin-phonon interactions in the Raman spectra. These observations hint toward the
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entanglement between the structure and magnetism in α-RuCl3. The ability to electrically

contact this material opens up the opportunity to incorporate it in nanodevices, and exploit

its fundamental fractionalized spinons for future device applications.

As another perspective, the competition between the spin-orbit coupling and electronic corre-

lation may provide access to an unconventional high temperature type of superconductivity in

α-RuCl3. In fact in 1987, Laughlin et al. showed that the ground state of the frustrated Heisen-

berg antiferromagnet in two dimensions and the fractional quantum Hall state for bosons can

be adiabatically evolved into each other without crossing a phase boundary. Laughlin argued

that a gas of particles obeying 1/2 statistics might actually be a superconductor with a charge-2

order parameter. This possibility gains support by the recent observation of a superconductive

phase in Sr2RuO4, which likewise is a candidate to feature a spin liquid ground state. For

α-RuCl3, this task may be achieved by tuning the electron correlation strength via electrostatic

gating. In future experiments, a sufficiently strong carrier modulation might be reached by

polymer electrolyte gating. Thus, by bringing the α-RuCl3 in close proximity to the spin liquid

ground state, it may enter the superconductivity regime.

The α-RuCl3 nanosheets were furthermore combined with graphene into a novel type of

vertical van der Waals heterostructure. Here, the major objective was to test whether an

interfacial magnetic exchange coupling can be imparted onto the graphene. Such effect

could indeed by observed in low-temperature magnetotransport measurement on individual

graphene/α-RuCl3 heterostructures. It manifests itself in the generation of spin currents

even in the absence of an external magnetic field. This achievement opens the door for

novel spintronic devices where spin generation occurs in the absence of an external magnetic

field by an all-electrical means. Another motivation to investigate the graphene/α-RuCl3

heterostructures was to gain information about the spin arrangement not in the bulk, but

at the terminated surface of α-RuCl3, as inferred from the magnetotransport properties of

such devices. For heterostructure devices comprising either CVD or exfoliated graphene, the

strength of the magnetic exchange field was found to sensitively depend on the quality of the

interface. The demonstration that the magnetic insulatorα-RuCl3 can induce appreciable spin

interactions in graphene provides a valuable basis for exploring a similar effect in combination

with other 2D quantum materials. An exciting future option would be to achieve a sufficiently

strong interfacial spin-orbit coupling between graphene and α-RuCl3. This represents a

promising strategy to increase the minute band gap in graphene and at the same time render

its 1D topological edge states robust. The successful conversion of graphene into a robust

quantum spin Hall insulator would hold great promise for novel spintronic applications.
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