
Lecture notes on:

Accidental and symmetry-enforced

band crossings in topological semimetals

Topological Matter School 2018, San Sebastian, Spain

Andreas P. Schnyder

a.schnyder@fkf.mpg.de

August 30, 2018

Max-Planck-Institut für Festkörperforschung

Heisenbergstrasse 1, D-70569 Stuttgart, Germany

0



Contents

I. Introduction 3

1. Bloch bands of solids 4

II. Accidental band crossings 5

A. Classification of band crossings 6

1. Symmetry operations 8

B. Band crossings at high-symmetry points 10

1. Class A in d = 2 11

2. Class A in d = 3 11

3. Class A + R in d = 2 12

4. Class AII in d = 2 13

5. Class AII + R+ in d = 3 13

C. Band crossings off high-symmetry points 14

1. Semimetal with TRS and PHS (class BDI in d = 2) 15

2. Weyl semimetal (class A in d = 3) 17

3. Dirac nodal-line semimetal (class AI + R in d = 3) 18

4. Spin-triplet superconductor (class DIII + R−− in d = 3) 20

III. Symmetry-enforced band crossings 23

1. Strategy for materials discovery 24

A. Basic mechanism of symmetry enforcement 24

B. Examples of symmetry-enforced band crossings 27

1. Weyl lines protected by glide reflection 27

2. Weyl points protected by six-fold screw rotation 33

3. Dirac lines protected by off-centered symmetries 36

C. Filling constraints for the existence of band insulators 39

Acknowledgments 40

A. Kramers theorem 40

B. Explicit construction of gamma matrices 41

1



C. Computation of the Berry phase 42

References 43

2



I. INTRODUCTION

The famous non-crossing theorem by Wigner and von Neumann [1] states that electronic bands

(i.e., Bloch states) with the same symmetry cannot be degenerate at a generic point in the Bril-

louin zone (BZ), which prevents the formation of band crossings. Instead, when two Bloch bands

of the same symmetry approach each other at a generic momentum, they start to hybridize and

undergo an avoided level crossing. However, the non-crossing theorem does not apply to bands

with non-trivial wavefunction topology, which can form topologically protected band degenera-

cies [2–7]. When these band crossings are in the vicinity of the Fermi energy, they lead to a range

of interesting phenomena, such as arc and drumhead surface states [8–14], transverse topologi-

cal currents [5, 6, 15], and anomalous magnetoelectric responses [16], which could potentially be

utilized for device applications [17, 18].

There are two different types of topological band crossings, namely, accidental band crossings and

symmetry-enforced band crossings. The former are protected by symmorphic crystal symmetries

and are only perturbatively stable [19–21]. That is, they can be adiabatically removed by large

symmetry-preserving deformations of the Hamiltonian, for example, through pair annihilation.

Examples of accidental band crossings include Dirac points and Dirac lines that are protected by

space-time inversion, reflection, or rotation symmetry [22–27]. Accidental band crossings also oc-

cur in the Bogoliubov quasiparticle spectra of superconductors [28–30]. Symmetry-enforced band

crossings [16, 31–42], on the other hand, arise in the presence of nonsymmorphic symmetries and

are globally stable, i.e., they cannot be removed even by large deformations of the Hamiltonian. In

other words, these band crossings are required to exist due to nonsymmorphic symmetries alone,

independent of the chemical composition and other details of the material.

In these lectures we will discuss both types of band crossings, first focusing on accidental band

crossing in Sec. II and then studying symmetry-enforced band crossings in Sec. III. A particular

focus will be on nodal-line semimetals, where the band crossings occur along one-dimensional

lines in the BZ, close to or at the Fermi energy. How such line crossings arise in the presence of

(glide) reflection symmetries will be studied in detail.

In Sec. II A we will begin by deriving a classification of accidental band crossings protected by re-

flection symmetry, time-reversal symmetry, and/or particle-hole symmetry. As concrete examples

of such accidental band crossings, we will consider, among others, Weyl and nodal-line semimetals

(Secs. II C 2 and II C 3), as well as a spin-triplet superconductor (Sec. II C 4). For these examples
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we will discuss the bulk-boundary correspondence, which relates the nontrivial topology of the

band crossing in the bulk to the appearance of surface states.

In Sec. III we will first explain some general properties of non-symmorphic symmetries, show

how these can lead to symmetry-enforced band crossings, and derive therefrom a strategy for

the discovery of new topological semimetals. Subsequently, three examples of non-symmorphic

band crossing will be discussed: Weyl points protected by six-fold screw rotation in Sec. III B 2,

Weyl lines protected by glide reflection in Sec. III B 1, and Dirac lines protected by off-center

symmetries in Sec. III B 3. We will also discuss how nonsymmorphic symmetries lead to tightened

filling constraints for the existence of band insulators (Sec. III C).

1. Bloch bands of solids

According to the band theory of solids [43], the electronic wavefunctions ψ in a crystal can be

classified by their crystal momentum k, which is defined in a periodic Brillouin zone (BZ). Bloch’s

theorem tells us that ψ can be expressed in terms of Bloch states |um(k)〉, which are defined in a

single unit cell of the crystal. These Bloch states are eigenstates of the Bloch Hamiltonian H(k),

H(k) |um(k)〉 = Em(k) |um(k)〉 , (1.1)

wherem represents the band index. The eigenvaluesEm(k) in the above equation are called Bloch

bands and the set {Em(k)} is referred to as the band structure of the solid.

In this lecture we are interested in the crossings between two different bands, Em(k) and Em′(k),

say. That is, we want to know under which conditions the the two energies Em(k) and Em′(k)

become degenerate at certain points or lines in the BZ. The main focus will be on electronic band

structures of solids. However, the band crossings discussed here can also occur in different con-

texts, for example, for photonic bands of dielectric superlattices [44], for phonon bands in crystals,

for magnon bands in ordered antiferromagnets [45], or for Bogoliubov quasiparticle bands in su-

perconductors (see Sec. II C 4).
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II. ACCIDENTAL BAND CROSSINGS

Accidental band crossings occur, for example, when a hole-like and electron-like parabolic band

in a two-dimensional material overlap, forming two band crossings, as shown in Fig. 1. This

band crossing is stable if the two bands have a non-trivial topology and/or opposite symmetry. In

general these accidental crossings share the following features:

• They are protected by symmorphic crystal symmetries and/or nonspatial symmetries. Here,

symmorphic symmetry means a symmetry wich leaves at least one point of the real-space

crystal invariant. Symmorphic symmetries are point-group symmetries of the crystal, such

as rotation or reflection. Nonspatial symmetry refers to a symmetry that dose not transform

different lattice sites into each other. I.e., a symmetry that acts locally in real space, such as

time-reversal or particle-hole symmetry.

• Accidental band crossings exhibit local topological charges. These topological charges are

defined in terms of contour integrals, e.g.,

ntop =
1

2π

∮
C

F(k) dk ∈ Z, (2.1)

where the integration is along the contour C, which encloses the band crossing point or

line. Here, F(k) represents a general curvature function, such as the Berry curvature or

FIG. 1: Accidental band crossings. When an electron- and hole-like band of different symmetry over-

lap, they form two accidental band crossings. The color shading indicates some “pseudo-spin” degree of

freedom of the Bloch states |un(k)〉, which depends on crystal momentum k.

5



the winding number density. These topological charges are quantized to integer values, i.e.,

ntop ∈ Z. For point crossings, the sum of the topological charges of all crossings formed

by a given pair of bands needs to be zero, due to a fermion-doubling theorem [46].

• Accidental band crossings are only perturbatively stable. That is, small symmetry-

preserving perturbations can move the band crossings in the BZ, but cannot remove them,

by opening up a gap. However, large symmetry-preserving deformations can completely

remove the band crossings. E.g., for point crossings one can pair annihilate two point cross-

ings with opposite topological charge by a large symmetry-preserving deformation.

It follows from the last point above, that classifications of accidental band crossings based on

symmetry and topology only tell us whether for a given set of symmetries a band crossing is

possible. I.e., these classifications only tell us whether a given set of symmetries protect band

crossings or not. They do not tell us whether these crossings actually occur, which depends on the

detailed energetics of the bands (i.e., on how the bands disperse through the BZ).

A. Classification of band crossings

Topological band crossings of the accidental type can be classified using the Dirac-matrix Hamil-

tonian method [2, 19, 47–49]. This method relies on the fact that close to a band crossing the

bands are linearly dispersing. Therefore, the Bloch Hamiltonian H(k), Eq. (1.1), in the vicinity of

the band crossing can be approximated by a Dirac Hamiltonian, e.g.,

HD(k) =
d∑
j=1

kjγj, (2.2)

where d is the spatial dimension and the γ-matrices γj obey the anti-commutation relations (see

Appendix B)

{γi, γj} = 2δij1, j = 0, 1, . . . , d. (2.3)

Using Eq. (2.3), we find that H2
D =

∑d
j=1 k

2
j1. Hence, the energy spectrum of HD(k) is given by

E = ±

√√√√ d∑
j=1

k2
j , (2.4)
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FIG. 2: Symmetry transformation of band crossings. The classification of stable band crossings depends

on how the band crossings transform under nonspatial (antiunitary) symmetries. (a) The band crossing is

left invariant under nonspatial symmetries. (b) Two band crossings are pairwise related by the nonspatial

symmetries, which map k→ −k.

which exhibits a band crossing at k = 0, where the bands become degenerate with E = 0. (I.e.,

the Dirac Hamiltonian has no gap.) The Dirac-matrix Hamiltonian method analyzes the stability

of the gapless Dirac-Hamiltonian (2.2) against gap opening deformations. That is, one studies

whether there exists a gap-opening mass term mγ0, i.e., an additional gamma matrix γ0 with

{γ0, γj} = 0 (j = 1, 2, . . . , d), with which HD(k) can be deformed. If such a mass term exists,

then the band crossing can be removed. I.e., by adding mγ0 to HD the spectrum deforms into

E = ±
√
m2 +

∑d
j=1 k

2
j , which has no band crossing anymore at k = 0. This indicates that the

band crossing is topologically trivial. However, if there does not exist an additional gamma matrix

γ0, then the band crossing is topologically nontrivial and stable against deformations.

The classification of band crossings is done in terms of the following three characteristics (cf. Ta-

ble I):

(i) Spatial and nonspatial symmetries of the Bloch Hamiltonian H(k).

(ii) The co-dimension p = d − dBC of the band crossing, where dBC is the dimension of the

band crossing. (I.e., dBC = 0 for point crossings, dBC = 1 for line crossings, etc.)

(iii) How the band crossing transforms under the nonspatial (antiunitary) symmetries. That is,

we need to distinguish whether the band crossing is mapped onto itself under the nonspatial

symmetries or not, see Fig. 2. That is, we need to differentiate between band crossings at

high-symmetry points and off high-symmetry points of the BZ.

Let us first discuss how the spatial and nonspatial symmetries restrict the form of the Dirac Hamil-

tonian (2.2).
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1. Symmetry operations

We consider the classification in terms of both nonspatial and spatial symmetries.

a. Nonspatial symmetries. Nonspatial symmetries are symmetries that act locally in real

space, i.e., they do not transform different lattice sites into each other. There are three different

nonspatial symmetries that need to be considered: antiunitary time-reversal symmetry (TRS) and

particle-hole symmetry (PHS), as well as chiral (i.e., sublattice symmetry) [2, 50]. Here, “anntiu-

niatary” refers to the fact that these symmetries can be written as a product of a unitary matrix U

with the complex conjugation operator K. In momentum space, time-reversal and particle-hole

symmetry act on the Bloch (or Bogoliubov-de Gennes) Hamiltonian as

T−1H(−k)T = +H(k), and C−1H(−k)C = −H(k), (2.5a)

respectively, where T and C are the antiunitary operators for time-reversal and particle-hole sym-

metry. Both T and C can square either to +1 or −1, depending on the type of the symmetry (see

last three columns of Table I). Chiral symmetry, on the other hand, is implemented by1

S−1H(k)S = −H(k), (2.5b)

where S is a unitary operator. Symmetries (2.5) define the ten Altland-Zirnbauer (AZ) symmetry

classes (i.e., the “ten-fold way”) [2, 51, 52], which are listed in Table I. The first column in Table I

gives the name of the ten AZ symmetry classes. The labels T , C, and S in the last three columns

indicate the presence (“+”, “−”, and “1”) or absence (“0”) of time-reversal symmetry, particle-

hole symmetry and chiral symmetry, respectively, as well as the sign of the squared symmetry

operators T2 and C2.

Combining Eqs. (2.5) with Eq. (2.2), we find that when the Dirac Hamiltonian obeys TRS, PHS,

or chiral symmetry, the gamma matrices in Eq. (2.2) must satisfy

{γi,T} = 0, [γi,C] = 0, {γi, S} = 0, (2.6)

where i = 1, 2, . . . , d. Similarly, any mass term mγ0 that leads to the opening of a gap at the band

crossing must satisfy

[γ0,T] = 0, {γ0,C} = 0, {γ0, S} = 0. (2.7)

1 Note that combining TRS with PHS yields a chiral symmetry.
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TABLE I: Classification of stable band crossings in terms of the ten AZ symmetry classes [2, 53], which

are listed in the first column. The first and second rows give the co-dimensions p = d − dBC for band

crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry points of the BZ [Fig. 2(b)],

respectively.

at high-sym. point p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7
T C S

off high-sym. point p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1

A 0 Z 0 Z 0 Z 0 Z 0 0 0

AIII Z 0 Z 0 Z 0 Z 0 0 0 1

AI 0 0a 0 2Z 0 Za,b
2 Zb

2 Z + 0 0

BDI Z 0 0a 0 2Z 0 Za,b
2 Zb

2 + + 1

D Zb
2 Z 0 0a 0 2Z 0 Za,b

2 0 + 0

DIII Za,b
2 Zb

2 Z 0 0a 0 2Z 0 − + 1

AII 0 Za,b
2 Zb

2 Z 0 0a 0 2Z − 0 0

CII 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 − − 1

C 0 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 − 0

CI 0a 0 2Z 0 Za,b
2 Zb

2 Z 0 + − 1

a
For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z

invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the Z invariants.)
b
Z2 invariants protect only band crossings of dimension zero at high-symmetry points.

b. Spatial symmetries. Spatial symmetries are symmetries that act non-locally in position

space, i.e., they transform different lattice sites into each other. Point-group symmetries are an

example of spatial symmetries. Here, we shall focus on reflection symmetries with the unitary

operator R. For concreteness we assume that R lets x → −x. The invariance of the Bloch

Hamiltonian (1.1) under this reflection implies

R−1H(−k1, k̃)R = H(k1, k̃), (2.8)

where k̃ = (k2, . . . , kd) and the unitary reflection operator R can only depend on k1, since it is

symmorphic [cf. Eq. (3.10)]. Note that for spin-1/2 particles (e.g., Bloch electrons with spin-orbit
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coupling) R transforms the spin degree of freedom as

RŜxR
−1 = Ŝx and RŜy,zR

−1 = −Ŝy,z, (2.9)

where Ŝi = ~
2
σ̂i is the spin operator. Hence, the spin part of R is given by iσx 2. In general, R

contains also an internal part which rearranges the positions of the atoms in the unit cell.

Combining Eqs. (2.8) with Eq. (2.2), we find that when the Dirac Hamiltonian obeys reflection

symmetry, the gamma matrices in Eq. (2.2) must satisfy

{γ1, R} = 0, [γj, R] = 0, where j = 2, 3, . . . , d, (2.10)

and the mass term must satisfy [γ0, R] = 0.

B. Band crossings at high-symmetry points

We will now use the Dirac-matrix Hamiltonian method3 to classify one-dimensional band cross-

ings at high-symmetry points of the BZ, i.e., at time-reversal invariant momenta (TRIMs) of the

BZ, e.g., the Γ point. This classification approach consists of the following steps:

1. Write down a d-dimensional gapless Dirac Hamiltonian HD of the form of Eq. (2.2), that is

invariant under all the considered symmetries. The matrix dimension of the gamma matrices

should be minimal, i.e., large enough such that all symmetries can be implemented in a

nontrivial way, but not larger.

2. Check whether there exists a symmetry-allowed mass term mγ0, which anticommutes with

HD. If yes, then the band crossing can be gapped out. This indicates that the band crossing

is topologically trivial, which is labelled by “0” in Table I. If no, then the band crossing is

topologically stable (i.e., protected by the symmetries), which is labelled by “Z or “Z2” in

Table I.

3. To determine whether there is a single or multiple band crossings protected by the sym-

metries, we have to consider multiple copies of the Dirac Hamiltonian HD. For example,

2 The reason to include the factor i here is to ensure thatR2 = −1, sinceR2 effectively corresponds to a spin rotation
by 2π. However, in general, there is a phase ambiguity in the definition of R, since a phase can be absorbed in the
electronic creation/annihilation operators.

3 This approach is closely related to the problem of Clifford algebra extensions [2, 21, 49], which puts it on a rigorous
footing.
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doubled versions of HD can be obtained as

Hdb
D =

∑
i

kni
γni
⊗ σz +

∑
remain

knj
γnj
⊗ 1, (2.11)

where the first summation is over an arbitrary subset ni ⊆ {1, 2, ..., d} and the second

summation is over the complement of this subset. We then have to check whether there

exist gap-opening terms for these enlarged Dirac Hamiltonians. If there exists a mass term

for all possible versions of Hdb
D , then the band crossing is classified by a Z2 invariant. If the

band crossing is stable for an arbitrary number of copies of HD, then it is classified by a Z

number4, see Table I.

To make this more explicit, let us discuss some specific cases.

1. Class A in d = 2

First, we consider a band crossing in a two-dimensional system without any symmetries, corre-

sponding to class A in Table I. The generic low-energy Hamiltonian for a such a band crossing at

k = 0 reads HA
2D =

∑
k Ψ†kH

A
2DΨk, where

HA
2D = kxσx + kyσy. (2.12)

and Ψk = (c1k, c2k)T is a spinor with two orbital degrees of freedom, e.g., s and p orbitals. Since

this band crossing can be gapped out by the mass termmσz, it is topologically trivial and therefore

unstable. This is indiacted by a “0” in the fourth column of Table I.

2. Class A in d = 3

Next, we study a zero-dimensional band crossing in three-dimensions without any symmetries.

This type of band crossing is realized in Weyl semimetals [2, 5, 8]. The low-energy Hamiltonian

takes the form HA
3D =

∑
k Ψ†kH

A
3DΨk, with

HA
3D = kxσx + kyσy + kzσz. (2.13)

4 To show this, use a proof by induction.
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It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma

matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with HA
3D.) There-

fore, the band-crossing is stable. To determine whether the Weyl crossing (2.13) has a Z or Z2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (2.11). We can

consider, for example, the following doubled version of HA
3D

HA,db1
3D = kxσx ⊗ σz + kyσy ⊗ σ0 + kzσz ⊗ σ0, (2.14)

where⊗ denotes the tensor product between two Pauli matrices (cf. Appendix B). For this doubled

version of HA
3D, there exist two mass terms, e.g., σx ⊗ σx and σx ⊗ σy, which gap out the band

crossing. However, there exists another doubled version of HA
3D, namely

HA,db2
3D = kxσx ⊗ σ0 + kyσy ⊗ σ0 + kzσz ⊗ σ0, (2.15)

whose band crossing is stable. We find that there does not exist any mass term for HA,db2
3D , which

gaps out the band crossing. Since we have found one doubled version of HA
3D which has a stable

(four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a Z classifi-

caiton. (One can show that there exist also multiple copies of HA
3D with stable band crossings.)

This is indicated by the label “Z” in the fifth column of Table I.

The Weyl points described by Eq. (2.13) are monopoles of Berry flux, i.e., they realize

(anti-)hedgehog defects of the Berry curvature. The stability of these Weyl points is guaranteed

by a quantized Chern number (see Sec. II C 2).

3. Class A + R in d = 2

Let us now add reflection symmetry to the game. We consider again a two-orbital system with the

low-energy Hamiltonian HA+R
2D =

∑
k Ψ†kH

A+R
2D Ψk, where

HA+R
2D = kxσx + kyσy, (2.16)

which is symmetric under reflection symmetry R−1HA+R
2D (−kx, ky)R = HA+R

2D (kx, ky), with

R = σy. We observe that the only possible gap-opening mass termmσz, which anticommutes with

HA+R
2D , is symmetry forbidden, since it breaks reflections symmetry (R−1σzR = −σz). Hence, the

band-crossing of HA+R
2D at k = 0 is stable and protected by reflection symmetry. We find that also

the doubled version of HA+R
2D ,

HA+R,db
2D = kxσx ⊗ σ0 + kyσy ⊗ σ0, (2.17)
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is stable, since there exists no relfection-symmetric mass term. For example, m̂ = σz ⊗ σx

breaks reflection, since (σy ⊗ σ0)−1m̂(σy ⊗ σ0) 6= m̂. Therefore, the reflection-symmetric band

crossing (2.16) has a Z classification. This is indicated by the label “MZ” in the fifth column of

Table VIII of Ref. [2].

4. Class AII in d = 2

Next, we study a band crossing in two-dimensions with time-reversal symmetry (T2 = −1), cor-

responding to class AII in Table I. The low-energy Dirac Hamiltonian reads again

HAII
2D = kxσx + kyσy. (2.18)

But now we impose time-reversal symmetry (2.5a) with the operator T = iσyK, which squares

to −1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface of

three-dimensional topological insulators with spin-orbit coupling. The only possible mass term,

which anticommutes with HAII
2D , is mσz. However, mσz breaks time-reversal symmetry (since,

T−1mσzT 6= mσz) and is therefore forbidden by symmetry. Hence, Eq. (2.18) describes a topo-

logically stable band crossing in class AII. Next, we examine different doubled versions of HAII
2D ,

i.e.,

HAII,db
2D =

HAII
2D 0

0 HAII
2D
′

 , (2.19)

where HAII
2D
′ ∈ {±kxσx ± kyσy,±kxσx ∓ kyσy}, see Eq. (2.11). (The time-reversal operator for

these double Hamiltonians is T = iσy ⊗ σ0K.) It is not difficult to show that for each of the four

versions of HAII,db
2D there exists at least one symmetry-preserving mass term, wich gaps out the

band crossing. For example, for the first version of HAII,db
2D with HAII

2D
′
= +kxσx + kyσy, the mass

term is σz⊗σy. Thus, the band crossings described byHAII,db
2D is unstable. Therefore, we conclude

that Eq. (2.18) has a Z2 classification, see fourth column of Table I.

5. Class AII + R+ in d = 3

Next, we study the band crossing of a reflection symmetric three-dimensional Dirac semimetal

with time-reversal symmetry (T2 = −1), which is described by HAII+R
3D =

∑
k Ψ†kH

AII+R
3D Ψk with
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Ψk = (c1k, c2k, c3k, c4k)T and

HAII+R
3D = kxσx ⊗ σz + kyσy ⊗ σ0 + kzσz ⊗ σ0. (2.20)

Time-reversal and reflection symmetry operators are given by T = σy ⊗ σ0K and R = σ0 ⊗ σx,

respectively. Because T2 = −1 and [T, R] = 0, Hamiltonian (2.20) belongs to symmetry class AII

with R+ according to the nomenclature of Refs. [19, 47]. We observe that there exists no mass

term which respects both time-reversal and reflection symmetry. Therefore, the band crossing

(Dirac point) at k = 0 of Eq. (2.20) is topologically stable. However, doubled versions of this

Dirac point are unstable. Consider, for example, the doubled Hamiltonian HAII+R
3D ⊗ σ0, whose

band crossing can be gapped out by the symmetry-preserving mass term σx ⊗ σx ⊗ σy. Hence,

Eq. (2.20) has a Z2 classification, see sixth column of Table VIII of Ref. [2].

C. Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,

away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in

the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the

nonspatial antiunitary symmetries (time-reversal and particle-hole symmetry). For this reason, we

have to take into account the full momentum dependence of the Hamiltonian in the entire BZ.

That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following type of

Hamiltonian [19]

HD =

p−1∑
i=1

sin kiγi + (p− 1−
p∑
i=1

cos ki)γ̃0, (2.21)

which contains the momentum-dependent mass term γ̃0, cf. Eq. (2.2). The Dirac Hamilto-

nian (2.21) describes dBC-dimensional band crossings (with dBC = d − p), which are located

at

k = (0, . . . , 0,±π/2, kp+1, . . . , kd). (2.22)

We observe that the band crossings (2.22) are located away from the high-symmetry points

(0, 0, 0, . . . , 0), (π, 0, 0, . . . , 0), (0, π, 0, . . . , 0), etc. of the BZ. The classification of these band

crossings proceeds in a similar way as in Sec. II B. It consists of the following steps:
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1. Write down a d-dimensional Dirac HamiltonianHD of the form Eq. (2.21) with p = d−dBC ,

which satisfies all the considered symmetries. The rank of the gamma matrices in Eq. (2.21)

should be large enough, such that all symmetries can be implemented in a nontrivial way,

but not larger.

2. Check, whether

– there exists an additional momentum-independent mass term Γ̃, which anticommutes

with HD and which is invariant under all symmetries.

– there exists an additional momentum-dependent kinetic term sin kpγp, which anticom-

mutes with HD and which respects all symmetries.

If the answer is yes for either of the above two points, then the band crossing can be gapped

out. Hence, the band crossing is topologically trivial (entries labelled by “0” in Table I). If

the answer is no for both of the above points, then the band crossing is topologically stable

(entries labelled by “Z” or “Z2” in Table I).

3. To determine whether there is a single or multiple band crossings protected by the symme-

tries, consider multiple copies of HD, similar to Eq. (2.11).

Using this approach it was shown that only Z-type invariants can ensure the stability of band-

crossings off high-symmetry points [2]. (Z2-type invariants do not give rise to stable band cross-

ings off high-symmetry points.) To exemplify this, we discuss some specific cases.

1. Semimetal with TRS and PHS (class BDI in d = 2)

First, we consider band crossings in a two-dimensional semimetal with time-reversal symmetry

and particle-hole symmetry, corresponding to class BDI in Table I. The semimetal is described by

a two-band tight-binding model on the square lattice H =
∑

k Ψ†kH
BDI
2D Ψk, where (cf. Eq. (2.21)

with p = 2)

HBDI
2D = sin kxσy + (1− cos kx − cos ky)σx, (2.23)

and Ψk = (c1k, c2k)T . The Bloch bands of Eq. (2.23) are given by

Ek = ±
√

(sin kx)2 + (1− cos kx − cos ky)2. (2.24)
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FIG. 3: Semimetal with TRS and PHS. (a) Energy spectrum of the semimetal HBDI
2D , Eq. (2.23). (b) Wind-

ing number (2.25) of HBDI
2D for contours L parallel to the kx direction. (c) Edge spectrum for the (10) edge

as a function of edge momentum ky. The flat band edge states are highlighted in red.

At E = 0 there are two band crossings (“Dirac points”), which are located at (0, π/2) and

(0,−π/2) in the BZ, see Fig. 3(a). Hamiltonian (2.23) belongs to symmetry class BDI of Ta-

ble I, since it satisfies both time-reversal symmetry and particle-hole symmetry with T = σ0K

(T2 = +1) and C = σzK (C2 = +1), respectively [cf. Eq. (2.5a)]. We observe that the two band

crossings at k = (0,±π/2) transform into each other under particle-hole and time-reversal sym-

metry [cf. Fig. 2(b)]. Since the momentum-independent mass term mσz is forbidden by particle-

hole symmetry (C−1mσzC 6= −mσz) and the momentum-dependent kinetic term sin kyσz is for-

bidden by time-reversal symmetry (T−1 sin(−ky)σzT 6= + sin kyσz), the two band crossings are

topologically stable. Furthermore, we find that the band crossings of the doubled versionHBDI
2D ⊗σ0

are also stable. Therefore, the classification is Z, see second column of Table I.

The stability of these band crossings is guaranteed by a quantized winding number, which takes

the form

ν =
1

2πi

∮
L

dkl ∂kl [ln q(k)] =
1

2πi

∮
L

dkl
[
q−1(k)∂klq(k)

]
, (2.25)

with q(k) = [(1 − cos kx − cos ky) − i sin kx]/
√

(1− cos kx − cos ky)2 + (sin kx)2 and L is a

closed contour in the two-dimensional BZ. The winding number ν, Eq. (2.25), is quantized to ±1

for closed contours L encircling one of the two two band crossing points [blue line in Fig. 2(b)],

and zero for contours that do not enclose a band crossing [see Fig. 3(b)]. By the bulk-boundary

correspondence, a nonzero value of the winding number (2.25) leads to flat-band edge states that

connect the two projected band-crossing points in the edge BZ, see Fig. 3(c).
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FIG. 4: Weyl semimetal: Chern number and Fermi arc surface state. (a),(b) shows the regions covered by

the dk-vector, Eq. (2.27), on the unit sphere (upper figures) and the textures of dk in the two-dimensional

contour Ckz (lower figures). (a) corresponds to C(kz) = 0, while (b) represents C(kz) 6= 0. (c) Fermi arc

state at the surface of a Weyl semimetal. Figure taken from Ref. [8].

2. Weyl semimetal (class A in d = 3)

Next, we study the band crossing points of a three-dimensional Weyl semimetal (cf. Sec. II B 2).

The Hamiltonian is given by HA
3D =

∑
k ΨkH

A
3DΨk, with (cf. Eq. (2.21) with p = 3)5

HA
3D = sin kxσx + sin kyσy + (2− cos kx − cos ky − cos kz)σz, (2.26)

and the spinor Ψk = (c1k, c2k), which has two orbital degrees of freedom (e.g.,

s and p orbitals), but no spin-degree of freedom, since the semimetal is assumed

to be magnetically ordered. The spectrum of Eq. (2.26) is given by Ek =

±
√

(sin kx)2 + (sin ky)2 + (2− cos kx − cos ky − cos kz)2. HA
3D exhibits two band crossing

points at E = 0 (called Weyl points), which are located at (0, 0,±π/2). As in Sec. II B 2, we find

that these Weyl nodes are topologically stable, since there does not exist any any fourth gamma

matrix of rank two. (I.e., there exist no additional mass or kinetic terms.) We also find that the

doubled versionHA
3D⊗σ0 has stable band crossigs. Hence, the classification is of Z type, see third

column of Table I.

5 Note that this model has an inversion symmetry, i.e., (σz)−1HA
3D(−k)σz = HA

3D(k), wich ensures that the two
Weyl points are at the same energy.
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The stability of the Weyl points is guaranteed by a quantized Chern number C = 1
2π

∮
C
F(k)dk,

where F(k) is the Berry curvature6 of the occupied band and C is a two-dimension closed inte-

gration contour. The Chern number C is ±1 for contours C that enclose one of the two Weyl

points, and zero for contours that do not enclose a Weyl point. If we choose C to be parallel to the

kxky-plane, the Chern number takes the simple form7

C(kz) =
1

4π

∮
Ckz

dkxdky d̂k ·
[
∂kxd̂k × ∂ky d̂k

]
, with d̂k =

d(k)

|d(k)| , (2.27)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2−cos kx−cos ky−cos kz). The Chern number

C(kz), Eq. (2.27), measures how many times the d̂k-vector wraps around the unit sphere S2 as k

sweeps through the two-dimensional contour Ckz , see Figs. 4(a) and 4(b). (Note that d̂k defines

a map from C to S2, whose topology is given by the second homotopy group π2(S2) = Z [55].)

For |kz| > π/2 the d̂k-vector only covers a small region around the north pole of S2, leading to a

zero Chern number C(kz) = 0, see Fig. 4(a). For −π/2 < kz < +π/2, however, the d̂k-vector

wraps around the unit sphere S2 once, giving a nonzero Chern number C(kz) = 1, Fig. 4(b).

Correspondingly, the d̂k-vector exhibits a Skyrmion texture within the contour Ckz , see lower

part of Fig. 4(b). By the bulk-boundary correspondence, a nonzero Chern number leads to the

appearance of a Fermi arc at the surface, which is located in between the two Weyl points, see

Fig. 4(c).

3. Dirac nodal-line semimetal (class AI + R in d = 3)

As a third example, we study a nodal-line band crossing in a three-dimensional semimetal with

time-reversal symmetry (class AI) and reflection symmetry [12, 15]. The Hamiltonian is defined

on the cubic lattice and is given by HAI+R
3D =

∑
k Ψ†kH

AI+R
3D Ψk, where the spinor Ψk = (cpk, cdk)T

describes spinless Bloch electrons (no spin-orbit coupling) originating from p and d orbitals and

6 The Berry curvature is defined as F(k) = ∇k ×Ak, where Ak = i〈u−(k)|∇k|u−(k)〉 is the Berry connection
and |u−(k)〉 is the Bloch state of the occupied band.

7 The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the TRIMs [5,
54]. The parity eigenvalues at the Γ point are opposite to those at all the other TRIMs. From this it follows that the
Chern number C(kz = 0) must be non-zero.
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FIG. 5: Dirac nodal-line semimetal. (a) The spectrum of Hamiltonian (2.28) exhibits a band crossing along

a nodal loop. (b), (c) Drumhead surface state of the Hamiltonian (2.28). Taken from Ref. [12].

HAI+R
3D reads (cf. Eq. (2.21) with p = 2)8

HAI+R
3D = sin kzσ2 + [2− cos kx − cos ky − cos kz]σ3. (2.28)

The spectrum of this Hamiltonian

Ek = ±λ = ±
√

(2− cos kx − cos ky − cos kz)2 + (sin kz)2, (2.29)

exhibits a band-crossing at E = 0, which is located along a nodal ring within the kz = 0 plane,

see Fig. 5(a). Such a nodal-line band crossing at the Fermi energy is realized in Ca3P2 [12, 26],

CaAgP [27] and other materials. Eq. (2.28) is time-reversal symmetric with the time-reversal

operator T = σ0K, and reflection symmetric, R−1HAI+R
3D (kx, ky,−kz)R = HAI+R

3D (kx, ky, kz),

with the reflection operator R = σz. There is also an inversion symmetry, P−1HAI+R
3D (−k)P =

HAI+R
3D (k), with the inversion operator P = σz. We observe that the only possible mass term mτx,

which anticommutes with HAI+R
3D , is symmetry forbidden, since it breaks reflection symmetry

(R−1mσxR = −mσx) and space-time inversion symmetry [ (TP)−1mσx(TP) = −mσx]. Hence,

the nodal line band crossing is stable and protected by reflection symmetry and PT symmetry.

However, the band crossing of the doubled version of HAI+R
3D

HAI+R,db
3D = sin kzσ2 ⊗ σ0 + [2− cos kx − cos ky − cos kz]σ3 ⊗ σ0. (2.30)

8 Here, we have included both cos kx and cos ky terms in order to deform the nodal line of Eq. (2.21) into a nodal
ring.
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is protected only by reflection symmetry but not by PT symmetry, since the mass term m̂ = σx⊗σy
is symmetric under PT [(σz⊗σ0K)−1m̂(σz⊗σ0K) = m̂], but breaksR [(σz⊗σ0)−1m̂(σz⊗σ0) 6=
m̂]. From this we conclude that nodal rings of type (2.28) have a Z classification in the presence

of reflection symmetry, but only a Z2 classification in the presence of PT symmetry.

The topological invariant, which guarantees the stability of the nodal ring, is the Berry phase,

which is defined as a one-dimensional contour integral over the Berry connection 9

PL = −i
∮
L

dkl 〈u−(k)| ∇kl |u−(k)〉 . (2.31)

Here, |u−(k)〉 is the filled Bloch eigenstate of Eq. (2.28), which is given by

|u−(k)〉 =
1√

2λ(λ−Mk)

λ−Mk

i sin kz

 (2.32)

with Mk = 2− cos kx − cos ky − cos kz. Note that the Berry phase is only defined up to mod 2π.

One can show that reflection symmetry R and space-time inversion PT lead to the quantization of

the Berry phase, i.e., PL ∈ {0, π} [12]. To numerically compute the Berry phase, it is advanta-

geous to use an alternative definition of the Berry phase, in terms of the Wilson loop [56–58], see

Appendix C. The Berry phase evaluates to±π for any contour L that interlinks with the nodal-line

band crossing; and it is zero for any contour that does not interlink with the nodal-line band cross-

ing. By the bulk-boundary correspondence, a nonzero Berry phase PL leads to the appearance of

of a drumhead surface state, which spans the region inside the projected nodal line in the surface

BZ, see Figs. 5(b) and 5(c).

4. Spin-triplet superconductor (class DIII + R−− in d = 3)

As the last example of this section, we study point band crossings in a three-dimensional reflec-

tion and time-reversal symmetric superconductor with spin-orbit coupling and spin-triplet pair-

ing. The Hamiltonian HDIII+R
3D =

∑
k Ψ†kh

DIII+R
3D Ψk is defined in terms of the Nambu spinor

Ψk = (c†↑,k, c
†
↓,k, c↑,−k, c↓,−k)T and (cf. Eq. (2.21) with p = 3)

hDIII+R3D = sin kxσx ⊗ σx + sin kzσx ⊗ σz +M(k)σz ⊗ 1 (2.33)

with the momentum-dependent mass therm M(k) = 2.5− cos kx − cos ky − cos kz. The Bogoli-

ubov quasiparticle spectrum of this Hamiltonian exhibits a band crossing (i.e., a node) at the two

9 There is also a mirror invariant, see Ref. [12].
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FIG. 6. (Color online) Surface band structure of the reflection-symmetric nodal superconductor (70) (class DIII with R−− ) for the (001)
face as a function of (a) surface momentum ky with kx = 0 and (b) surface momentum kx with ky = 0. A zero-energy arc surface state (red
trace) connects the projected point nodes in the surface BZ. (c) Surface spectrum on the (001) face as a function of both kx and ky. The surface
states and bulk states are indicated in green and gray, respectively.

We note that the gap-opening term sin kyσy ⊗ 1 is symmetric
under TRS and PHS but breaks mirror symmetry, which shows
that the reflection symmetry R is crucial for the protection of
the point nodes. Indeed, as indicated by Table I, the point nodes
are unstable in the absence of reflection symmetry.

Let us now compute the mirror invariant nMZ which, as
listed in Table II, protects the point nodes. Since the chiral
symmetry operator S = T C = σx ⊗ σy commutes with R, the
mirror number nMZ can be expressed as a one-dimensional
winding number, i.e., for the eigenspace R = +1 it takes the
form of Eq. (12) with

q = M(k) − sin kzi√
M(k)2 + sin2 kz

, (71)

and a contour C that lies within the mirror plane and encloses
one of the point nodes [see Fig. 3(b)]. Choosing the contour
along the kz axis with kx = 0 and ky a fixed parameter, we find
that the mirror number evaluates to

n+
MZ(ky) =

{
1, 0 ! |ky| < π

3
0, π

3 < |ky| ! π.
(72)

By the bulk-boundary correspondence, the nontrivial value of
Eq. (72) leads to zero-energy arc states on surfaces that are
perpendicular to the mirror plane. As shown in Fig. 6, these
zero-energy arc states connect two projected point nodes in
the surface BZ.

C. Fermi surfaces outside mirror planes

Third, we discuss three examples of Fermi surfaces (super-
conducting nodes) that lie outside the mirror plane. These
Fermi surfaces are pairwise related to each other by both
reflection and nonspatial symmetries [see Fig. 3(c)]. Their
topological properties are classified by Table III.

1. Reflection-symmetric Dirac semimetal with TRS
(class AII with R+ and p = 3)

We start by studying an example of a three-dimensional
Dirac semimetal with an R+-type reflection symmetry, which

is described by [75,78,82]

H AII
off = sin kyτx ⊗ σz + sin kzτy ⊗ 1 + M(k)τz ⊗ 1. (73)

Here, M(k) = M − cos kx − cos ky − cos kz and M is a pos-
itive constant, which we set to M = 2.0. The Pauli matrices
σi and τi operate in spin and orbital gradings, respectively.
Hamiltonian (73) preserves TRS with T = 1 ⊗ iσyK and is
symmetric under kx → − kx with R = 1 ⊗ 1. Since T 2 = −1
and [T ,R] = 0, the Hamiltonian belongs to class AII with R+.
By computing the energy spectrum, we find that the semimetal
exhibits two doubly degenerate Dirac points that are located
outside the reflection plane kx = 0, i.e., at k = (± π/2,0,0).
These Fermi points are protected by a combination of time-
reversal and reflection symmetries because there does not
exist any SPGT that can be added to Eq. (73). We note,
however, that in the absence of reflection symmetry, the Dirac
points can be gapped out by the time-reversal-invariant term
sin kxτx ⊗ σx , which turns Hamiltonian (73) into a class AII
topological insulator. This finding is in agreement with the
tenfold classification of gapless topological materials shown
in Table I. To determine whether the Dirac points have a
Z- or Z2-type character, we consider a doubled version of
H AII

off , i.e., H AII
off ⊗ 1. For the doubled Hamiltonian, there

exists a momentum-independent SPGT (i.e., τx ⊗ σx ⊗ σy),
demonstrating that the Dirac points are protected by a Z2-type
invariant, which is denoted as “CZ2” in Table III.

The CZ2 invariant nCZ2 is defined in terms of the combined
symmetry (26b), i.e., T̃ − 1H AII

off (kx ,− k̃)T̃ = H AII
off (kx ,k̃). Since

each plane perpendicular to the kx axis is left invariant by
the combined symmetry (26b), we can define the topological
number nCZ2 for any given plane Ekx

with fixed kx [see
Fig. 3(c)]. We find that

nCZ2 (kx ) =
{
+1, π

2 < |kx | ! π
− 1, 0 ! |kx | < π

2 .
(74)

Due to the bulk-boundary correspondence, the nontrivial value
of nCZ2 (kx ) in the interval [−π/2, + π/2] gives rise to helical
Fermi arcs on surfaces that are perpendicular to the reflection
plane [75,82]. These helical arc states connect the project bulk
Dirac points in the surface BZ.

205136-17

FIG. 6: Surface states of spin-triplet superconductor. Majorana arc states at the (001) surface of the spin-

triplet superconductor (2.33). (a), (b) show the Majorana arcs as a function of surface momentum ky and

kx, respectively. (c) shows the Majorana arc (green shaded area) as a function of both kx and ky. Taken

form Ref. [19].

points k = (0,±π/3, 0). Hamiltonian (2.33) satisfies time-reversal symmetry and particle-hole

symmetry with T = 1 ⊗ σyK and C = σx ⊗ 1K, respectively, and is reflection symmetric under

kx → −kx with R = σz ⊗ σx. Because T2 = −1, C2 = +1, {T, R} = 0, and {C, R} = 0,

Eq. (2.33) is classified as DIII with R−−, according to the nomenclature of Refs. [19, 47]. The

two band-crossing points, which are located within the mirror plane kx = 0, are protected by

time-reversal, particle-hole, and reflection symmetry, since there does not exist any additional

symmetry-preserving masst term or kinetic term. We note that the gap opening term sin kyσy⊗1 is

symmetric under time-reversal and particle-hole symmetry, but breaks reflection symmetry, which

shows that the reflection symmetry R is crucial for the protection of the band-crossing point. In-

deed, as indicated by the entry in the third column of Table I, the band-crossing points are unstable

in the absence of reflection symmetry.

The stability of this band-crossing point is guaranteed by a mirror winding number. This mirror

winding number is defined in terms of an integral along a one-dimensional closed contour, which

is located within the mirror plane kx = 0. In order to define this mirror invariant, we first need to

block diagonalize hDIII+R3D with respect toR. Each of the two blocks is symmetric under the chiral

symmetry (2.5b) with S = TC = σx ⊗ σy, since S commutes with R. This allows us to define a

winding number for each block separately, which for the R = +1 eigenspace takes the form of

Eq. (2.25) with

q(k) =
M(k)− i sin kz√
M(k)2 + (sin kz)2

. (2.34)
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Choosing the contour L along the kz axis with kx = 0 and ky a fixed parameter, we find that the

mirror winding number evaluates to

n+
MZ(ky) =

 1, 0 ≤ |ky| < π
3

0, π
3
< |ky| ≤ π

. (2.35)

By the bulk boundary correspondence, the nontrivial value of Eq. (2.35) leads to zero-energy arc

states (Majorana arc states) on surfaces that are perpendicular to the mirror plane. As shown in

Fig. 6, these zero-energy Majorana arcs connect two projected point nodes in the surface BZ.
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III. SYMMETRY-ENFORCED BAND CROSSINGS

In this section we study symmetry-enforced band crossings that are movable (but not removable)

[16, 33, 34, 36–39, 59]. Note that there are also symmetry-enforced band crossings which are

not movable, since they are pinned at a particular high-symmetry point (or line) of the BZ. These

non-movable band crossings arise, for example, when all possible irreps at a point of the BZ have

dimension larger than one. A classic example of these non-movable band crossings are Kramers

degeneracies at time-reversal invariant points (e.g., the Γ point). Here, however, we focus on

symmetry-enforced band crossings which are movable.

These movable band crossings, which are required to exist by symmetry alone, exhibit the follow-

ing properties:

• They are protected by nonsymmorphic crystal symmetries, possibly together with nonspatial

symmetries. A nonsymmorphic symmetry is a symmetry G = {g, t}, which combines a

point-group symmetry g with a translation t by a fraction of a Bravais lattice vector (see

Sec. III A).

• Symmetry-enforced band crossings are characterized by a global topological charge, which

FIG. 7: Symmetry-enforced band crossings. Nonsymmorphic symmetries lead to symmetry-enforced band

crossings. The color shading indicates how the eigenvalue of the nonsymmorphic symmetry changes as a

function of the crystal momentum. Note that one needs to go through the BZ twice (or n times), in order to

get back to the same eigenvalue.
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measures the winding of the eigenvalue of G as we go through the BZ. As shown in Fig. 7,

one needs to go twice (or n times) through the BZ in order to get back to the same eigenvalue.

• Symmetry-enforced band crossings are globally stable. That is, they cannot be removed,

even by large symmetry-preserving deformations. They are required to exist by symmetry

alone, independent of any other material details (e.g, chemical composition or energetics of

the bands).

1. Strategy for materials discovery

The last point above allows us to construct the following strategy to discover new materials with

topological band crossings [42], which consists of three steps:

(i) First, we identify the space groups (SGs) whose nonsymmorphic symmetries enforce the

desired band crossings. This can be done by either (i) computing the algebraic relations

obeyed by the symmetry operators or (ii) by computing the compatibility relations between

irreducible symmetry representations (irreps).

(ii) Second, we perform a database search for materials in these SGs. The most comprehensive

database on inorganic crystals is the Inorganic Crystal Structure Database (ICSD) from the

Leibniz Institute in Karlsruhe [60]. Other databases, which also contain calculated band

structures, are the AFLOW database [61], the Materials Project database [62, 63], and the

database for material sciences at the Institute of Physics of the Chinese Academy of Sci-

ence [64].

(iii) Third, we compute the electronic band structure of these materials to check whether the

band crossings are near the Fermi energy.

In Sec. III B we will apply this strategy to discover new topological semimetals with hexagonal

symmetries.

A. Basic mechanism of symmetry enforcement

Nonsymmorphic symmetries G = {g|t} combine a point-group symmetry g with a translation t

by a fraction of a Bravais lattice vector, see Fig. 8. The fractional translation t can be assumed to
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FIG. 8: Nonsymmorphic symmetries. This figure illustrates two nonsymmorphic symmetries: A glide

reflection in panel (a) and a two-fold screw rotation in panel (b).

satisfy gt = t, i.e., t is parallel to the invariant space of g. This is because any component of t

that is not invariant under g can be removed by a suitable choice of reference of g (suitable choice

of unit cell). (An exception to this rule will be discussed in Sec. III B 3.) Applying an n-fold

nonsymmorphic symmetry n times yields an element of the lattice translation group, i.e.,

Gn = {gn|nt} = ±p Ta, p ∈ {1, 2, . . . , n− 1}, (3.1)

where g is an n-fold point-group symmetry and Ta is the translation operator for the Bravais lat-

tice vector a. The ± sign on the right-hand side of Eq. (3.1) originates from gn, which equals −1

for spin-1/2 quasiparticles (Bloch electrons with spin-orbit coupling) and +1 for spinless quasi-

particles (Bloch electrons without spin-orbit coupling). Two simple examples of nonsymmorphic

symmetries are illustrated in Fig. 8:

• a glide reflection M = {m|t}, with M2 = ±Ta

• a two-fold screw rotation C2 = {cn|t}, with (C2)2 = ±Ta

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t} can

lead to the protection of band degeneracies in the g-invariant space of the BZ, which satisfies gk =

k. In these g-invariant lines and planes of the BZ, the Bloch states |um(k)〉 can be constructed

in such a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. From

Eq. (3.1) it follows that in momentum space Gn is

Gn = ±e−ipk·a. (3.2)
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Hence, the eigenvalues of G are

G |ψm(k)〉 =

 eiπ(2m+1)/ne−ipk·a/n |ψm(k)〉 , for spin 1/2,

ei2πm/ne−ipk·a/n |ψm(k)〉 , for spin 0,
(3.3)

where m ∈ {0, 1, . . . , n− 1}. Due to the momentum dependent phase factor e−ipk·a/n in Eq. (3.3)

the eigensectors of G can be interchanged, as k is moved across the g-invariant space of the BZ.

As a consequence, provided there are no additional degeneracies due to other symmetries, pairs of

bands must cross at least once within the invariant space. This is the basic mechanism that leads

to the protection of band degeneracies [16, 33, 35–38],

Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band crossing

in a simple one-dimensional system with two atoms per unit cell. In momentum space such a

system is described by a two-band Hamiltonian H(k). The screw rotation symmetry (π rotation,

followed by half translation) takes the form [33]

G(k)H(k)G−1(k) = H(k), G(k) =

0 e−ik

1 0

 , (3.4)

where the exponential factor e−ik accounts for the fact that one of the two atoms is moved to

the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without

spin-orbit coupling), hence G(k) does not contain a spin part. Now, since G2(k) = σ0e
−ik the

eigenvalues of G are ±e−ik/2, i.e., we can label the two bands of H(k) by the eigenvalues of G(k)

G |ψ±(k)〉 = ±e−ik/2 |ψ±(k)〉 , (3.5)

cf. Eq. (3.3) with n = 2 and p = 1. We see that the eigenvalues are momentum dependent and

change from ± at k = 0 to ∓ at k = 2π, as we go through the BZ. Hence, the two eigenspaces get

interchanged and the bands must cross at least once, see Fig. 7.

It is also possible to mathematically prove that there needs to be at least one crossing [33].

The proof is by contradiction. First, we observe that G(k) does not commute with σ3 (it anti-

commutes). Therefore, H(k) cannot contain a term proportional to σ3, since it is symmetry for-

bidden. Moreover, we can drop terms proportional to the identity, since they only shift the energy

of the eigenstates, but do not alter the band crossings. For this reason the Hamiltonian can be

assumed to be off-diagonal and can be written as

H(k) =

 0 q(k)

q∗(k) 0

 . (3.6)
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With this parametrization, the spectrum of H(k) is symmetric around E = 0 and is given by

E = ±|q(k)|. For this reason, any band crossing must occur at E = 0. Applying the symmetry

constraint (3.4), we find that q(k) must satisfy

q(k)eik = q∗(k). (3.7)

We now need to show that any periodic function q(k) satisfying the constraint (3.7) must have

zeros, corresponding to a band crossing point. To see this, we introduce the complex variable

z := eik and the complex function f(z) := q(k). From Eq. (3.7) it follows that zf(z) = f ∗(z).

Assuming that f(z) is nonzero on the unit circle S1, then

z = f ∗(z)/f(z), (3.8)

which, however, leads to a contradiction. This is because for z ∈ S1 the two sides of Eq. (3.8) both

define functions from S1 to S1. But the left hand side has winding number 1, while the right hand

side has even winding number, since f ∗(z)/f(z) = e2iArc[f(z)]. Thus, f(z) and q(k) must vanish at

some k by contradiction. Therefore, there most be a band crossing point somewhere in the BZ.

Note that a similar proof can be constructed also for multiband systems with chiral symmetry.

Hamiltonians with chiral symmetry can be anti-diagonalized with the upper-right block being a

matrix ∆(k). One can then show that Det[∆(k)]eik = (Det[∆(k)])∗, similar to Eq. (3.7). The

argument given around Eq. (3.8) then implies that Det[∆(k)] has to vanish somewhere in the BZ.

Hence, there must be a zero in the spectrum which corresponds to a band crossing.

B. Examples of symmetry-enforced band crossings

We now discuss more complicated examples of three-dimensional systems with nonsymmorphic

symmetries and time-reversal symmetry. For concreteness, we consider hexagonal systems with

spin-orbit coupling, as they show a rich variety of nonsymmorphic band crossings [42]. Using the

strategy of Sec. III 1, we search for new topological semimetals with hexagonal symmetry.

1. Weyl lines protected by glide reflection

Let us first study Weyl nodal lines wich occur in the hexagonal SG P 6̄2c (No. 190). This SG

contains a glide reflection symmetry of the form

Mx : (x, y, z)→ (−x, y, z + 1
2
)iσx, (3.9)
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(a) (b) (c)

FIG. 9: Weyl nodal line with hourglass dispersion. (a) Weyl nodal line in the kx = π plane protected by the

glide mirror symmetry Mx, Eq. (3.9). (b) Band connectivity diagram for a line connecting M and L within

the kx = π plane, which is left invariant by Mx. The bands are Kramers degenerate at M and L. The color

shading indicates the Mx eigenvalues (3.10) of the Bloch bands. (c) The Bloch bands along any path within

the kx = π plane, connecting M to L, exhibit the band connectivity shown in (b).

where the Pauli matrix σx operates in spin space. Here we consider spin-1/2 quasiparticles, i.e.,

Bloch electrons with spin-orbit coupling. Applying this glide reflection twice yields minus a unit

translation in the x direction, i.e., −T̂x, where the minus sign is due to the spin part. The glide

reflection (3.9) leaves two planes in the BZ invariant, namely the kx = 0 plane and the kx = π

plane, see Fig. 9(a).

a. Symmetry eigenvalues. Within the invariant planes kx = 0 and kx = π, the Boch bands

can be chosen to be eigenstates of the glide mirror operator Mx with the eigenvalues

Mx |ψ±(k)〉 = ±ie−ikz/2 |ψ±(k)〉 , (3.10)

which follows from Eq. (3.3) with p = 1 and n = 2.

Next, we add time-reversal symmetry to the game, since we want to study nonmagnetic systems.

Time-reversal symmetry sends the crystal momentum k to −k and acts on the Hamiltonian as

T−1H(−k)T = +H(k), (3.11)

with the operator T = iσyK and K the complex conjugation operator. Time-reversal symmetry

leaves two points in the kx = 0 and kx = π planes invariant, see blue and red dots in Fig. 9(a).

These points are called time-reversal invariant momenta (TRIMs). Due to spin-orbit coupling, the

energy bands |ψm(k)〉 are in general non-degenerate, except at the TRIMs, where time-reversal

symmetry enforces twofold degeneracies, due to Kramers theorem (Appendix A). Since T contains
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the complex conjugation operator K, time-reversal symmetry pairs up bands whose Mx eigenval-

ues are complex conjugate pairs. It follows from Eq. (3.10) that at the L point of the kx = π

plane the Mx eigenvalues are +1 and −1, while at the M point they are +i and −i. (Similar ar-

guments hold for the TRIMs in the kx = 0 plane.) Hence, at M time-reversal symmetry enforces

Kramers degeneracies between pairs with opposite Mx eigenvalues [blue dot in Fig. 9(a)], while

at L Kramers pairs are formed between bands with the same Mx eigenvalues [red dot in Fig. 9(a)].

This is shown in Fig. 9(b), where the Mx eigenvalues are indicated by the color shading. We see

that since the Kramers pairs switch partners as we go from M to L, the bands most cross at least

once forming a group of four connected bands with an hourglass dispersion. Because this holds

for any one-dimensional path within the kx = π plane, connecting M to L, the kx = π plane must

contain a Weyl line degeneracy, as shown in Fig. 9(c).

b. Compatibility relations. The symmetry-enforced Weyl nodal lines of SG 190 (P 6̄2c) can

also be derived from the compatibility relations between irreducible representations (irreps) at

different high-symmetry points (or lines) of the BZ [65, 66]. In order to explain how this is done

we first need to review some basic facts about double SGs and their irreps [67].

The symmetries of band sructures with spin-orbit coupling and time-reversal symmetry (i.e., with

a T operator that squares to −1) are described by double crystallographic SGs and their double-

valued irreducible representations [66, 67]. If we restrict the total band structure to a particular

high-symmetry point k (or high-symmetry line) in the BZ, then the symmetries of the band struc-

ture are reduced to a subgroup of the double SG, which is called the little group at k, Gk. Since

the Hamiltonian restricted to k commutes with the corresponding little group Gk, we can label its

Bloch bands by the double valued irreps of the little group Dk. Moving in a continuous way from

a point with high symmetry (k1, say) to a point with lower symmetry (k2, say), we find that the

little-group irreps at these two points must be related to each other, as the little groups at k1, Gk1 ,

and k2, Gk2 , form a group-subgroup pair, Gk2 ⊂ Gk1 . In fact, a representation of the little group

at k2 can be subduced from the little-group irreps at k1

Dk1 ↓ Gk2 = Dk2 . (3.12)

By decomposing this subduced representation Dk2 into irreps, one obtains the compatibility rela-

tions between the irreps at k1 and k2 [66, 68]. These compatibility relations then determine the

connectivity of the Bloch bands in the BZ.

We will now show how this works for SG 190. To determine the connectivity between the bands
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Irrep\Element E Mx

M5

+1 0

0 +1

 +i 0

0 −i


L2 +1 −1

L3 +1 −1

L4 +1 +1

L5 +1 +1

C
′
3 +1 e

i
2 (π+kz)

C
′
4 +1 e−

i
2 (π−kz)

TABLE II: Double valued irreps of SG 190 (P 6̄2c) at the TRIMs M and L and within the mirror plane

kz = π, denoted by C ′. The irreps for C ′ have momentum-dependent phases due to the partial translation

of the glide reflection Mx. Here, we use the same convention as in Ref. 66 for the labelling of the irreps.

we first need to determine the little group irreps at the TRIMs M and L, and within the mirror

plane kx = π, which is denoted by C ′. Table II lists the double-valued irreps without time-

reversal. We find that at the M point there is only one double-valued irrep, namely M5, which

is two-dimensional and pseudoreal. At the L point there are four different irreps: L2, L3, L4,

and L5, which are one-dimensional and complex. The irreps for C ′ are all one-dimensional and

have k-dependent phases due to the partial translation of the glide reflection Mx, Eq. (3.9). At

the TRIMs M and L we need to construct time-reversal symmetric irreps (i.e., real irreps) using

Table II. Pseudoreal irreps are time-reversal symmetric by themselves, whereas complex irreps

need to be paired up into complex-conjugate pairs to form time-reversal symmetric irreps [67, 68].

Hence, at the L point we need to pair L2 with L3 and L4 with L5, see Fig. 10(a). In agreement with

Kramers theorem, all time-reversal symmetric irreps at M and L are two-dimensional, leading to

two-fold degeneracies. These two-dimensional irreps decompose into one-dimensional irreps as

we move from a TRIM to a point within the mirror plane. The compatibility relations tell us how

this occurs.

As a next step, we therefore need to derive the compatibility relations between the little-group

irreps at M and L, and C ′. This can be achieved by using the following relation between the
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FIG. 10: (a) Compatibility relations for SG 190 between the little-group irreps at M, L and C’

(kx = π plane). (b) Band connectivity diagram for SG 190 for a path within the kx = π plane connect-

ing M to L.

characters χ of the little groups10

χ[Dl(g)] =
2∑
i=1

χ[C
′
mi

(g)], (3.13)

where χ[Dl(g)] is the character of the symmetry element g for the time-reversal symmetric irrep

Dl and {C ′m1
, C
′
m2
} is the set of irreps that Dl decomposes into. Eq. (3.13) follows from the fact

that the characters of each symmetry must be preserved, as we continuously move from M (or L)

to a point on the C ′ plane. Using Eq. (3.13) we find that the time-reversal symmetric irrep at M

(where kz = 0) must decompose into

M5 → C
′
3 + C

′
4, (3.14)

while for the real irreps at L (where kz = π) we have

L2L3 → C
′
3 + C

′
3,

L4L5 → C
′
4 + C

′
4. (3.15)

These two sets of equations are the compatibility relations between the little-group irreps at M, L,

and C ′.

The Bloch bands for any path within the C ′ plane connecting M to L must satisfy all of these

compatibility relations. That is, as we move from M to a point within the mirror plane C ′, Kramers

10 The character of a group irrep associates with each group element the trace of the corresponding irrep matrix.
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FIG. 11: Band structure of ZrIrSn. (a) Electronic band structure of ZrIrSn [42]. The band crossings along

the M – L path are part of Weyl nodal lines. (b) The Weyl nodal line at E ' −0.64 encloses the L point.

pairs must decompose according to Eq. (3.14), while, as we approach L, they must pair up accord-

ing to Eq. (3.15). As a consequence, the little-group irreps switch partners, as shown in Fig. 10(b).

That is, the bands connect in a nontrivial way, with at least one crossing. This is in full agreement

with Sec. III B 1 a, cf. Fig. 9(b).

c. Example material. We now look for example materials, using the strategy of Sec. III 1.

From the above discussion, it follows that any material crystallizing in SG 190 with strong spin-

orbit coupling exhibits Weyl nodal lines within the kx = π plane. Hence, to find example materials,

we look for compounds with SG 190 in the ICSD database [60]. Focusing on binary or ternary

compounds with heavy elements (indicating large spin-orbit coupling), we find the compound

ZrIrSn [42]. Its band structure is presented in Fig. 11(a). Along the M – L line, which is invariant

under the glide reflection Mx, we observe groups of four connected bands, which cross each other

at least once. These crossings are part of Weyl nodal lines within the kx = π plane, which enclose

the L points, see Fig. 11(b). The topological properties of these Weyl nodal lines are characterized

by a nonzero Berry phase [12], which, by the bulk-boundary correspondence, leads to drumhead

states at the surface of ZrIrSn. Moreover, due to the absence of inversion, the bands in ZrIrSn carry

a nonzero Berry curvature, which is particularly large close to the Weyl nodal lines. In slightly

doped samples of ZrIrSn this should give rise to anomalous transport properties, such as, e.g.,

large anomalous Hall effects or anomalous magnetoelectric responses [16].
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(a) (b) (c)

FIG. 12: Weyl points with accordion dispersion. (a) Hexagonal BZ with the symmetry labels for the high-

symmetry lines and points indicated. (b) Kramers pairs at the TRIMs Γ and A. The colors represent the

C6,1 eigenvalue labels m of the Bloch bands |ψm(k)〉, see Eq. (3.17). (c) Band connectivity diagram along

the Γ-∆-A line for SG 178.

2. Weyl points protected by six-fold screw rotation

As a second example we consider Weyl points which occur in the hexagonal SG P6122 (No. 178).

This SG contains a sixfold screw rotation of the form

C6,p=1 : (x, y, z)→ (x− y, x, z + 1
6
)(
√

3
2
σ0 − i

2
σz), (3.16)

which combines a 60 degree rotation with a translation by 1/6-th of the lattice vector in the z di-

rection. The Pauli matrices in the second brackets represent the spin part that needs to be included

for Bloch electrons with spin-orbit coupling. Applying the screw rotation six times give minus a

unit translation in the z direction, i.e., −T̂z, where the minus sign is from the spin part. The screw

rotation leaves the Γ-∆-A line invariant, which connects the point at the center of the BZ to the A

point at the top surface of the BZ, see Fig. 12.

a. Symmetry eigenvalues. Within the invariant line Γ-∆-A we can label the Bloch states by

the eigenvalues of C6,1, i.e.,

C6,1 |ψm(k)〉 = eiπ(2m+1)/6e−ikz/6 |ψm(k)〉 , (3.17)

which follows from the first line of Eq. (3.3) with p = 1, n = 6, and a = (0, 0, 1). In Eq. (3.17)

the eigenvalue label m runs from 0 to 5.

Since we study nonmagnetic systems, we need to consider also the role of time-reversal sym-

metry, Eq. (3.11). Time-reversal symmetry leaves invariant the Γ point and the M point.
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Due to Kramers theorem, time-reversal symmetry enforces twofold degeneracies between bands

whose C6,1 eigenvalues are complex conjugate pairs. Using Eq. (3.17), we find that at the Γ

point bands with the eigenvalue labels (0, 5), (1, 4), and (2, 3) form Kramers partners, since

C6,1 |ψ0(Γ)〉 = eiπ/6 |ψ0(Γ)〉, C6,1 |ψ5(Γ)〉 = eiπ
11
6 |ψ5(Γ)〉, etc., see Fig. 12(b). Similarly, at the

A point we find that bands with the eigenvalue labels (0,0) , (3,3), (1,5), and (2,4) pair up, since,

C6,1 |ψ0(A)〉 = |ψ0(A)〉, C6,1 |ψ3(A)〉 = − |ψ3(A)〉, etc. Therefore, as shown in Fig. 12(b), the

bands pair up in different ways at the Γ and A points. As a consequence, the Kramers pairs must

switch partners between Γ and A, which leads to a nontrivial band connectivity, as displayed in

Fig. 12(c). There are twelve bands forming a connected group with an accordion-like dispersion.

These twelve bands have to cross at least five times, forming five Weyl point degeneracies. The

bands that cross at these Weyl points have different C6,1 eigenvalues, which prevents hybridization

between them. In addition, the Weyl points are protected by a nonzero Chern number, which gives

rise to Fermi arcs at the surface, as demonstrated below in Sec. III B 2 c.

b. Compatibility relations. The band connectivity discussed in the previous section

[Fig. 12(c)] can also be derived using compatibility relations between irreps. In Sec. III B 1 b

we have explained how this is done for SG 190. The derivation for SG 178 proceeds in a very

similar way. The double valued irreps and the compatibility relations can be obtained from the

programs “REPRESENTATIONS DSG” and “DCOMPREL” from the Bilbao Crystallographic

Server [66, 69]. The remaining step is then to connect the irreps at the two TRIMs Γ and A

through the irreps at the line ∆. This yields a band connectivity diagram that is identical to the

one of Fig. 12(c). We leave it to the reader to work this out in detail.

c. Example material. We have shown that any material with strong spin-orbit coupling crys-

tallizing in SG 178 exhibits Weyl points with an accordion-like dispersion along the Γ-∆-A line.

Hence, to find example materials we search for compounds in SG 178 in the ICSD database [60].

We find that AuF3, whose band structure is displayed in Fig. 13(a), has the desired properties. The

band structure displays a well separated group of twelve bands ∼1.5 eV above the Fermi energy

EF. This group of bands shows the predicted Weyl points in a very clear way. Along the Γ–∆–A

line, which is symmetric under the screw rotation C6,1, we observe a group of twelve bands stick-

ing together with an accordion-like dispersion, forming five crossings. Along the M–U–L line,

which is invariant under the screw rotation C3
6,1, there are groups of four connected bands, with

an hourglass dispersion and a single crossing point. (Note that the two bands marked by the red

square form an avoided crossing.) The appearance of these hourglass Weyl points is a consequence
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FIG. 13: Band structure of AuF3. (a) First-principle band structure of AuF3 [42]. The band crossings along

the Γ–∆–A and M–U–L lines are symmetry-enforced by the screw rotations C6,1 and C3
6,1, respectively.

(b) Fermi arc surface state at the (010) face of AuF3. Yellow and blue correspond to high and low intensity,

respectively.

of the C3
6,1 screw rotation, which can be understood using similar arguments as in Sec. III B 2 a.

The topological stability of all these Weyl points is ensured by quantized Chern numbers, which

endow the Weyl points with definite chiralities ν. Interestingly, the chiralities of the Weyl points of

AuF3 can be infered from symmetry alone, at least up to some overall signs. This can be achieved

using the following three observations:

(i) The chiralities of all the Weyl points formed by one pair of bands must add up to zero, due

to the fermion doubling theorem [46].

(ii) Weyl points which are mapped onto each other under rotation (and other space group sym-

metries) must have the same charilities.

(iii) The chiralities ν can be assumed be either +1 or −1, since all the bands cross linearly and

not quadratically; at least for the z direction [70].

Using these three observations, let us analyze, as an example, the chiralities of the Weyl points

formed by the second and third lowest bands in Fig. 13(a) (black open symbols). Looking at the

hexagonal BZ in Fig. 12(a), we see that there are three inequivalent Weyl points at the M–U–L
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lines which transfrom into each other under rotation. These three Weyl points must therefore all

have the same chirality, which we denote by νMUL. Similarly, there are two inequivalent Weyl

points at the K–P–H lines with chirality νKPH, and one Weyl point at the Γ–∆–A line with chirality

νΓ∆A. Hence, the chiralities of these six Weyl points must obey the equation

3νMUL + 2νKPH + νΓ∆A = 0, (3.18)

which, up to an overall sign, fully determines the chiralites, i.e., 11

(νMUL, νKPH, νΓ∆A) = (+1,−1,−1). (3.19)

The nontrivial topology exhibited by the Weyl points of AuF3 manifests itself at the surface

through arc states, via the bulk-boundary correspondence [5]. These arc states connect Weyl

points with opposite chiralities. This is shown in Fig. 13(b), which displays the surface density of

states of a semi-infinite AuF3 slab with (010) face at the energy E−EF = 1.14 eV, corresponding

to the energy of the second and third lowest bands in Fig. 13(a). We observe that there is an arc

state connecting the projected Weyl points of the M–U–L and K–P–H lines, which are marked by

the black square and triangle, respectively. This confirms that the arc state connects Weyl points

with opposite chiralities, cf. Eq. (3.19).

3. Dirac lines protected by off-centered symmetries

As a last example, we study Dirac lines, which occur in the hexagonal SG P63/m (No. 176). This

SG contains a glide reflection M̃z = {m̃z|12 ẑ}, which transforms the spatial coordinates and the

spin as

M̃z : (x, y, z)→ (x, y,−z + 1
2
)iσz, (3.20a)

together with an inversion symmetry

P : (x, y, z)→ (−x,−y,−z). (3.20b)

11 It should be noted that the second and third lowest conduction bands can, in principle, also form accidental Weyl
points, i.e., Weyls points aways from high-symmetry lines, whose existence is not enforced by symmetry. These
accidential Weyl points always come in opposite chirality pairs, such that their contribution to the equation for the
chiralities cancels out.
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FIG. 14: Dirac lines protected by off-centered symmetries. (a) Fourfold-degenerate Dirac nodal lines

connecting the A and L points of the hexagonal BZ. (b) Two Kramers degenerate bands with opposite M̃z

eigenvalues cross each other to form a fourfold-degenerate nodal line. (c) Electronic band structure of

LaBr3.

These two symmetries form together a pair of so-called off-centered symmetries [39–42]. The

Pauli matrix σz in Eq. (3.20a) represents the spin part, which is relevant for materials with spin-

orbit coupling. Note that the translation part t = 1
2
ẑ of the glide reflectioin (3.20a) is perpendicular

to the m̃z invariant space (i.e., the xy mirror plane). This type of glide reflection can be transformed

into a symmorphic symmetry by a different choice of reference for m̃z, i.e., by shifting the origin

by 1
4
ẑ. However, this shift in origin also affects P , leading to a translation part in P . Since M̃z

and P have different reference points, it is not possible to choose the origin such that both M̃z and

P are without translation parts. A pair of two such symmetries with different reference points are

called off-centered symmetries. We will now show that such off-centered symmetries enforce the

existence of fourfold degenerate Dirac nodal-lines.

a. Symmetry eigenvalues. The glide reflection (3.20a) leaves two planes in the BZ invariant,

namely the kx = 0 plane and the kx = π plane, see Fig. 14(a). Within these planes we can label

the Bloch states by the M̃z eigenvalues ±i (remember that M̃2
z = −1). I.e., we have

M̃z |ψ±(k)〉 = ±i |ψ±(k)〉 . (3.21)

Applying the symmetry operators M̃z and P in succesion,

(x, y, z)
P−→ (−x,−y,−z)

M̃z−−→ (−x,−y,+z + 1
2
)iσz,

(x, y, z)
M̃z−−→ (x, y,−z + 1

2
)iσz

P−→ (−x,−y,+z − 1
2
)iσz,
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we see that M̃zP and PM̃z differ by a unit translation in the z direction ( ẑ ). Therefore, we obtain

the following commutation relation in momentum space

M̃zP |ψ±(k)〉 = eikzPM̃z |ψ±(k)〉 . (3.22)

Hence, the two symmetry operators commute in the kz = 0 plane, while they anticommute in the

kz = π plane.

Because we are interested in nonmagnetic systems, we now also need to study the commutation

relation between the off-centered symmetries (3.20) and the time-reversal operator T = iσyK.

Since T commutes with both M̃z and P , we have

M̃zPT |ψ±(k)〉 = eikzPTM̃z |ψ±(k)〉 . (3.23)

Hence, the Kramers pair |ψ±(k)〉 and PT |ψ±(k)〉 have the same M̃z eigenvalues for kz = π, since

M̃z [PT |ψ±(k)〉] = −PT [±i |ψ±(k)〉] = ±iPT |ψ±(k)〉, while for kz = 0, they have opposite

M̃z eigenvalues. Therefore, if two bands with opposite M̃z eigenvalues cross within the kz = π

plane, they form a protected line crossing with fourfold degeneracy. For kz = 0, however, the

bands can hybridize and there is no protected crossing possible.

Such a fourfold degenerate nodal line is in fact required to exist by symmetry alone, i.e., it occurs

in any material with the off-centered symmetries (M̃z, P ). To see this, let us consider the degen-

eracies at the two TRIMs A and L within the kz = π plane. At these TRIMs the Bloch states form

quartets of four degenerate states with the M̃z eigenvalues

M̃z |ψ±(K)〉 = ±i |ψ±(K)〉 , (3.24a)

M̃zP |ψ±(K)〉 = ∓iP |ψ±(K)〉 , (3.24b)

M̃zT |ψ±(K)〉 = ∓iT |ψ±(K)〉 , (3.24c)

M̃zPT |ψ±(K)〉 = ±iPT |ψ±(K)〉 , (3.24d)

where K ∈ {A,L}. These four Bloch states are mutually orthogonal to each other, since they

either have opposite M̃z eigenvalues or are Kramers partners. As we move away from the TRIMs,

the Bloch bands become twofold degenerate in general. We find, however, that the two energeti-

cally degenerate states |ψ±(K + k)〉 and |ψ±(K − k)〉, which are mapped onto each other by P

(or by T), have opposite M̃z eigenvalues. This leads to a band structure, whose M̃z eigenvalues are

inverted with respect to K, as shown in Fig. 14(b). Since the Bloch bands are smooth functions
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of k, each quartet of Bloch states at K must therefore be part of a fourfold degenerate nodal line

connecting two TRIMs, as illustrated in Fig. 14(a). Note that this fourfold degenerate (i.e., Dirac)

nodal line must be symmetric under T and P and all other point-group symmetries of the SG, but

is otherwise free to move within the kz = π plane. That is, the Dirac nodal line is movable, but

not removable. Hence, due to the sixfold rotation symmetry of SG 176 the Dirac nodal lines are

typically shaped like a star [see Fig. 14(a)].

b. Example material. We have shown that all materials crystallizing in SG 176 have star-

shaped nodal lines within the kz = π plane. In order to look for materials we go again to ICSD

database [60] and find the compound LaBr3. The first-principles band structure of LaBr3 is shown

in Fig. 14(c). All bands of LaBr3 are Kramers degenerate, since SG 176 contains a PT symmetry

which squares to −1, see Appendix A. Along the A–L–H–A path, within the kz = π plane, there

are groups of two Kramers degenerate bands which cross each other several times. These band

crossings are part of a fourfold degenerate Dirac nodal line, whose shape resembles a star [inset of

Fig. 14(c)]. The nontrivial topology of these Dirac nodal lines are expected to give rise to double

drumhead surface states, via a bulk-boundary correspondence.

C. Filling constraints for the existence of band insulators

It follows from band theory that, in the presence of time-reversal symmetry, a noninteracting band

insulator can form only if the electron filling ν is an even integer, i.e., ν ∈ 2N 12. That is, materials

with ν /∈ 2N must necessarily be (semi-)metals. However, in materials with nonsymmorphic

symmetries these filling constraints for the existence of band insulators are tightened [31, 71].

I.e., nonsymmorphic symmetries forbid the existence of band insulators even when ν ∈ 2N. This

is because nonsymmorphic symmetries generally enforce extra band crossings, leading to groups

of more than two connected bands, as we have seen in Sec. III B. Hence, as a byproduct of our

analysis, we can obtain the tightened filling constraints for the existence of band insulators.

For example, for SG 178 we find that along the Γ–∆–A line twelve bands form a connected group,

see Fig. 12(c). Hence, for a material in SG 178 to be an insulator, these groups of bands must be

fully filled, i.e., the electron filling ν must be an element of 12N. This tightened filling constraint

for SG 178 is in agreement with the recent literature [72, 73].

12 The electron filling is defined as the number of electrons per primitive unit cells.
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Appendix A: Kramers theorem

Kramers theorem states that for every eigenstate |ψ〉 of a time-reversal symmetric Hamiltonian H

with half-integer total spin S, there exists another eigenstate of H , namely T|ψ〉, with the same

energy, but orthogonal to |ψ〉, i.e.,

H|ψ〉 = E|ψ〉 ⇒ HT|ψ〉 = ET|ψ〉 with 〈ψ|T|ψ〉 = 0. (A1)

That is, every energy state is (at least) doubly degenerate for time-reversal symmetric systems with

half-integer spin.

The proof follows from the fact that:

(i) for systems with half-integer total spin S the time-reversal operator squares to −1, i.e.,

T2 = exp(2πiS) = −1.

(ii) the antiunitarity of T, i.e., the time-reversal operator can be written as T = UK, where U is

a unitary matrix and K is the complex conjugation operator.

Since T commutes with H [cf. Eq. (3.11)], we have HT|ψ〉 = TH|ψ〉 = ET|ψ〉. It remains to be

shown that T|ψ〉 is linearly independent of |ψ〉, i.e., 〈ψ|T|ψ〉 = 0.

From points (i) and (ii) above it follows that T2 = UKUK = UU∗ = −1. Since U is unitary we

find U∗ = −U † and therefore

U = −UT . (A2)

We now write the scalar product 〈ψ|T|ψ〉 in explicit form,

〈ψ|T|ψ〉 =
∑
m,n

ψ∗mUmnKψn

=
∑
m,n

ψ∗mUmnψ
∗
n

=
∑
m,n

ψ∗n(−Unm)Kψm

= −〈ψ|T|ψ〉 = 0. (A3)
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where in the third line we have used Eq. (A2). This completes the proof.

Since Bloch Hamiltonians H(k), Eq. (1.1), with spin-orbit coupling are effectively single-particle

systems with spin 1/2, the Kramers theorem directly applies to its Bloch states |ψ(k)〉. That is, for

every Bloch state |ψ(k)〉 at momentum k with energy E, there exists another Bloch state |ψ(−k)〉
at momentum−k with the same energy. If k is a time-reversal invariant momentum (TRIM), then

there is a double degeneracy, i.e., a Kramers degeneracy. Furthermore, we note that for Bloch

Hamiltonians which are also inversion symmetric, yielding a PT symmetry which squares to −1,

all bands are doubly degenerate.

Appendix B: Explicit construction of gamma matrices

Explicit expressions for the gamma matrices can be obtained via the spinor representations of

SO(N)[74, 75]. The SO(N) generators Mjk are expressed in terms of gamma matrices via

Mjk = − i
4

[
Γj(N),Γ

k
(N)

]
, (B1)

where {Γa(N)}a=1,...,N are gamma matrices, satisfying {Γj(N),Γ
k
(N)} = 2δjk, with j, k = 1, . . . , N .

For N odd, i.e., N = 2n + 1, one finds that SO(2n + 1) has a 2n-dimensional irreducible spinor

representation. The gamma matrices in the Dirac representation for N = 2n + 1 are defined

recursively by [74, 75]

Γa(2n+1) = Γa(2n−1) ⊗ σ3, a = 1, · · · , 2n− 2,

Γ2n−1
(2n+1) = I2n−1 ⊗ σ1,

Γ2n
(2n+1) = I2n−1 ⊗ σ2,

Γ2n+1
(2n+1) = (−i)nΓ1

(2n+1)Γ
2
(2n+1) · · ·Γ2n

(2n+1), (B2)

where I2n−1 is the 2n−1 × 2n−1 identity matrix. The gamma matrices in the Dirac representation

for N = 2n are constructed in the same way, but by leaving out Γ2n+1
(2n+1), i.e., Γa(2n) = Γa(2n+1), with

a = 1, · · · , 2n.
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To be more explicit,

Γ1
(2n+1) = σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

n−1

,

Γ2
(2n+1) = σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

n−1

,

Γ3
(2n+1) = σ0 ⊗ σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

n−2

,

Γ4
(2n+1) = σ0 ⊗ σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

n−2

,

...

Γ2n−1
(2n+1) = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

n−1

⊗σ1,

Γ2n
(2n+1) = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸

n−1

⊗σ2, (B3)

and

Γ2n+1
(2n+1) = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

n

. (B4)

From this explicit construction of the gamma matrices, we infer that Γ1,3,··· ,2n+1
(2n+1) are all real, and

Γ2,4,··· ,2n
(2n+1) are purely imaginary.

Appendix C: Computation of the Berry phase

The Berry phase can be obtained by the phase of the Wilson loop, i.e., PL = i lnWL, where the

Wilson loop is defined as

WL = exp

[
−
∫
L

dl ·A(k)

]
, (C1)

with the Berry connection Aj,k(k) = 〈uj(k)| ∇k |uk(k)〉 , which is a matrix with dimension equal

to the number of occupied bands. The Wilson loop can be computed from the the Berry link

variable on a momentum-space lattice [56]

UL(k) =
U †(k)U(k + δkL)

|U †(k)U(k + δkL|
, (C2)

where U(k) is the matrix of occupied eigenstates at momentum k. The Wilson loop is the product

of UL(k) along a closed path in momentum space, i.e.,

WL =
∏
k∈L

UL(k) = UL(k0)UL(k0 + δkL)UL(k0 + 2δkL) . . . UL(kN). (C3)
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Eq. (C3) can be evaluated numerically in an efficient manner.
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