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Preface

Quantum dots or zero-dimensional electron systems are objects where elec-
trons are confined in a small spatial enclosure, allowing the single electron
only certain eigenvalues for its energy. Quantum dots weakly linked to leads
by tunnel barriers can be considered as model systems to study fundamental
aspects of electrical transport through single atoms or molecules.

In general, such quantum dot systems consists of the quantum dot with
tunnel barriers to the so-called source and drain electrodes and with electro-
statically coupling to gate electrodes. A sketch of the basic arrangement is
shown in Fig. 0.1. Quantum dot systems can be designed to purpose since they
are usually fabricated by conventional semiconductor growth and processing
technology. Drawback is that exploring their electrical properties requires
low temperature. The relative magnitude of quantization energy due to the
spatial confining and electron-electron interaction is preset by design. They
offer at one end confined electron systems with a dense single-particle energy
spectrum like in metal, on the other end electron systems with properties
reminding on those in atoms. The latter case has founded the name artifical
atoms for quantum dots. Moreover, quantum dot systems offer the ability of
in-situ control over the properties by changing parameters like electrostatic
potential, confined electron number, shape of confining potential, magnetic
field, tunnel couplings and temperature. That is why such systems are of
fundamental and conceptual interest for theoretical and experimental work.

Coulomb blockade and single-electron charging are observed in electrical
transport as a consequence of the repelling electrostatic electron-electron in-
teraction in quantum dots. Quantum dot systems behave as single-electron
transistors. Transport spectroscopy delivers a tool for investigating the few- to
many-electron states formed in the quantum dot revealing correlation effects
between the electrons which are more pronounced than in real atoms due to
the stronger influence of electron-electron interaction. Also the coupling to
the leads give rise to peculiar quantum mechanical effects: Quantum fluctu-
ations due to correlated electron tunneling between quantum dot and leads
cause under circumstances the formation of a Kondo-like state, i.e., quantum
dot systems offer a new experimental approach to an almost 40 years old
field. The formation of molecule-like states by tunnel coupling of two quan-
tum dots has been studied in electrical transport. Electrostatically coupled
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Scheme of a Single

uantum-Dot System:
Q Sy Gate

Electron Exchange via
Tunnel Barriers

Fig. 0.1. Scheme of a single quantum-dot system consisting of the quantum dot
which is weakly coupled by tunnel barriers to a source and a drain electrode. One
or more gate electrodes in the surrounding of the quantum dot couple capacitively
to the quantum dot, i.e., they can be used to tune the electrostatic potential of the
quasi-isolated quantum dot. The quantum dot can be thought as a model system
describing in one limit a metal island, in the other limit an impurity site in a
dielectric, a molecule or a single atom.

quantum dots with separate leads show due to their interaction correlated
tunneling in both quantum dot systems in parameter regimes where single-
electron transport is prohibit. Exploring all these transport properties allows
for checking the validity of theoretical concepts, and for identifying strengths
and — of same importance — weaknesses of such quantum dot devices for
certain practical applications.

The present work is not intended to give a complete overview over the field
of electrical transport through quantum dot systems. As rich the physics of
quantum dot systems is, as manifold are the interests in these systems. After
more than one decade of active research by many theoretical and experi-
mental groups, a complete and well-balanced review is not possible covering
all aspects in this field and thereby satisfying all expectations. In addition,
strong links exists to closely related research fields, — i.e., Coulomb blockade
effects in metal and superconducting devices, and their possible application
in metrology, or the optical properties of quantum dots and their possible
application in optoelectronics. The preparation of respective quantum dot
structures is a challenge and a broad field on its own. Actually only the
collection of a number of review articles and books might fulfill this pur-
pose, since each has its preference and quality: A good introduction into the
field of Coulomb blockade and single-electron charging is given by the book
‘Single Charge Tunneling’ from 1991, edited by H. Grabert and M.H. De-
voret [1]. An overview over the development in the field of single-electronics
with a collection of references is found in the article ’Single-Electron De-
vices and Their Applications’ by K.K.Likharev [2] from 1999. References



Preface VII

are found there on using the single-electron-charging effect in metrology,
for instance as a single-electron pump for a frequency-controlled current
standard or as a primary thermometer. Experiments on revealing the elec-
tronic properties of confined electron systems are reviewed by the articles
of U.Meirav and E.B. Foxman [3] from 1995 and L.P. Kouvenhoven, Ch.M.
Marcus, P.L. McEuen, S. Tarucha, R.M. Westerwelt, N.S. Wingreen [4] from
1997. The more recent experiments on atom-like quantum dot systems are
summarized in the article of L.P. Kouwenhoven, D.G. Austing and S. Tarucha
[5] from 2001. A collection of original papers in the field is found in the
book ’Quantum Dots - A survey of the properties of artifical atoms’ by
T. Chakraborty [6] from 1999. An earlier work by N.F. Johnson [7] from 1996
reviews theoretical models for the description of confined electron systems
in quantum dots. Correlation effect and their consequences on the properties
in electrical transport are presented in the work of D.Pfannkuche [8] and
D. Weinmann [9]. Dynamical aspects beyond master equation approaches,
i.e., quantum fluctuations due to correlated tunneling including also phase
coherence between tunneling events are covered by papers of G.Schén [10]
and H.Schoeller [11]. An overview about electron transport in mesoscopic
systems is found in the book 'Mesoscopic Electron Transport’ [12] edited by
L.L.Sohn, L.P. Kouwenhoven and G. Schon. An introduction to 'The Physics
of Low-Dimensional Semiconductors’ is represented by the book of J. Davies
[13].

Goal of the present work is to give a coherent description of electrical
transport through quantum dot systems starting from rather simple electro-
static considerations valid for metal systems. Step-by-step the description
is improved by better electrostatic models, by thermodynamical and quan-
tum mechanical considerations. By trying to be strict in certain deductions,
this presentation should deliver links between experiments and theory which
uses model Hamiltonians catching more or less the experimental situation.
It should give a guideline for performing experiments and for interpreting
experimental data, hinting at the same time to possible pitfalls in doing so.
Moreover, by presenting the assumptions also the restrictions in the validity
for certain models should become clear — identifying the room for improve-
ments in the description and for further experiments.

This treatise is structured in the following way:

To start as simple as possible, the quantum dot is replaced in Chapter
1 by an isolated mesoscopic metal conductor — denoted as metal island. This
metal island is coupled by weak tunnel barriers to macroscopic drain and
source electrodes of fixed electrostatic potential and is also coupled only ca-
pacitively to a gate electrode. The rearrangement of single electrons, treated
as particles with electrical charge —e, between metal island, source and drain
electrode is discussed. Coulomb blockade and single-electron charging are in-
troduced in a simple electrostatic description based on the concept of capaci-
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tances between the conductors. A powerful energy scheme is presented which
allows to deduce some basic properties of a single-electron transistor. It will
be developed further in Chapters 4 and 5.

To account for realistic arrangements of metal single-electron devices, in
Chapter 2 the usual treatment of Capacitances in textbooks is extended for
an arbitrary arrangement of metal conductors and fixed ion charges embed-
ded in an inhomogeneous anisotropic dielectric matrix. The behaviour of the
capacitances with scaling the conductor arrangement is derived, and limits
for the total capacitance of a metal electrode of arbitrary shape are given
with proofs in the Appendices B and C.

Single-electron transistors are devices sensitive to the electric field. Hence,
their electric behaviour depends strongly on the contact voltages of the cho-
sen electrode and island material. To describe properly the Coulomb blockade
and the single-electron charging effect, it is pointed out in Chapter 3 that
one has to distinguish carefully between the concepts of Electrostatic Po-
tential, Chemical Potential and Electrochemical Potential. Measurements are
presented which demonstrate that variations in the contact voltages between
the electrodes of different material are detected by a single-electron transis-
tor.

By scaling down the spatial lengths of a single-electron transistor, its
working temperature increases. Metal islands of few nanometers are required
to see Coulomb blockade and single-electron charging at room temperature.
Besides the particle properties, the wave nature of an electron as a quantum
becomes important. For electrons confined in such a small enclosure — denoted
as a quantum dot —, only certain eigenvalues for the energy of an electron
are possible. In Chapter 4, a model Hamiltonian for a quantum dot is de-
rived from general electrostatic considerations mimicking basic electrostatic
properties of realistic quantum dot structures. The electrons confined in the
quantum dot have to be treated as an interacting N -electron system where
the confining potential but also the electron-electron interaction depend on
the electrostatic surrounding. The screened electron-electron interaction is
related to the electrostatic Green’s function of the arrangement. This de-
scription justifies to denote quantum dots as ’artifical atoms’ with tunable
parameters. On this base, the concept of capacitances for quantum dots is
discussed, too.

For a still more general treatment, the results of Chapter 4 enforce to dis-
cuss the quantum dot in terms of an interacting few- or many-electron system.
Therefore in Chapter 5, Coulomb blockade and single-electron charging ef-
fect are revisited in terms of this more general language. By thermodynamic
considerations the transport regions in terms of single-electron transport are
derived. By energy considerations the rearranging of single electrons between
leads and quantum dot is described, i.e., as the transition between a N- and
a (N + 1)-electron system in the quantum dot. This allows to establish the
method of transport spectroscopy of ground and excited states of the inter-



Preface IX

acting few- to many-electron system in the quantum dot. A master equation
appproach is presented describing the increase, but also decrease of current
with increasing drain-source voltage due to the long decay time of excited
states of the confined electron system. The complications in interpreting sin-
gle current-voltage characteristics is emphasized.

In Chapter 6 experiments are discussed which demonstrate that the
concept of single-electron transport for quantum dot systems breaks down
under certain conditions even in the case of weak tunnel coupling to the
leads. The basic physics behind this is already catched by a simple model
introduced by P.W. Anderson in 1961 and applied to quantum dot systems
in 1988. The tunnel coupling of the electronic states with the reservoir leads
to a many-body state between leads and quantum dot described within the
framework of Kondo physics.

Whereas the preceding treatment is more or less solely concerned with
pure physical aspects of single-electron transistors, Chapter 7 is devoted to
possible practical applications, namely to the question: Are single-electron
transistors suitable as ultimate transistor for very large scale integration
(VLSI) of digital circuits? We know that single-electron transistors are deal-
ing with the smallest charge amount, i.e., the current is carried by single
electrons passing one-by-one the device and that this current flow can be
controlled by a single electron charge. To work at room temperature, the
device has to be extremely compact. Based on the requirements for digital
circuits, the constraints on a electrostatic switch are derived showing severe
limitations in using single-electron transistors for VLSL

Finally open questions and new developments are summarized in Chap-
ter 8.

This treatise is the outgrowth of the author’s experimental engagement
on the fundamental physical aspects associated with single-electron transis-
tors and of the necessity for their profound theoretical understanding. Most
of the experimental results presented in this treatise have been obtained in
the last decade by mainly PhD works in the group of Prof. K. v. Klitzing at
the Max-Planck-Institut fiir Festkorperforschung, Stuttgart (Germany), fi-
nancially supported by the Bundesministerium fiir Forschung und Technolo-
gie (BMBF) and the Max-Planck Society. The presentation in Chapter 7 was
mainly developed during my stay in 1995 in the group of Dr. A. Ourmazd and
Dr.R.H. Yan in the Silicon Research Lab at Bell Laboratories at Holmdel in
New Jersey, USA.

I would like to take the opportunity thanking Prof. K. v. Klitzing for of-
fering me this topic ten years ago for my PhD work, for all the discus-
sions questioning interpretations, for his believe in me setting up research
projects and guiding PhD students in their work in his group. I am further
indebted to my PhD supervisor Dr. R. Haug, to Dr. D. Pfannkuche, R. Blick,
Dr.P.Maksym and Prof.S. Ulloa for all the ’punching’ discussions leading
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finally to the model description presented in Chapter 4 and 5. I gratefully
acknowledge the opportunity given by Dr. A. OQurmazd and Dr.R.H.Yan to
me looking into the challenges in making highly integrated circuits fulfill-
ing customers’ needs. I wish to thank Dr.H. Schoeller and Dr. J. Kénig for
the helpful discussions on correlated electron transport through quantum-
dot systems. My coworkers, the PhD students J. Hiils, M. Keller, J. Schmid,
Y.Y. Wei and U. Wilhelm and the Diploma student A. Welker contributed a
lot to this work by their enthusiasm, although it was sometimes painful if
it was not working the way it should. I am very grateful to them. I like to
knowledge the support by heterostuctures from Dr. K. Ploog and Dr. K. Eberl
grown by M. Hauser, and from Dr. W. Wegscheider grown by M. Bichler. I am
very grateful for all the technical support in making the devices by T. Reindl,
M. Riek, F. Schartner, and U. Waizmann.
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1. Electrostatic Model of Coulomb Blockade,
Single-Electron Charging, and Single-Electron
Transistor

One fundamental property of an electron is its quantized electrical charge —e.
In mesoscopic systems at sufficient low temperature, this discrete elementary
charge gives rise to peculiar electrostatic effects which do not occur in macro-
scopic systems. Based on a simple electrostatic description, the concepts of
Coulomb Blockade and Single-Electron Charging are introduced within this
Chapter. An energy level scheme is presented and stressed which allows to
deduce the basic properties of a metal Single-Flectron Transistor. A deeper
understanding of the phenomena will be developed thereafter in the following
Chapters.

1.1 Single-Electron Charging Energy

In Fig.1.1a, a small — electrically uncharged — metal island ! is sketched
between an arrangement of metal electrodes which are electrically connected.
Transfering a single electron from one of the electrodes onto the metal island
charges this island negative by ¢ = —e (see Fig.1.1b). Image charges ¢;
(¢ = {1,2}) are induced on the surrounding electrodes which sum up to the
positive charge +e. Obviously the metal island forms a capacitor with the
total island capacitance Cyx in conjunction with the other electrodes. The
energy e?/2Cs was required to charge the island by a single electron, and
is now stored as electrostatic energy in this capacitor configuration. Instead
of transfering a single electron to the electrically uncharged island, a single
electron can be taken from the island. The island is now positively charged
with ¢ = +e (see Fig. 1.1c). However, again the energy e?/2Csx was required
for doing so. Therefore for both cases — either adding a single electron to
the metal island or taking off a single electron from the metal island — the
single-electron transfer between the island and the other electrodes costs the
electrostatic charging energy

62

T 20y

(1.1)

E¢

! The term ’island’ is of common use (for instance, [14, 1]) to describe a conductor
completely surrounded by an insulator.
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Fig. 1.1. (a) Arrangement of a metal island embedded in a dielectric medium
and surrounded by other metal electrodes which are electrically connected. (b) By
transfering a single electron from the electrodes to the island, the island is charged
negative to —e. (c) By transfering a single electron from the island to the electrodes,
the island is charged positive to +e. (d) Scaling the electrode arrangement by a
factor s < 1 reduced the capacitances between the island and the other electrodes
by the same factor. (e) A simple arrangement to estimate absolute values for the
charging energy: A spheric metal island of radius Ro located in the center of a metal
hollow sphere of radius R;.

(€)

This energy is required for the separation of a single electron from its positive
counter charge spread over the other conductors.

Shrinking the absolute spatial lengths of a given island/electrodes arrange-
ment by the scaling factor s (see Fig.1.1d) decreases all the capacitances in
the arrangement by the same scaling factor s. Since the charging energy E¢
is inverse proportional to the total island capacitance Cy;, the energy costs for
transfering a single electron between island and the other electrodes increases
with decreasing the spatial length scale 2

1

2 The exact scaling rules and the proof are given in Chapter 2.
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For a total capacitance C; of less than 10715 F= 1{F, the charging energy
E¢ = €2/2Cx; exceeds the thermal energy kT ~ 77 peV at the temperature
T = 1K. Single-electron movements between island and electrodes activated
by thermal fluctuations are suppressed below this temperature. This effect is
named Coulomb blockade. Reducing the total capacitance further by scaling
increases the charging energy E¢ further. For a total island capacitance of
Cx < 3-107'8F = 3aF, Ec exceeds the thermal energy kT ~ 26 meV at
room temperature (7' = 300K).

Are such small capacitance values feasible? For an estimate, we consider
a metal sphere of radius Ry embedded in a dielectric medium of the relative
dielectric constant € in the center of a metal hollow sphere of the inner radius
R; (see Fig.1.1e). For this arrangement with R; > Ry, the sphere capac-
itance is given by Cx = 4mepeRy. For Ry ~ 1um and € = 10, the spheric
island has the capacitance of about 107! F. For Ry < 2.8 nm, the single-
electron charging energy is beyond the thermal energy at room temperature.
We have to conclude that the single-electron charging energy is of importance
to describe single-electron movements in systems of mesoscopic size.

Granular metal films consists of many metal grains electrically connected
by tunnel barriers. At low temperature and small applied voltages, the elec-
trical resistivity increases with lowering the temperature. C.J. Gorter [15]
realized in 1951 that this is due to the quantization of charge. Electrons
hopping from grain to grain are recharging the individual grains. It costs
electrostatic energy so that at low temperature due to the lack of thermal
activation the hopping is suppressed. Systematic resistivity measurements on
thin metal films by C.A. Neugebauer and M.B. Webb [14] in 1962 confirmed
the picture. The Coulomb blockade effect on few grains have been investi-
gated by I. Giaever and H.R. Zeller [16], J. Lambe and R.C. Jaklevic [17], and
R.E. Cavicchi and R.H. Silsbee [18]. A transport theory through granular me-
dia taking the electrostatic charging of grains by single electrons into account
was developed by I.O.Kulik and R.I. Shekhter [19] in 1975.

1.2 Coulomb-Blockade Effect in Electrical Transport
through a Source/Island/Drain-Arrangement

A simple arrangement to discuss the consequence of the single-electron charg-
ing energy E¢ for electrical transport in small systems is shown in Fig.1.2c.
A small metal island is embedded between two lead electrodes arbitrarily
denoted as source S and drain D. Thin insulator layers separate the metal
island from the two electrodes. These layers should be thin enough that —
due to quantum mechanics — tunneling of electrons through the insulator
layers is possible, thick enough that it is plausible to describe single electrons
in the system as being localized either on the metal island or the lead elec-
trodes. Since the metal island is almost isolated, the total charge on the metal
electrode is considered as being quantized in the elementary charge e.



4 Electrostatic Model of Coulomb Blockade and Single-Electron Charging

(a) EEE— (b) Tunnel Barrier
[
I Source ‘ ‘ Drain
Groundstate
€ T=0K Pt
. unoccupied states Vps Ibs
F ///////4 occupied states Elastic Tunneling
Jr———x S o Ts
Excited State 8 7777777 A
3 o s —e &Vps
e L Ag \ ¢©
F ’H ////7//  °F
Source Drain

(© Tunnel Barriers (0) Energy-Level Scheme:
Charging Threshold eﬂ) (g=-¢
Source ‘ ‘ Drain ]»
Idand @ \sland

@ﬂ e
VDS Ibs (S) (D)

(CX) SOUVCG Drain
[ ) [ )
S ‘ b ‘ 4 Aﬁ —X
°F 7 0}
© o Charging Threshold £.(q = +¢)

B ——
i B &5

electroi
(‘S)L;;; (I)(q =0) 7; WJ Ec o %Hialt&cﬁ;ﬁ M P”
ea=-¢) ‘ ‘

Excitation -e Charging Restoration

Vgt

o || e || e
g I 3;:‘;"
Il

shift
Excitation +e Charging Restoration

ON ]




Coulomb-Blockade Effect in Electrical Transport 5

Fig. 1.2. (Left page) (a) Energy level scheme for a metal based on the Sommerfeld
model: In the groundstate at T = 0K, the Fermi level er separates the occu-
pied single-electron states from the unoccupied ones. By an external excitation, an
‘electron-hole excitation’ is created. (b) Two metals — denoted as source and drain
— are connected by a voltage source Vps and a tunnel barrier. With applied voltage
Vbs > 0, the Fermi levels of source and drain are shifted relatively. Electrons tun-
nel under energy conservation from source to unoccupied states on the drain site
(elastic tunneling). It means in the energy scheme a horizontal move of an electron
from source to drain keeping its energetical height. (c) Mesoscopic metal island
connected by tunnel barriers to lead electrodes, denoted as source and drain. At
Vbs = 0, the whole arrangement is charge unpolarized. (o)) Energy level scheme
suggested by cutting one metal (see (a)) into three metal pieces forming source,
island and drain. (8) Transfering a single electron to the island requires at least
the electrostatic energy Ec which has to delivered from external. Restoration from
this charge state back to ¢ = 0 might happen by any electron from the island with
energy £ > e%s) above the common Fermi level E;S) of the leads. (y) Charging of
the electrical uncharged island by a single electron leaving can occur only with an
external excitation E¢. For decaying from this charge polarized state to the charge
unpolarized state, any electron from the lead with energy ¢ > S%S) — E¢ can tunnel
onto the island. (§) On the island site, the threshold levels are indicated for charging
the electrical uncharged island either to ¢ = —e or ¢ = +e by a single electron. The
arrows indicate the respective energy barriers Ec between initial and final state
prohibiting elastic tunneling at Vpbs = 0. Note that the energy-level scheme gives
relatively to source and drain the energetic position of the Fermi level E(FI ) in the
charged metal island. It is elevated for ¢ = —e by the electrostatic charging energy
E¢ and depressed for ¢ = +e by the same amount. In the following the hatching of
the occupied electron states will mostly be omitted.

A drain-source voltage Vps can be applied to this two-terminal arrange-
ment. We will describe electron transport between source and drain electrode
by single-electron hopping via the metal island assuming both tunneling pro-
cesses being totally independent. This requires a recharging of the metal
island by the elementary charge e. These processes can be illustrated by
means of an energy-level scheme (see Fig.1.2¢(d)) where the single-electron
energy ¢ is plotted against the spatial position z (For convenience, we omit
this abscissa in the following schemes).

1.2.1 Charge Polarization Described with the Sommerfeld Model:
Energy-Level Scheme

What is the idea behind this energy-level scheme? To be simple, conduction
band electrons in the three metals — source, drain and island — are described
by the Sommerfeld model (free electron model): The Fermi level ep separates
at T = 0 K the occupied single-electron states below er from the empty states
above (see Fig.1.2a). All electron charges are compensated by the positive
background charges of the ions. Electronic excitations from this groundstate
of the metal are possible by energy transfer Ae from outside: An electron
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with charge —e is excited from an initial state i with energy &; < er to an
unoccupied state f above the Fermi level with energy er = & + Ae > er
leaving a hole (unoccupied state) with charge +e in the 'Fermi sea’ at energy
€;. Such an electron-hole excitation is macroscopically electrically neutral and
vanishes usually by relaxation processes (losing its surplus energy in one or
more steps by phonon emission, for instance). In case of exciting the electron
from the Fermi level (¢; = er), such an excitation is simpler denoted as
electron excitation, in case of exciting an electron below the Fermi level to
the Fermi level (ef = ep), such an excitation is called hole excitation.

The energy level scheme for a metal based on the Sommerfeld model re-
flects the energies of single-electron states being occupied or unoccupied. It
also allows to describe electron transport between two macroscopic metals
connected on one hand by a voltage source, on the other hand by a tun-
nel barrier (see Fig.1.2b). Tunneling of electrons is usually described under
energy conservation between initial and final state (’elastic tunneling’). Due
to Pauli’s exclusion principle, tunneling can occur only into an unoccupied
state. Applying the voltage Vps between the two metals causes an electric

field over the tunnel barrier. As shown in Fig.1.2b, the Fermi level E%D) of

drain is shifted relatively to the Fermi level E%S) of source by eVps, — the
electrostatic energy of an electron at source is for Vpg > 0 higher than the
one at drain. Electrons on the source site with &; > a%D) = E%S) — eVps find
unoccupied states at same energy er = €; at drain site, i.e., a tunneling cur-
rent can flow. The surplus in kinetic energy 0 < ef — E%D) < eVps of the
injected electron is dissipated by relaxation on the drain site, — finally the in-
jected electron ends up at the Fermi level E%D). Important to note, the energy
level scheme of Fig. 1.2b takes into account the response of the whole system
on the tunneling of one electron from source to drain: With the electron, the
charge —e is transfered via the tunnel barrier which has to be instantaneously
compensated by a charge transfer between source and drain via the voltage
source to keep the voltage Vpg between both metals fixed. The energy bal-
ance between initial and final state of the whole system — including the work
performed by the voltage source — is mapped into the single-electron energies
€; and ¢ which include kinetic and potential energy.

Let us come back to the device in Fig. 1.2¢c, where on one hand source and
drain electrodes are connected by the voltage source Vpg, on the other hand
by a mesoscopic metal island via tunnel barriers. In a first approach, we can
think of cutting one piece of metal into three pieces forming source, drain
and island. As each piece of metal is electrically uncharged, we obtain the
single-electron level scheme depicted in Fig. 1.2¢(a) with same Fermi level for
all pieces. Electron-hole excitations within each of these metals are indicated.
Summing up all single-electron energies of occupied states identified in this
energy level scheme would give the total electron energy of the system. The
scheme is suitable to describe excitation within each piece of metal, but has
to be modified to describe electron exchange between those metals. Why? A
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charge polarization within the whole device occurs if we transfer an electron
from source or drain to the island: 3 Charge is separated into the island
charge ¢ = —e and into the image charges ¢s and ¢p at the source and
drain electrodes (¢s + gp = —¢q). For creating such a charge polarization
for Vps = 0, it requires the charging energy Ec given by (1.1), which has
to be delivered from external as an excitation to the system. In terms of
rearranging an electron in the device, we can express this slightly different
by mapping the total energy balance into the single-electron energy € at the
respective position z: Work has to be performed to transfer an electron from
the leads onto the electrically uncharged island — the electron possesses due
to its charge —e an electrostatic energy on the island which is by E¢ higher
than on the leads’ site. The energy scheme of Fig.1.2¢(8) takes this into
account: The Fermi levels of source and drain are kept fixed relative to each
other by Vps = 0. An electron from the Fermi level of the leads has first
to be excited by E¢ before being able to tunnel onto the island finding an
unoccupied state at the Fermi level of the island metal.

Starting from a charge unpolarized state of the device (island charge

g = 0), the threshold level E%S)—%EC is the lowest energy level available
for an electron in the leads for tunneling elastically onto the island
and charging the neutral island to ¢ = —e.

The charged island metal itself is then in the groundstate with this addi-
tional electron since all single-electron states are filled to the Fermi level
and empty above. Exciting an electron in the leads to energies higher than
E}(;S) + E¢ allows the electron to tunnel into states on the island further above

the Fermi level E(FI) (¢ = —e) of the island — the island metal ends up in an

excited state. Therefore, the threshold level E(FS) + Eg represents the border
between reaching occupied or unoccupied states on the metal island by a
single electron.

The electrostatic charging energy Ec, now stored in the system, is not
attributed to a specific electron. Therefore, as shown in Fig. 1.2¢(8), any elec-
tron — but only one — with energy ¢; fulfilling 5(FS) +Ec>¢& 2> E%S) can leave
the ¢ = —e charged island to source or drain under elastic tunneling leading
to ¢ = 0. During electron tunneling, the electrostatic field disappears and
consequently the conduction band in the island shifts down by the electro-
static energy Ec. A hole is left back in the Fermi sea of the now electrically
uncharged island metal, which then is filled by relaxation in the island metal.
The rest of the surplus energy carried by the tunneled electron is dissipated
in the leads. The whole system has finally restored the groundstate of the
charge unpolarized state.

8 To avoid charge transfer by intrinsic contact voltages, we assume that only one
kind of metal is involved. Thus, at Vbs = 0 no macroscopic charge polarization
exists in the device between the metals. The effect of using different metals will
be discussed in Chapter 3.
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The energy scheme of Fig. 1.2¢(8) suggests that all electrons on the island
are shifted with the Fermi level in their energies by Ec. This is wrongly
interpreted if one intends to sum up all these single-electron energies to obtain
the total electron energy of the system. Total energy of the charge polarized
state ¢ = —e is that of the unpolarized system plus Eg. Correctly, this energy
level scheme on the site of the island gives the possible energy levels for a
single electron in the leads charging the initially electrically uncharged island
to ¢ = —e by elastic tunneling. Starting with the ¢ = —e charged island, the
same energy scheme also indicates the energy levels in the leads into which
one electron from the island can elastically tunnel and thereby discharging
the island to ¢ = 0.

What about a single electron leaving the electrical uncharged island (¢ =
0)? Such a process causes also a charge polarization in the device: The island
is charged to ¢ = +e inducing the corresponding image charges gs and ¢p at
source and drain. Again the energy E¢ is required allowing for such a charge
polarization. A possible way is indicated in Fig.1.2¢(7y): A single electron in
the leads has to be excited by at least E¢ to create a hole at E%S) — E¢ which
then can be occupied by elastic tunneling by an electron from the Fermi level
of the island leaving back a hole at the Fermi level E(FI ) (g = +e) of the island
with charge +e. Electrons below this Fermi level of the island require a deeper
hole in the leads and therefore a larger excitation for being allowed to leave
the island by elastic tunneling.

Starting from a charge unpolarized state of the device (island charge
g=0), E%S) — Eg is the closest energy level below the common Fermi

level E%S) of the leads which has to be emptied in the leads for allowing
a single electron leaving the uncharged island by elastic tunneling and
therefore charging it to ¢ = +e.

Alternatively, an electron from the Fermi level of the island can be excited
by E¢ allowing to find an unoccupied state in the leads. A decay back from
q = +e into the charge unpolarized state can occur by any electron — but
only one — from the leads with energy ¢; in the window E%S) >e > E%S) — FEG.
Therefore, without excitation from external, E%S) — E¢ represents the maxi-
mum energy available for a single electron leaving the electrically uncharged
island. Since the respective single-electron states in the leads are occupied,
the island cannot be charged to ¢ = +e without excitation.

In conclusion, for charging or discharging a mesoscopic island by elastic
tunneling of a single electron, the electrostatic energy change between ini-
tial and final state of the device has to be taken into account for the energy
considerations. The electrostatics of the device determines the thresholds for
these charging processes. The threshold energy levels — given by the electro-
statics and representing the Fermi levels of the charged metal island — are
drawn in the energy scheme of Fig.1.2c(y). For Vpbs = 0 and uncharged is-
land (g = 0), without external excitation the electrostatic energy barriers E¢
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exist — indicated by two arrows — for a single electron entering and for a single
electron leaving the island. Note that the spacing between upper and lower
level shown for the island site is 2 Eq. However, direct transitions between
these two levels are not possible since such a transition requires recharging
of the island by charge transfer from the leads in two separate processes as
already explained.

1.2.2 Current-Voltage Characteristic

We are now prepared to approach the Ing(Vpg) characteristic of the two-
terminal device. We found that close to Vpg = 0 the excitation energy E¢
must be available to cause single electrons entering or leaving the island
by tunneling. Since thermal energy is responsible for such excitations, we
expect: Current flow from source to drain mediated by single-electron hopping
is suppressed if the single-electron charging energy E¢ of the metal island
exceeds the thermal energy k7. This is denoted as Coulomb blockade of
electrical transport in such a two-terminal source/island /drain arrangement.

Applying the drain-source voltage Vps > 0, the electrostatic potential
of the island is shifted by Cp/Cyx - Vps in reference to the source potential
(see capacitance circuit given in Fig.1.3b), and the electrostatic energy of a
charge ¢ on the island changes by ¢-Cp /Cx - Vps. This reduces the electrostatic
energy difference AFg_,; which an electron sees when moving from the source
electrode S to the island I,

AES_,I = Ec —€- CD/CE . VDS . (13)

This lowering is indicated in the energy level scheme of Fig.1.3¢(3). Also
the energy barrier AE;_,p valid for an electron moving from the electrically
uncharged island to drain is lowered since applying Vpg reduces the electro-
static energy for single electrons at the drain more than at the island. From
the energy scheme, given in Fig.1.3¢(8), we derive

AErp = (2Ec — AEs_,1) — e Vps (1.4)
=Ec—e-Cs/CE-VDS .
The last line is obtained from (1.3) by taking into account Cy, = Cs + Cp.

For Vps < 0, similar considerations can be done: The difference AEy_,g for

an electron moving from the electrically uncharged island to source reduces
by

AEI_>S ZEC —e-CD/CE-|VD5| - (15)

Also the charging energy AEp_,1 for an electron being transfered from drain
to the electrically uncharged island decreases which leads to the relation

AED_,I = (2 Ec - AE1_>5) — € |VD5| (16)
=FEc—e-Cs/Cx - |Vbs|, (L.7)
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Fig. 1.3. (a) Scheme of the two-terminal device: A metal island is connected by
tunnel barriers to two metal electrodes denoted as source S and drain D. (b) Ca-
pacitance circuit modelling the electrostatics of the arrangement shown in (a). The
total capacitance is given by Cx = Cs + Cbp. The box-like symbol denotes a ca-
pacitor where electron tunneling is possible [20, 1]. (c) Due to the presence of a
single-electron charging energy, the shown nonlinear I'ns(Vps) characteristic is ex-
pected. It can be deduced from the four depicted energy level schemes (g is the
single-electron energy and z the position) valid for different distinct Vpg values:
At Vps = 0, the energy barrier Ec = ¢?/2C0x exists for an electron entering and
for an electron leaving the uncharged island. The current Ipgs is suppressed around
drain-source voltage Vps = 0 (’Coulomb blockade effect’). With growing |Vpg|, the
barriers AEs_,1, AE1p, AE1,s and AEp_,1 for single electrons to recharge the is-
land are lowered. At certain positive and negative threshold values :I:V[()tsh), one of
the barriers has vanished first. For the energy schemes Cs < Cb is assumed leading
to AEs_,1 = 0 at positive and AE1_,s = 0 at negative Vps threshold.
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By changing D with S in (1.7), the expression (1.5) is recovered, demon-
strating the arbitrary choice of the electrodes as source or drain for the two-
terminal arrangement.

The charging energy given by (1.3) vanishes (AEs_; = 0) for Vps =
e/(2 Cp), the energy barrier given by (1.4) disappears (AE;_,p = 0) for Vps =
e/(2 Cs). Therefore, depending on the relative size of the capacitance values
Cs and Cp, either the difference defined by (1.3) or by (1.4) vanishes first
with increasing Vps > 0. The same is true for |Vpg| in case of negative
drain-source bias (Vpg < 0) as can be seen from (1.5) and (1.6). Therefore, —
excluding thermal excitations — single-electron transport between source and
drain electrode can only occur for

thy _ . e e
Vos| > Vs = min (ma m) (1.8)

in the two-terminal device of Fig.1.3a. As roughly sketched in Fig.1.3c, a
symmetric Ins(Vps) characteristic is expected with threshold voltages iV]gtsh)
given by (1.8). Current carried by single electrons passing the island arises
for [Vig| > V. 4

Let us discuss in more detail the charging of the island at the threshold
voltages iV]gtSh) and the onset of the drain-source current Ipg: In case of

Cs < Cp, at the corresponding positive threshold Vps = Vlgtsh) =¢e/(2Cp),
the barrier AEs_,; vanishes before AE;_,p does (see Fig.1.3c(7)). An elec-
tron from the Fermi level of source can tunnel freely forth and back between
source and island. Hence, the charge g on the metal island fluctuates be-
tween 0 and —e. Current Ipg in the circuit flows via the voltage source
from drain to source (Ips > 0) due to such single electrons entering the
uncharged island from source by tunneling, and in a sequential step by an
electron leaving the island by tunneling to drain. The last step, discharging
is possible in several ways, similar to what was described for Fig.1.2¢(f).
The surplus energy eV]Stsh) = €?/(2Cp) is dissipated thereafter in relaxation
processes. Such a transport process is denoted as electron-like because the
process is enabled with an electron entering the island. At negative threshold
Vbs = —V]gtsh) = —e/(2Cp), the charge ¢ on the island fluctuates between
0 and +e since AE1,p is zero (see Fig.1.3¢(d)). A net current flows from
drain to source due to single electrons which leave the island to source by
tunneling creating a hole on the island which is then filled by an electron
tunneling from the drain electrode. The last step can be done in several
ways, similar to what was indicated in Fig.1.2¢(7y). Overall the surplus en-
ergy eVps = €?/(2Cp) is dissipated. Such a transport process is denoted as
hole-like because transport is enabled by creating a hole on the island. In the
opposite case of Cs > Cp, the charge g fluctuates between 0 and +e at posi-

4 The increase will be described later in Chapter 5 in terms of a master equation
approach.
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tive threshold Vps = V(th) = e/(2Cs), enabled by a ’hole-like’ process, and

between 0 and —e at negative threshold Vpg = —V(th) = —e/(2Cs), enabled
by an ’electron-like’ process. The surplus energy eVDs = ¢e2/(2Cs) is dissi-
pated with each elementary charge transfer between source and drain. In case
of Cs = Cp, both electrostatic energy barriers — on the source and the drain
site — disappear at the same time at threshold (see Fig.1.4). Due to these
electrostatic energy considerations, the charge ¢ of the island can fluctuate
between —e, 0 and +e. "Electron-like’ and ’hole-like’ transport processes are
working in parallel. Thus, recharging of the island by two electrons at the
same time from charge state +e to —e or vice versa becomes energetically
possible.

As already pointed out with (1.8), the larger value of Cp and Cs de-
termines the threshold values iV]gtSh) for single-electron transport in the
two-terminal arrangement of Fig.1.3a. For a given Cy, different threshold
values are obtained by varying the ratio Cp/Cs. For the symmetric case
(Cs = Cp = Cx/2), single-electron transport between source and drain is

(@ Vps= VEe

Cs>>Cp: ’8 Cs=Co: Cs<<Co:

| IT
)
Source N+ &/os i
v/ /

Island Drain )
(th)_ (th_ e (th_e _e
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0w ellel o)l

T XM N
o el

Fig. 1.4. (a) Energy scheme at positive threshold Vps = V[()tsh) for a given total
capacitance Cx = Cs + Cp of the metal island but different ratios Cs/Cp. The
cases Cs > Cp, Cs = Cp and Cs < Cp are chosen. (b) The respective charge
configurations between which the system might fluctuate allowing single-electron
transport between source and drain electrode. The additional image charges, present
on the source and drain electrode for the island with charge ¢ = 0 or e, are
indicated. For the source electrode, it is gs = —Cs/CY - ¢, for the drain electrode,
gp = —Cp/Cs - q. For Cs > Cp hole-like, for Cs < Cp electron-like transport
processes are possible at positive threshold.
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possible for

th €
[Vos| > V5 = o

as derived from (1.8). This value multiplied by e reflects the energy gap
2E¢ for single-electron transport present for this two-terminal device. It is
the maximum threshold which can be observed by varying the ratio Cs/Cp,
since the relation Cx < 2max(Cs; Cp) is generally valid for the two-terminal
arrangement. For the extreme asymmetric cases of Cs < Cp and Cs > Cp
presented in Fig. 1.4, the total capacitance is well described by Cx =~ Cp or
Csx ~ (s, respectively. In that case, the threshold value Vétsh) is at minimum,
and electron transport occurs already for

(thy . €
[Vos| 2 V" = 55 (19)
This is obvious from Fig. 1.4a: For Cs > Cp, due to the strong electrostatic
coupling towards the source electrode, the energy gap for recharging the metal
island remains fixed in position relative to the electronic levels of the source
electrode. The minimum (1.9) in drain-source voltage is required to overcome
the Coulomb blockade in transport by opening single-electron transfer with
the drain electrode. For Cs < Cp, the energy gap is pinned in its relative
position to the electronic levels of the drain electrode. Again, the minimum
(1.9) in drain-source voltage is required to overcome the Coulomb blockade in
transport, — now by opening single-electron transfer with the source electrode.
Zero threshold is not reached by any ratio of C's and Cp. However, by choosing
the total capacitance Cx large (Cs — o0), zero threshold is approached
(V™ - 0, Eq — 0).

Since the Coulomb blockade effect was introduced as an electrostatic ef-
fect, i.e., the attractive and repulsive interaction between charges creates the
behaviour, the effect is not only restricted to metal islands, but can also be
seen with superconducting islands, quantum dots, atom or molecule clusters,
single atoms or molecules (see reviews cited in the Preface). The arrangement
of a two-terminal device is often found with a scanning tunneling microscope
probing a conductive substrate where adsorbates are present: The adsorbates
form the island, whereas the microscope tip and the conductive substrate act
as the source and the drain electrodes. In such an arrangement, in 1989 the
Coulomb blockade effect was demonstrated for T' = 4K [21], in 1992 for room
temperature [22].
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1.3 Single-Electron Box: Charging or Discharging by —e
Quanta a Metal Island Connected to a Source Electrode
by Using a Gate Electrode

In a different two-terminal device sketched in Fig.1.5a, the island electrode
is weakly coupled by a tunnel barrier to the source electrode and only capac-
itively coupled to the second electrode — the gate electrode G. If the voltage
Vs between the gate and the source electrode is near Vg = 0, the Coulomb
blockade prevents charging of the island, i.e., ¢ = 0. However due to the
capacitance divider given in Fig. 1.5b which models the electrostatics of the
two-terminal arrangement of Fig.1.5a, the electrostatic potential of the is-
land is shifted by changing the gate-source voltage Vs — similar to what was
discussed in the previous Section for changing Vps. The electrostatic energy
of an electron on the island is changed by °

AEG = —€- C(;/CZ . VGS . (1.10)

The total capacitance is given again by the sum of all partial capacitances
towards the island: Cx = Cs + Cg. According to (1.10), for increasing Vg,
the energy barrier for an electron transfered from source to the island is
reduced,

AEs ;1 =FEc+AEg =Ec—e-Cg/Cx - Vgs (1.11)
whereas the barrier for an electron leaving the island to source is increased,
AFy ,s =FEc—AEg =Ec+e-Cg/Cx-Vgs . (1.12)

The level distance remains independent of Vgg
AFE; s +AEs 1 = 2Ec =€*/Cx. (1.13)

For Vs < 0, the relations (1.10) to (1.13) are valid too.

If AEs_,;1 = 0 which occurs at the gate-source voltage V(ggh) =¢e/(2Cg)
(see (1.11)), an electron does not feel any electrostatic energy difference be-
tween being localized on the island or the source electrode. Single electrons
moves back and forth, — the charge ¢ on the island fluctuates between 0 and
—e. The same happens for Vgs = —V(gtsh) = —e/(2Cg) since there AE;_,s =0
(see 1.12)): The island charge g fluctuates between 0 and +e. With increasing
the gate-source voltage Vgs from Vgs = chtsh) further, AEs_,; becomes nega-
tive (see (1.11)), — the electrostatic energy for an electron on the island shifts
below its electrostatic energy at source. The additional electron is trapped
on the island, — the charge on the island is changed to —e. What gate-source
voltage change is required to further charge the island?

5 The index G in AEg should remind on the gate as the cause of this contribution.
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Fig. 1.5. (a) Single-electron box: A two-terminal device where a metal island is
weakly connected by a tunnel barrier to the source electrode. The gate electrode
couples only electrostatically by the capacitance Cg to the metal island. The island
potential is shifted by the gate-source voltage Vas as well as by a trapped island
charge g which is changed by +e at certain Vs values where tunneling is energeti-
cally allowed. (b) Capacitance circuit of the arrangement shown in (a): Cs and Cg
denote the capacitances of the island to source and gate, respectively. (c) Energy
scheme representing the charging energies for certain distinct gate-source voltage
values Vgs. The number of trapped electrons — starting counting from the electrical
uncharged island — is ANg. For negative Vgs, the value of ANg becomes negative
and |ANg| represents the number of trapped holes. (d) The number of electrons
on the metal island is increased one-by-one with increasing gate-source voltage
Vas. (e) The charging energy AFEs_,1 for a single electron entering the metal island
and the discharging energy AEi_;s for a single electron leaving the metal island is
periodically modulated with increasing gate-source voltage Vas.
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Charging the island at Vgg = 0 with AN electrons at the same time
requires the charging energy Fes(AN) = (—ANe)?/2Cx. Applying the gate-
source voltage Vgg shifts the potential energy of all AN electrons lowering
the charging energy:

_ 2
( ANe) _ ANe CG

FEeist (AN, =—FF T
lt( VGS) 202 CE

-Vas - (1.14)
For AN = 1 and Vgs = 0, we obtain Egg = €?/2Cx = Eg, consistent with
our previous result (1.1).

Having already charged the island with AN —1 electrons, the next electron

"AN’ moving from source to the charged island feels at fixed applied Vgg the
electrostatic energy difference

AEs_1(AN,Vgs) = Eeist (AN, Vas) — Eest (AN — 1, Vgs)

2

- _n. ¢, G,

= (AN - 1) o e o Vas

=2F- (AN— - %) (1.15)
e

Depending on Vs and AN, this energy difference is positive, zero or negative,
i.e., the electrostatic energy for the electron AN lies above, at or below its
potential energy at source. The energy values given by (1.15) for different
AN at a certain Vg are plotted as levels for the island in the energy scheme
of Fig. 1.5¢c. A ladder of energy levels is obtained where the level distance is
2FEq = €?/Cx and the ladder shifts linearly with Vgs. This energy scheme
extends the one introduced in Fig.1.2¢(d) which is valid for AN = 1 and
AN = 0 with Vgg = 0. The new energy level scheme will be used extensively
in the following. It was already used by I. Giaever and H.R. Zeller [16] in 1968.
Let us look closer to the meaning of the introduced ladder of energy levels:

e An electron at source at the energy level denoted by AN can fluctuate
between source and island by elastic tunneling if the island has already
trapped AN — 1 electrons. Thus, the AN level represents the charging and
discharging threshold level for the ANth electron.

e For AN = 1 we have the threshold level for the first electron leading to
fluctuations between ¢ = 0 and ¢ = —e on the island.

e For AN = 0 we have AN — 1 = —1. This means that the electron moving
back and forth between source and island causes charge fluctuation between
q = 0 and +e. The initial state for charging the island by the electron is
the presents of a hole charge ("missing electron’).

e In general for AN < 0, an electron fluctuating between source and drain
leads to charge fluctuations between AN - (—e) = |AN|-e > 0 and (AN —
1)-(—e) = (JAN|+1)-e > 0. The level AN indicates |AN|+ 1 hole charges
trapped on the island as the initial state for adding an electron.
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In conclusion, the energy level denoted by AN indicates the threshold level
for charging and discharging the island by the ANth electron relatively to the
Fermi levels of source if AN — 1 electrons are already trapped on the island.
Relation (1.15) is also valid for AN < 0 indicating the presence of |AN| + 1
trapped hole charges for the initial charging state.

With changing the gate-source voltage from zero to a certain value Vgg,
electrons will move onto the island as long as the expression (1.15) is negative:
The first electron will move onto the island if AEs_1(1, Vas) < 0, the second
too if AEs_,1(2,Vas) < 0. This will continue to the ANth electron as long as
AFEs_,1(AN, Vgs) < 0. This electron transfer will stop when the next electron
AN + 1 feels (1.15) being positive, i.e., AEs1(AN + 1,Vgs) > 0. Finally
under stationary conditions, AN = ANg electrons are trapped on the island,
if the relations

AES_H(ANG + 1, V(}S) >0 and AES_)I(ANG, V(;s) <0 (116)

are fulfilled at the same time. This happened for ¢

Eq — AE.
ANg = ANG(Vgs) = int (% + %) = int (%) . (1.17)
C

The electrostatic energy Eeist (AN, Vas) given by (1.14) is minimized for given
Vas by the transfer of AN = ANg(Vas) electrons to the island. Therefore,
due to the applied gate-source voltage Vg the trapped charge on the metal
island becomes

q(Vgs) = —ANG €. (118)

This quantized charge is close to the charge amount ¢’ which would be present
on the capacitor with capacitance Cg if the tunnel barrier in Fig.1.5b is
replaced by a short: ¢ = —Cg Vgs. This case corresponds to the straight
dotted line ¢'/(—e) = Cg Vgs/e in the diagram of Fig. 1.5d where the number
of electrons of the island is sketched versus Vigs. However, since the island is
quasi-isolated, the quantized trapped charge ¢ can adjust only in multiple of
the elementary charge e. This allows the system to come close to ¢ = ¢', but
only at the distinct gate-source voltage values ANg e/Cq the island charge
is exactly ¢ = ¢'.

The additional number of electrons on the metal island fluctuates between
ANg and ANg — 1 electrons at the gate-source voltage values

€

Ve (NG) = (aNG - 1) - o

1 (1.19)

Vétsh) (ANG) gives the threshold value for trapping the next electron ANg
on the island. Therefore, with slowly increasing Vgg, the island is charged

® The function int(z) delivers the closest integer number which is smaller than z,
i.e., ¢ > int(x), valid for £ > 0 and z < 0.
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one-by-one with additional single electrons, i.e., the control over Vg allows
single-electron charging of the island (see Fig.1.5d) with a periocity of
AVas = — 1.20
as = 5 (120

Single-electron charging of a box was clearly demonstrated experimentally by
P. Lafarge and coworkers [23] in 1991. The device of Fig. 1.5a with such prop-
erties is therefore often denoted as single-electron boz. We should emphasize
here, that there might be millions or billions of conduction band electrons
on the metal island and we have control over single electrons being added to
this huge amount or taken off. 7

Taking off a single electron from the metal island with ANg trapped
electrons requires — to surpass the electrostatic barrier — the discharging
energy AE ,s(ANG, Vgs). From (1.14), (1.15) and (1.17) we obtain

AE1_s(ANG,Vas) = Eest(ANg — 1,Vas) — Eest (AN, Vas)

Ca Vas
e

:2EC-{(%+%>—int(%+%>}

Introducing the 'remaining fraction’ fq, 8

= —AFEs_,1(ANg,Vas) =2 Ec - ( +3i- ANG) (1.21)

fa = fa(Vas) = mod (% + %) , (1.22)

with the property 0 < fg < 1, the barrier for discharging is written as
AF;_s(ANGg,Vas) =2 Ec - fa - (1.23)

On the other hand, assuming AN electrons trapped on the metal island,
an electron moving from the source to the island requires according to the
obtained result (1.21) the charging energy

AEs_,i(ANg +1,Vgs) = —AEis(ANG + 1, Vas)
=2Ec-(1- fa) - (1.24)

We note from (1.23) and (1.24) that the sum of both barriers AEs_,;(ANg +
1,Vas) +AEr,s(ANg, Vas) is always 2E, independent of the values of ANg
and of Vgs.

" For a superconducting metal island, the odd or even parity of the electron number
on the island — although billions - can be distinguished by charging or discharging
the island due to the binding of electrons to Cooper pairs [24].

8 The function mod(z) delivers & — int(x), valid for positive and negative .
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The development of the energy barriers with increasing gate-source volt-
age Vgs — allowing an adjustment of the island charge to ANg — are sketched
in Fig. 1.5e: They follow a left and a right going sawtooth contour line, respec-
tively. For fg = 0, the island charge can fluctuate. For fg = %, mid gap con-
dition is achieved, i.e., the barriers for single electrons recharging the island
are at mazimum at the same time: AEs_1(ANg + 1,Vgs) = Ec = €?/2Cx
and AE1_s(ANg,Vas) = Ec = €2/2Cs. Therefore, at least the condition
€?/2Cs > kpT has to be fulfilled to observe at temperature T’ the charging
of the metal island with electrons one-by-one.

1.4 Single-Electron Transistor (SET)

In this Section, the single-electron transistor (SET) is introduced. The basic
properties of a metal SET are explained using the electrostatic description
developed in the preceding Sections. The description of the physical proper-
ties of such a SET will be improved step-by-step in the following Chapters
by extended electrostatics, by including thermodynamical aspects, and finally
by quantum mechanical aspects.

1.4.1 Basic Concept and Special Realization of a SET.
Coulomb-Blockade Oscillations

In the two-terminal device sketched in Fig. 1.3a, the metal island was weakly
coupled to the source and to the drain electrode by tunnel barriers. Due to the
single-electron charging energy e?/2Cs;, Coulomb blockade of electron trans-
port is present around drain-source voltage Vps = 0. The Coulomb blockade
close to zero drain-source voltage can be overcome in the three-terminal ar-
rangement, sketched in Fig. 1.6a, by applying a voltage Vs between gate and
source electrode. As it was just described for the single-electron box sketched
in Fig. 1.5a, for Vps = 0 the metal island is charged one-by-one with single
electrons by increasing the applied gate-source voltage Vs (see Fig. 1.6c).
At certain Vgg values, the charge on the island fluctuates by e. With apply-
ing a small voltage Vps at such Vgg values, a current flows between drain
and source, carried by electrons passing the island one-by-one on their way
from source to drain: Single-electron transport occurs. With slightly changing
the gate-source voltage, single-electron hopping is suppressed. Therefore, for
small Vpg, the single-electron current is periodically turned on and off with
increasing the gate-source voltage Vigs. This current modulation, sketched
in Fig.1.6c, is denoted as Coulomb-blockade oscillations (CBO). Showing
such a characteristic, the three-terminal arrangement sketched in Fig. 1.6a is
named single-electron transistor (SET). The device concept was suggested in
1986 by D.V. Averin and K.K. Likharev [20] and clearly described in 1987 by
K.K. Likharev [25]. A first realization was presented in the same year 1987
by T.A.Fulton and G.D. Dolan [26].
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Fig. 1.6. (a) Single-electron transistor: A three-terminal device where a metal
island is connected by tunnel barriers to the source and to the drain electrode.
The gate electrode couples only electrostatically by the capacitance Cq to the
metal island. (b) Capacitance circuit of the arrangement shown in (a): Cs, Cp and
Cq denote the capacitances of the island to source, drain and gate, respectively.
The total island capacitance Cx is Cs = Cs + Cp + Cg, and the island charge
q = —e - ANg. (c) Energy scheme representing the electrostatic energy differences
for various gate-source voltage values Vgs which are seen by single electrons being
either added to this island or taken off. The number of electrons on the metal island
is increased one-by-one with increasing gate-source voltage Vas, and the current Ipg
of the metal single-electron transistor for small Vps is periodically modulated with
increasing gate-source voltage Vas (’Coulomb blockade oscillations’).
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Fig. 1.7. (a) Metal single-electron transistor used in our experiments. It is made by
an Al-evaporation technique: Cross Section 1 shows the whole device including the
gate electrode. The fabrication of the source/island/drain system is done by a two-
angle evaporation technique: With electron-beam lithography, a two-layer organic
resist is patterned leading to openings to the substrate with large undercut (see
’Cross Section 2’). In vacuum, aluminum layers are evaporated twice under different
angles through the openings onto the substrate. By an in-situ oxidation between first
and second evaporation, a thin aluminum oxide of few nanometer is formed on the
first aluminum layer. The resist is lifted off and a metal structure remains on the
substrate. Due to the two different evaporation angles, the metal patterns of the first
and second evaporation process are slightly shifted against each other leading to an
overlap in certain regions. In the overlap regions, the thin aluminum oxide acts as
tunnel barriers between both aluminum layers, whereas the uncovered aluminum is
unavoidable oxidized further in air. (b) Scanning electron microscope (SEM) image
of the single-electron transistor (from Y.Y.Wei [27]). The lengths along the vertical
axis are reduced by a factor of 1/4/2. (c) Coulomb-blockade oscillations measured
at T = 0.1 K by using the gate electrode buried in the substrate (Vbs = 80 uV)
(from Y.Y.Wei [27]). To suppress the superconductivity of aluminum, a magnetic
field of 1 Tesla was applied.
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In Fig.1.7, a special kind of a metal single-electron transistor is shown
which was realized in our laboratory. This SET consists of a small aluminum
island (0.1 pm in width and 1 gm in length) which is coupled by aluminum
oxide tunnel barriers to the aluminum source and drain electrodes. The scan-
ning electron microscope (SEM) image is shown in Fig.1.7b. The SET was
fabricated by using the shadow-mask and two-angle evaporation technique
described by Dolan and Dunsmuir [28] and other groups [29, 30]. Due to the
small size of the electron island and the small area of the tunnel junctions
(0.1 pm by 0.1 pm), the total capacitance of the island is small leading to a
single-electron charging energy Ec = 0.1 meV. Applying a voltage Vgg to the
gate electrode burried at 85 nm below the surface in a GaAs/AlGaAs sub-
strate, Coulomb blockade oscillations are observed at temperature 7" = 0.1
K (see Fig.1.7c).

1.4.2 Transport Regions in the Vgs vs. Vpg Plane

The three-terminal arrangement of a single-electron transistor allows to over-
come the Coulomb blockade in electrical transport by either tuning the volt-
age Vs applied to a near-by gate electrode or by increasing the drain-source
voltage Vps. To obtain the Coulomb blockade regions in the parameter space
of the gate-source voltage Vgs and the drain-source voltage Vpg, the lowering
of the energy barriers by Vas and Vpg have to be considered in combination.
This will be done in the following. The result is plotted in Fig.1.8 which
shows the determined Coulomb blockade regions in the Vgg vs. Vps plane
and some energy schemes for certain combinations of AN, Vgg and Vps.

As derived in the last Section for a single-electron box, also the char-
acteristic of a metal single-electron transistor has to be periodic in the ap-
plied gate-source voltage Vgs. Therefore it is sufficient to focus the discussion
near Vps = 0 on the region where, for instance, AN additional electrons are
trapped on the metal island due to the applied gate-source voltage Vas. In
case of positive Vpg, the electrostatic charging energy AEs_,;(AN + 1, Vas),
found in (1.24) for an electron transfer from source to the island under the
influence of Vizg alone, is reduced by taking Vpg into account,

AEg i (AN +1,Vas, Vbs) = AEg 1 (AN +1,Vgs) —e-Cp/Cx - Vpg
= (AN + %) . 62/02 —e-Cg/Cs-Vgs —e-Cp/Cxs - Vbs (1.25)

where Cx, = Cs+Cp + Cg. Whenever the electrostatic charging energy (1.25)
becomes zero, single-electron tunneling forth and back between source and
island is opened. Vanishing of (1.25) occurs along the straight line Cp Vpg +
CaVas = (AN + %)e which intersects the Vgg axis (Vps = 0) at Vgs =
(AN + 1)e/Cq and has the negative slope

dVas __ 0o (1.26)
dVvDS AES—)IZO CYGr




1.4 Single-Electron Transistor (SET) 23

AEs., (AN+1,Vgs,Vps) =0 =2 T €
C
Slope - C*Z N+2

an | | Drain

Al
|y

, i Vbs
0 \\ Regions of Multi-Electron Tunneling

AE,_p(AN+1,Vgs,Vps) = 0 Regions of Single-Electron Tunneling
Cs-Cp Regions of Coulomb Blockade
Co

Slope

Fig. 1.8. Evaluated transport regions of a single-electron transistor as a function
of the gate-source voltage Vgs and the drain-source voltage Vps. Light grey shaded
are the regions of Coulomb blockade where the electron number is fixed in the
plot to AN — 1, AN, or AN + 1, respectively. Fluctuations by one electron charge
—e is possible in the adjacent regions. With further increasing Vps, more and more
charge configurations become energetically possible. Starting in a Coulomb blockade
region, with increasing Vps > 0 and crossing the straight borderlines with negative
slope, one electron more can enter from source to the island, and with positive slope
one electron more can leave from the island to drain. Examples are illustrated in
the energy schemes.

This borderline is depicted in the Vgg vs. Vpg plane of Fig.1.8. Starting
at Vps > 0 in the (Vgs, Vbs) region where AN electrons are trapped, and
increasing Vpg or Vg to cross this borderline makes the electrostatic charging
barrier (1.25) negative. Consequently, the threshold for charging the island
by the (AN + 1)th electron is crossed, i.e., the charge state with AN + 1
electrons on the island becomes available. Crossing in opposite direction over
the borderline means that this charge state is excluded.
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Let us now consider the electrostatic discharging energy which is required
to transfer an electron from the island with AN + 1 trapped electrons to the
drain at prescribed voltages Vs and Vps. The contribution due to Vg can
be taken from (1.23), replacing the index S now by D and ANg by AN + 1.
To move an electron from the island to drain under the influence of Vpg, the
required electrostatic energy is —e - (1 — Cp/Cx) - Vps since the difference of
the electrostatic potential between drain and the island can be taken from
the capacitance circuit of Fig. 1.6b as (1 — Cp/Ckx) - Vbs. Thus we obtain for
the electrostatic discharging energy from the island to drain

AE; ,p(AN +1,Vgs, Vbs) = AEr ,p (AN + 1,Vgs) —e- (1 - CD/CZ) - Vbs
=(AN+1)-€e’/Cx+e-Cq/Cs-Vas—e- (1—Cp/Cx) - Vbs . (1.27)
This energy barrier vanishes along the straight line Cq Vgs —(Cx;—Cp) Vbs =

(AN + %) -e. This borderline intersects the Vgg axis (Vbs = 0) at gate voltage
value Vgs = (AN + %) -e/Cq and has a positive slope

dVas _COx—=0Ch

1.28
dVps AE;_,p=0 Ca ( )

This borderline is also shown in Fig.1.8. Starting in the Coulomb blockade
region with AN +1 trapped electrons, and crossing this borderline at Vpg > 0
by decreasing Vg or increasing Vpg makes (1.27) negative and allows there-
fore for discharging the island by transfering the (AN + 1)th electron from
the island to drain. The charge state with AN electrons becomes available.

As similar discussion can be done for negative Vpg. The same slopes are
obtained. Changing the gate-source voltage, the recharging of the island oc-
curs according to (1.20) with the periodicity AVgs = e/Cq which means that
the two borderlines have to be extended to two sets of parallel lines with
distance AVgs. These two sets of parallel lines cut the Vs vs. Vps plane into
equal parallelograms (sometimes denoted as ’diamond-like’ [5]) in which cer-
tain charge configuration are energetically allowed. In regions along the Vg
axis around Vpg = 0 the number ANg = ANg(Vgs) of trapped electrons is
fixed to AN —1, AN, or AN +1 in the plot of Fig. 1.8. These are the regions of
Coulomb blockade. In the adjacent regions, fluctuation by one electron is pos-
sible. These are the regions of single-electron tunneling. In the next regions
with rising |Vpg| the charge on the island can fluctuate between three charge
states: Energetically two electrons can enter and leave the island at the same
time. For even higher drain-source voltages, more and more charge configu-
rations become energetically possible between which the arrangement might
fluctuate. Thus, we have to distinguish between regions of Coulomb blockade
and the remaining different transport regions, defined by the energetically
possible charge configurations on the island.

Let us look closer to these thresholds between regions of Coulomb blockade
and electron transport in the Vg vs. Vps plane: For fixed Vs, the threshold
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values in Vpg do not lie symmetrically to Vps = 0, except for a special SET
where the absolute values of the two slopes are equal which is fulfilled by
Cp = Cx/2. Such a situation is obtained, for instance, for Cp = Cs > Cg.
Beyond a certain Vpg value, the Coulomb blockade effect is overcome for
any Vas value. This maximum Vétsh) in the threshold of Vpg is reached when
both energy barriers — for an electron entering and for an electron leaving
the island — disappear at the same time, i.e., AEs_1(AN + 1,Vas, Vbs) =0
and AE;_,p(AN, Vas, Vps) = 0. As derived from the energy scheme Fig.1.8
for such situation, the drain-source voltage reflects under that condition the
energy-level distance 2 E¢ of single-electron transport through the single-
electron transistor
@hy e _ 2Eg
Vs = 5= (1.20)

independent of the ratio between Cs and Cp.

1.4.3 Current-Voltage Characteristics Ins(Vps, Vas)

In Fig.1.9, the measured Ips(Vbs,Vas) characteristics of a metal single-
electron transistor — similar to Fig.1.7 — are shown. Clearly the Coulomb
blockade regions are visible. Beyond the respective threshold in Vpg, the cur-
rent Ipg increases. Adjacent to the Coulomb blockade regions, the current is
carried by single electrons passing one-by-one the island: In average, each time
interval 7 = e/Ipg < e/40 pA= 4 ns an electron passes the island between
source and drain. With increasing Vpg, the current modulation versus the
applied gate voltage Vgg becomes smoother. Single-electron transistors have
been proposed [25] as the ultimate transistors for very-large scale integra-
tion (VLSI) (see later Chapter 7), but also as highly-sensitive electrometers
— described in the next Section.

It is worth to emphasize that the identification of the two different trans-
port regions of a single-electron transistor — Coulomb blockade and single-
electron transport regime — as a function of the drain-source voltage Vps
and a gate-source voltage Vg was achieved in Section 1.4.2 only by electro-
static energy considerations. Also predicted was a multi-electron transport
at higher |Vpg| values where regions of more than two charge states could ex-
ist. However, certain SETs show also single-electron transport at these high
|Vps| values. This phenomenon can be explained [32] by taking also dynam-
ical aspects into account: If high electron tunnel rates exist between source
and island, low ones between drain and island, or vice versa, a change of the
charge state on the island via single-electron tunneling through the blocking
barrier is almost immediately restored by a single-electron tunneling event
through the more transparent barrier. For SETs with such strongly asymmet-
ric tunnel barriers ® we can state:

® Note that the kind of SET presented in Fig. 1.7 has symmetric tunnel barriers
due to the design and fabrication process.
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e The current Ing is completely limited by tunneling through the blocking
barrier.

e The tunneling between the island and the lead with the more transparent
barrier determines the prefered charge state of the island.

To discuss this behaviour in case of strongly asymmetric tunnel barriers in
more detail, a blocking or ’thick’ drain tunnel barrier is assumed in Fig.1.10
and a ’thick’ source tunnel barrier in Fig.1.11. The charge state regions in
the Vs vs. Vpg plane are plotted. Energy schemes are given for a fixed Vg
but various distinct Vpg values. The energy 'window’ at the blocking barrier
for an electron entering or leaving the island, respectively, is marked by grey
shading:

e For charging the island via the blocking barrier, the width of the window’
is determined by the difference from the Fermi level of the weakly coupled
lead to the threshold energy level for charging the island which just lies
above the Fermi level of the stronger coupled lead.

e For discharging the island via the blocking barrier, the energy 'window’ is
given by the difference between the threshold energy level for charging the
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Fig. 1.9. Current Ips through a single-electron transistor measured at 7' = 0.1 K
for different discrete drain-source voltages Vps as a function of gate-source voltage
Vas applied to an electrode burried in the substrate (from J. Hiils [31] measured
in our lab). The SET structure corresponds to the one presented in Fig.1.7. The
Coulomb-blockade regions (Ips = 0) are roughly marked by shading.
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island which just lies below the Fermi level of the stronger coupled lead
and the Fermi level of the weakly coupled lead.

Note, the width of the respective *window’ is less than e|Vpg|, and only equal
when a threshold level for charging the island aligns with the Fermi level of the
stronger coupled lead. With increasing |Vpg|, the 'window’ width increases,
i.e., more electronic states become available above (below) the Fermi level of
the island for charging (discharging) the island over the blocking barrier. The
overall rate for a single-electron charging (discharging) event via the blocking
barrier is enhanced, the current |Ipg| increased. Reaching a new charge state
by electron exchange via the more transparent tunnel barrier, which is then
the initial charge state for a tunneling event through the blocking barrier,
the "window’ width changes by 2 Ec = €2/Cy if |Vps| > e/Cx, and by e|Vpg|
if still |Vps| < e/Cx: A step-like increase in the Ing(Vps) characteristic is
observed at Vpg values crossing a thick marked borderline in Fig.1.10 and
Fig.1.11. Assuming that the density of states versus ¢ in the metal is constant
around the Fermi level and the tunneling rate does not depend on the single-
electron energy ¢ in the range of several t+e|Vpg| around the Fermi level ep,
the rate of a charging (discharging) event is proportional to the width of
the energy window. The proportionality constant Rt is denoted as tunnel
resistance. © Under these assumptions, a step of Alpg = e/(RT** Cx) is

observed with R = max{Rr(Fs ), RSFD)} whenever a thick marked borderline
drawn in Fig.1.10 and Fig.1.11 is crossed. Between the steps, the current
|Ips| increases slightly linearly as the window is linearly increased with |Vpg].
The whole characteristic is limited by Ips = Vpg/RTP®* since the energy
window is usually less than e|Vpg|. It is equal at Vpg values where a new
charge state occurs by charging from the lead with the more transparent
barrier. Substracting at these Vpg values, the respective change Alpg from
Ips = Vpg /R and connecting the obtained Ipg values, the whole Ipg(Vps)
characteristic is obtained. Such a step-like Ing(Vps) characteristic, — observed
for strongly asymmetric tunnel barriers is denoted as the Coulomb staircase
characteristic. As seen from the charge state diagram, the step distance along

the Vpg axis is given for a blocking source barrier (RSFS ) > RSFD)) by
2 Ec e

AVis = - : 1.30
DS = e (1-Cp/Cx) Cs—Cb (1.30)
and for a blocking drain barrier (R{” > RY)) by
2E
AVpg = — O = (1.31)

e-(Cp/Cx) OCb

Relation (1.31) describes charging of the island from source with increas-
ing Vps by using the drain electrode like a gate electrode. Relation (1.30)

10 The tunnel resistance is different to an ohmic resistance since in the latter case
dissipation occurs within the resistor. In case of a tunnel barrier, dissipation
occurs after the tunneling event in the electrodes.
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Fig. 1.10. (Left page) Coulomb staircase characteristic Ips(Vbs) at fixed Vgs of a
metal SET with strongly asymmetric tunnel barriers (REFs ) > RSFD)): From the ca-
pacitance values Cx, Cp, and Cg, the charge state diagram in the Vgs vs. Vpg plane
can be constructed. Here we assume Cp < Cx/2. Due to the strong asymmetry of
the tunnel barriers, the charge state fluctuates even at large |Vps| values basically
between two charge states which are marked by frames in the diagram. Whenever
crossing a borderline of positive slope (thick solid lines), a new charge state becomes
available due to charging (Vps < 0) or discharging (Vps > 0) from drain site which
is the new initial charge state for a tunnel event on the blocking source barrier.
The rate for charging (Vps > 0) or discharging (Vps < 0) is suddenly enhanced
due to further opening the energy window (grey shaded in the respective energy
schemes) by e?/Cs leading to a step-like increase in Ips at that Vps values by
Alps = e/ (R(TS ) Cx). The overall Ips(Vpg) characteristics is limited by the straight
line Ins = Vps/ RSFS) representing the case of a short instead of a thin drain barrier.
Since the energy window is fully opened to e|Vbs| at Vps values where the new
charge state is reached from drain site, substracting AlIps from Ips = Vps/ R(TS) at
the respective Vpg values also allows to construct the whole Ins(Vps) characteristic

for the respective Vs value. It is denoted as Coulomb staircase characteristic. The
step width is given by AVps = 2E¢/(e- (1 — Cp/Cx)) =¢/(Cz — Cb).

describes charging of the island with increasing Vpg by using the drain elec-
trode as the electron reservoir for the island and as a gate electrode.

In conclusion, with knowing the parameters Cx, Cq, Cp and RF?* =
maX{R(TS ), R&D)}, the full Ips(Vps) characteristic for any value of Vgg can
be sketched for strong asymmetric tunnel barriers by simple geometric con-
siderations as done in Fig.1.10 and Fig. 1.11. Other cases for ratios between
R(TS ) and R(TD) and finite temperature can be included by a master equa-
tion approach (see Chapter 5), — denoted as the orthodox theory of Coulomb
blockade and single-electron tunneling [2]. The Ins(Vps) characteristic of the
two-terminal device of Fig.1.3 is obtained for strongly asymmetric tunnel
barriers from Fig.1.10 or Fig.1.11, respectively, by considering a trace of
Vbs crossing the Vg axis in the middle of a Coulomb blockade region where
the Ins(Vps) characteristic is symmetric. Setting Cx; = Cs+Cp in (1.30) and
(1.31), the step width in the Coulomb staircase characteristic for a blocking
source electrode is obtained to AVpg = e/Cs, for a blocking drain electrode
to AVps = €/Cp. Such a Coulomb staircase characteristic has been observed,
for instance in a scanning-tunneling microscope arrangement [33].

1.5 Single-Electron Devices as Sensitive Electrometers

By applying a voltage Vgs to a gate electrode, we obtained according to
(1.10) a shift AEG of the electrostatic energy of an electron on the metal
island. Similarily, adding a charge @ close to the island (see Fig. 1.12a) shifts
the electrostatic energy for single electrons on the island by AEq. The value of



30 Electrostatic Model of Coulomb Blockade and Single-Electron Charging

Barrier

Thin Thick

» al
(a]
< >
jo)]
<
D
5
<
2
(a]
(%2}
o
W
O
o
2
ke g
@ @}
%)
T
C
c
>
l_
c
fu
a)
X’
[&)
2
|_

Fig. 1.11. Similar scheme and same parameters as Fig.1.10 except that R&«D) >
RSFS ): The current is limited by the tunneling through the drain barrier. When-
ever a new charge state is reached from source site (solid borderlines in the Vas
vs. Vps plane), a step-like increase in |Ips| is obtained, Alps = e/(RSFD) Cx).
The current Ips of the whole characteristic is limited by the linear relation
Ips = Vps /R(TD). The step width in the Coulomb staircase characteristic is given
by AVps =2 Ec/(e- Cp/Cxs) = ¢/Cb, since the prefered charge state of the island
is determined by electron exchange with the source site, — the drain electrode acts
like a gate electrodes inducing a change.
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AEq depends on the charge @) and its position within the arrangement.'! In
case of a positive charge (), electrons on the island are attracted, i.e., AEq <
0. In the case of a negative charge added close to the island, the electrons are
repelled, i.e., AEq > 0. The whole ladder of energy levels AEs_,;1(AN +1, Vis)
described by (1.15) is shifted by AEq (see Fig. 1.12b), and therefore also
a shift AV, occurs in the Coulomb blockade characteristic of the single-
electron transistor (see Fig. 1.12c). How are AEq and AV/,g related? Assuming
that the peak at Vg for ) = 0 is produced by fluctuation in the number
of electrons on the island between AN and AN + 1, the peak position is
then described by 0 = AEs_,1(AN + 1,Vg, Vbs = 0) = 2Eg - (AN + 5 —
CgVig/e) (see (1.15)). Adding the charge @, the peak is shifted to Vg +
AV}, described by 0 = AFs_ 1(AN + 1, Vg + AV, Vos = 0) + AEq =
AEs_,1(AN + 1, V(I;s,VDS =0)—e-Cg/Cxs - AVéS + AEq. Combining both
expressions yields the relation we have been looking for,
AEG =e- Ca AV (1.32)
Cs
Obviously from the energy schemes of Fig. 1.12b, if |AEq| exceeds E¢ =
€?/2Cs;, the metal island is recharged by single electrons until the number
AN = ANg of trapped electrons fulfills

AEs_y1 (ANQ, Vbs =0,Vas =0) + AEq <0 and
AES_J(ANQ +1,Vps =0,Vas = 0) +AEqQ > 0. (133)

The additional number ANgq of electrons, accumulated on the island due to
the presence of the charge @) in the neighbourhood of the island, is therefore
given by

(1.34)

ANg = int (M) .

2 Ec

A similar expression (1.17) was obtained in case @ = 0 for applying a gate-
source voltage, where the index G was used to remember the gate as the
cause. The remaining fraction

(1.35)

fo = fo(BEq) = mod (M)

2 Fc

determines the energy barriers at Vgs = Vpg = 0 for recharging the island
by single electrons,

AEs 1(ANq +1,Vps =0,Vas =0,Q) =2Ec-(1— fq), (1.36)
AE;_,s(ANq, Vbs =0,Vas = 0,Q) =2Ec- fq . (1.37)

1 An explicit expression for AEq is derived later in Chapter 2.
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Fig. 1.12. (a) Single-electron transistor (SET) with added charge @ close to the
metal island. (b) Energy scheme of the single-electron transistor without applied
voltages (Vps = Vas = 0) with and without the charge Q. (c) Adding a charge
close to the island of the SET (see (a)) shifts the Coulomb blockade oscillations
along the gate voltage axis by AV{ig.

When the gate-source voltage Vgs # 0 is applied, one has to replace AEg by
AEG + AEq in (1.33). This yields instead of (1.34) to (1.37) the relations

Ec — AEg — AE
ANG g :int( c = Q) , (1.38)
’ 2 Eo
Ec — AEg — AE
fa.q = fa,(BEg + AEQ) =mod | =<2 7270 ) 1 (1.39)
2 Eo
AEs 1(ANG,q +1,Vbs = 0,Vas,Q) = 2Ec - (1 - fe,q) ,  (1.40)
AE1,p(ANG,q, Vps = 0,Vas, Q) =2 Ec - faq - (1.41)

Thus, the sum of both, charging barrier AEg_,;(ANg,q + 1, Vbs =0, Vas, Q)
and discharging barrier AE;_,p (ANG”Q, Vbs = 0, Vas, Q), is always 2 Ec =
e?/Cs; independent of the magnitude of ) and Vgs.

How sensitive is the single-electron transistor to charges? If the charge
@ = *e would be added directly to the metal island, then the Coulomb-
blockade oscillations are shifted by one period along the gate voltage axis
(AEq = F€?/Cyx). In this sense, the single-electron transistor is a highly



1.5 Single-Electron Devices as Sensitive Electrometers 33

sensitive electrometer which is even able to detect a fraction of the elementary
charge e by the change in its characteristic if the charge is added closely to the
island. Single-electron transistors have been demonstrated as electrometers
with a charge sensitivity down to 8 - 10~% - e/v/Hz at 10 Hz [34]. To improve
the bandwidth, R.J.Schoelkopf and collaborators incorporated the single-
electron transistor into a radio-frequency resonance circuit — denoted as RF-
SET, achieving a value of 1.2-10=%¢/v/Hz at 1.1 MHz [35] (see also [36, 37]).
This high charge sensitivity offers on one hand a wultrasensitive electrometer,
on the other hand it is a disadvantage for applications [25] where a stable
and reproducible SET characteristic is required for a large number of SET
devices. Telegraph noise due to charge fluctuations in the SET surroundings
[38, 39, 40] makes them almost useless for this purpose.

An additional charge @ close to the island is not only detected with a
single-electron transistor arrangement, but also with the two-terminal ar-
rangement, sketched in Fig. 1.13a. Like just discussed for the single-electron
transistor, with positioning @, single electrons will recharge the island until
ANq (see (1.34)) is reached. The energy barriers for further recharging the
island without applied Vg bias are given by (1.36) and (1.37). With increas-
ing Vpg, both the charging energy for an electron added from source to the
island

AEs_g = 2EC - (1 — fQ) —€- CD/CE - VDS s (1.42)
and the discharging energy for an electron leaving the island to drain

AEI_>D = (2Ec . fQ +e- CD/CE . VDS) —€- VDS (1.43)
=2Ec-fQ—e-Cs/Cz-VDs

are reduced. The last line is obtain with Cx = Cs + Cp. Threshold is reached
first either with AEs_,;1 = 0 or with AE;_,p = 0. Therefore, single-electron
transport is expected for

. € e
Vbs > Vlgtsh) = min (C—D (1—-fq) ; Cs -fQ) . (1.44)

For Vpg < 0, similar considerations lead to

. € e
Vos/ 2 V) =min (5 fas (1= fa)) - (49

As a consequence, for Cs # Cp and fq # %, the threshold voltages lie
asymmetric relative to Vpg = 0. In the symmetric case (Cp = Cs = Cx/2),
we obtain for 0 < fq <1

h . [ 2e 2e
Vosl 2 Vi <min (22 (1-f) s 22 p0) . (g
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schemes at positive and negative threshold are shown.

i.e., the thresholds lie symmetric to Vpg = 0. The Coulomb blockade disap-

pears already at the origin Vps = 0 when a charge is added so that fq = 0.
For instance, this is fulfilled for AEq = Fe?/2Csx. In case of AEq = j - 2E¢
with j € {...,—2,-1,0,1,2,...}, we obtain fq = , i.e., the charging and dis-

charging barrier are here equal leading to Vlgtsh) = min (e/(2Cs);e/(2Cp)),
which is equal to the previous result (1.8).
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1.6 Single-Electron Transistor as a Current Rectifier
with Gate-Controlled Current Polarity

As derived in Section 1.4 for a single-electron transistor, the capacitance
ratios —Cp/Cq and (Cx — Cp)/Cq are responsible for the slopes of the
boundaries between Coulomb blockade and single-electron transport regions
as a function of drain-source voltage Vpg and a gate-source voltage Vgs.
Therefore threshold values at fixed gate voltage lie usually asymmetrically
with respect to Vps = 0. Thus, single-electron transistors display a nonlinear
drain-source current-voltage characteristic Ips(Vps, Vas) which is tunable by
an applied gate-source voltage Vgs. Two-terminal single-electron devices with
different source and drain capacitance values show also a nonlinear current-
voltage characteristic Ips(Vbs, @) if charge is present close to the island (see
Fig.1.13). Due to the nonlinearity of such devices around Vpg = 0, frequency
mixing of ac voltage signals is possible around Vpg = 0. Especially a rec-
tification process can occur: An applied ac bias voltage signal results in a
time-averaged net dc current.

To discuss this effect, in Fig.1.14a the transport regimes of a single-
electron transistor are shown again as a function of the drain-source voltage
Vbs and a gate-source voltage Vas. In addition, Ips(Vps)-characteristics and
energy schemes are sketched for different Vs values, marked by (), (8), (v)
and (0) in Fig.1.14. By applying an ac voltage of a certain amplitude (less
than e/Cx) to the drain contact, current flows whenever this voltage mod-
ulation Vpg(t) exceeds either the positive or the negative threshold on the
Vbs axis. 12 Since the thresholds are changing with the applied gate-source
voltage, either a positive (), zero (B), or a negative () net dc current is
detected. The single-electron transistor behaves as a current rectifier with
gate-controlled current polarity. As seen from the respective energy schemes,
the relative position of the energy level for charging an electron to the island
for Vpbs = 0, which is tuned by Vgs, determines whether the modulation
of the potential of the drain reservoir leads to a net dc current either from
source to drain or from drain to source.

In the example given in Fig.1.14, the capacitive coupling of the drain
electrode to the island was assumed to be Cp/Cx < %, ie., Cp/Cq < (Cx —
Cp)/Cg. This can be modified by changing the design of the single-electron
transistor. Depending on the ratio Cp/Cy, three different behaviours are
expected (see Fig. 1.15): In the case of Cp/Cx > %, for a fixed ac bias
modulation with |Vpg(t)| < e/Cs, the sequence in the dc current polarity is
zero/positive /negative/zero with increasing the gate-source voltage from one
Coulomb blockade region to the next, whereas in the case Cp/Cs < % the

2 Only the current is plotted derived from the nonlinear dc characteristics. There-
fore not included is the displacement current due to the capacitive coupling
between drain, source and gate electrode [41]. Those are important at high fre-
quencies.
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Fig. 1.14. Single-electron transistor as a rectifier: (a) Transport regions of a single-
electron transistor as a function of the drain-source voltage Vps and a gate-source
voltage Vas. For the gate-source voltage values marked by (a), (8), (v) and (4),
sketches of Ips(Vps)-characteristic and the energy scheme are given in (b). Applying
an ac voltage modulation Vpg(t) (see (b)) results in a time-dependent current Ing(t)
which leads in time-average to a positive, zero or negative dc current component
depending on how the threshold voltages are lying in respect to Vps = 0. (c)
Electrial circuit indicating that the source electrode is the common node for the
applied ac drain-source voltage Vps(t) (see (b)) and the gate-source voltage Vas.
For this configuration the slopes between Coulomb blockade and single-electron
tunneling are given as denoted in (a).
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sequence is zero/negative/positive/zero. Only in the case where Cp /Cx = 1,
the net current is basically zero over the whole gate-source voltage range.
The differences in the behaviour are due to the fact that the energy level
on the island is modulated in its position with the modulation of the drain
potential, — and this is stronger or weaker depending on Cp/Cx. Therefore,
the relative position of the energy level and the capacitive coupling between
the island and the drain electrode, where the voltage modulation is applied,
determines the polarity of the net dc current. The effect was demonstrated
for a quantum dot system by J. Weis and coworkers [42, 43] in 1993.13 In

13 The effect can be used to detect radio frequency signals usually affecting low-

temperature measurements in *He/*He dilution refrigerators if no appropiate RF
filtering is done.
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Fig. 1.15. Single-electron transistor as a rectifier with gate-controlled current po-
larity: Transport regions of a single-electron transistor as a function of the drain-
source voltage Vps and a gate-source voltage Vags for different ratios Cp/Cs.
(a) For Cp/Cs > 1, a sequence of zero/positive/negative/zero time-averaged dc
current is observed as a function of gate-source voltage if an ac voltage is ap-
plied to the drain contact. (b) For Cp/Cs < 3, the sequence has switched to
zero/negative/positive/zero dc current. (c) For Cp/Cs = 3, no rectification is ob-
served for small modulation amplitudes.
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Fig. 1.16. Net current flow Ins # 0 for Vpbs = 0 caused by electron-hole excitations
in the drain electrode due to a continuous external energy transfer Ae. Distinct
operation points in Vgs are indicated. (a) If the energy-level ladder is symmetric
(AEDp—1 = Ec) to the common Fermi energy E%S), the current Ipg is zero if Ae < E¢,
since the island cannot be charged or discharged by a single electron. For Ae > E¢,
charging and discharging is possible, but electron and hole current compensate if
the respective tunneling and relaxation rates are equal. (b) If the energy-level ladder
is shifted down (AEp_1 < Ec), a net electron flow is observed, i.e., Ins > 0, if the
excitation is high enough to overcome the threshold for charging, Ae > AEp_,1,
but low enough for not allowing to overcome the threshold for discharging, Ae <
2Ec —AEp_1. (c) A net current Ipg < 0 is obtained if the energy-level ladder is
shifted leading to AEp_1 > Ae > 2 Ec — AEp_1. (d) In case of vanishing charging
barrier AEp_1 = 0, charging and discharging is possible, but respective hole and
electron processes compensate if tunneling and relaxation rates are equal.

detail a better description of the rectification process is obtained within a
master equation approach, for instance, described in [41].

A similar rectification process is observed if a higher temperature exists
for the drain electrode than for the source electrode, or a continuous flow
of photons is absorbed only at the drain electrode. Both lead to stationary
occupation probabilities of the electronic levels at the drain electrode which
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differs from that at the source electrode: Electrons are excited to higher
energy and, at the same time, unoccupied states are created below the Fermi
level. Depending on the position of the energy level for charging or discharging
an electron to the island, a net current flows either from drain to source or
from source to drain (see Fig.1.16). For an open drain contact, a dc Vpg
voltage is built up due to the rectification process. For a temperature gradient
between the source and the drain, this thermally induced voltage has been
observed, denoted as ’thermal power’. In several theoretical and experimental
works this subject has been explored [44, 45, 46]. For monochromatic photon
radiation, a model was developed in Ref. [47].

Due to its nonlinear Ing(Vpg) characteristics, the single-electron transis-
tor can be considered as a realization of a ratchet. 14

1.7 Remarks on the Electrostatic Model

By simple electrostatic energy considerations for rearranging single elec-
trons between metal electrodes, the effects named Coulomb blockade, Single-
Electron Charging, and Single-Electron- Transport were introduced. The basic
properties of a Single-Electron- Transistor were described. Due to the discus-
sion, Coulomb blockade and single-electron charging should be observable in
transport through quasi-isolated metal islands if, firstly, the charging energy
Ec = €%/2Cx of the island exceeds the thermal energy kg7, and, secondly,
the applied drain-source voltage Vpg is small, |eVpg| < 2Ec.

All the discussed electrical processes of the previous Sections were based
on an electrostatic picture. This implies for electrical transport that with the
movement of an electron from one electrode to another the respective image
charges on the electrodes have to be created instantaneously and that the
defined potential differences have to restore immediately. This was indicated
for a two-terminal arrangement in the Fig. 1.4. However, the Coulomb block-
ade effect has also been characterized [20] as a time-dependent dynamical
effect — denoted as ’environmental Coulomb blockade’ [2]: A tunnel junction
itself is modelled by the tunnel resistance Ry and the small capacitance Cy in
parallel (see Fig.1.17). The electrodynamical environment is modelled by an
impedance Z(w) in series [49, 50]. Such an arrangement with an high |Z(w)|
should show a nonlinear current-voltage characteristic. The effect is that the
high impedance in series prohibits instantaneous restoration of the applied
potential difference over the junction, and, therefore, an electron moving from
one side of the junction to the other charges the junction capacitor on a short
time scale. Current flow through the junction is suppressed at small drain-
source voltage due to the required single-electron charging energy. Theoret-
ically predicted [20], it is experimentally difficult to demonstrate the effect

' A ratchet consisting of a chain of asymmetric energy barriers which are deformed
by a modulated bias voltage is discussed in [48].
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of Coulomb blockade on this arrangement [51]. It is a challenge to create
a high impedance in series to the tunnel junction since already an ohmic
wire possesses due to its spatial extension a stray capacitance which reduces
its impedance. A constant-voltage-driven instead of a constant-current-driven
single tunnel junction does not show the Coulomb blockade effect. The easiest
way to create a high impedance is to use a second tunnel junction close to the
first junction [52, 51]. A small quasi-isolated region in between is obtained —
an electron island. In the course of this book we restrict ourselves to Coulomb
blockade effect on island in the electrostatic description. A number of theo-
retical papers on metal and superconducting SET include the environmental
impedances [53, 54, 55]. 15

The island has been denoted as being quasi-isolated: Electron exchange
with source and drain should be possible to allow electrical transport be-
tween source and drain via the island. On the other hand, the charge of the
island should be quantized allowing a recharging only by single electrons.

!5 Note, in those cases some of the dissipation might occur in the electrodynamical
environment and not only by the relaxation of single electrons.
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Fig. 1.17. (a) Impedances Zs(w), Zp(w), Zg(w) — modeling the electromagnetic
environment — might hinder the instantaneous restoration of the electrostatic po-
tentials on the source, drain and gate electrodes while an electron is tunneling. (b)
A tunnel junction in a serial arrangement with a high impedance Z(w). («) The
equivalent circuit of the tunnel junction consists of a tunnel resistance Rj and a
parallel capacitance Cj. (8) Usually the stray capacitance C’', C"of the leads to the
tunnel junction dominate the serial impedance Z(w) leading to a low Z(w).
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Well-defined energies have been attributed to single electrons being either
located on the island or the surrounding electrodes of fixed potential. Energy
differences for recharging the island by single electrons prohibit transport
between source and drain. If the time 7 of a single electron occupying the
island is short, due to Heisenberg uncertainty relation, such an energy dif-
ference AE might be no hurdle for single-electron transport between source
and drain. The energy difference AE is overcome if the life time 75 of the
electron on the high energy state is 7y < i/AE, where h = h/(27) and h de-
notes Planck’s constant. Hence, the Coulomb blockade effect can only occur if
Ta > h/Ec = h/e? - 2Cx. The island is usually considered as 'quasi-isolated’
[1, 3] if the tunnel resistances Rt between the island and leads exceeds well
the value h/e? ~ 26 kQ — the inverse of the conductance quantum e2/h
[56, 57].






2. Revision of the Electrostatics of Metallic
Single-Electron Devices

Metallic single-electron devices are mostly composed of different shaped metal
films deposited on a dielectric substrate which is often a crystal or an amor-
phic insulator. Some of these metal films are connected by thin dielectric
layers acting as tunnel barriers. Furthermore fixed charges may exist as ions
due to doping or contamination. The electrostatic model, presented in the
preceding Chapter, uses the partial capacitances Cs, Cg, Cp and the to-
tal capacitance Cy; between metal island and the metal electrodes as known
parameters. Design and optimization of such devices require however a quan-
titative treatment of the electrostatics of such complicated devices. It is also
needed to establish later in Chapter 4 the Hamiltonian of systems containing
a quantum dot.

In the present Chapter, the usual treatment of capacitances in textbooks,
which assume a homogeneous, isotropic, charge-free dielectric between the
metal conductors, is generalized [42] to possibly inhomogeneous, anisotropic
dielectrics containing localized charges. Integral expressions for the capaci-
tance coefficients and their connection to partial capacitances are given. The
behaviour of the capacitance coefficients with scaling of an arbirary conduc-
tor arrangement is derived, and limits for the total capacitance of a metal
island of arbitrary shape are given. This general treatment leads also to a
general expression for the total electrostatic energy of AN electrons on a
metal island in a respective electrostatic surrounding and that prepares the
step to a model Hamiltonian for quantum dots presented in Chapter 4.

2.1 Capacitance Coefficients and Partial Capacitances
Between Metal Conductors

An arrangement of M + 1 metal conductors embedded in an inhomogeneous,
anisotropic dielectric medium is shown in Fig. 2.1. The conductors are labelled
by an index i or j from 0 to M. For the following it is convenient to denote
always metal conductors having definite electrostatic potential V; as 'metal
electrodes’ and those having definite electrical charge @; as 'metal islands’. In
Section 2.3, we will restrict the number of islands to one and label it by index
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Fig. 2.1. An arbitrary arrangement of M + 1 metal conductors and a fixed charge
distribution pion(7r) embedded in a dielectric matrix described by e(r). Either the
charge Q; or the electrostatic potential V; in reference to one conductor (for ex-
ample, 1 = M with Vi = 0) is fixed for each conductor ¢ = 0 to M. The surface
S = {S;} of all conductors enclose the volume V filled by the dielectric matrix.
For convenience, a conductor 7 with definite electrostatic potential V; is denoted as
‘metal electrode’, a conductor j with definite charge Q; as 'metal island’.

i = 0, the electrodes are then numbered from 1 to M. ! All metal conductors
should carry only surface charges as is generally assumed in the electrostatics
of charged metals. In addition, a fixed charge distribution pion(7) due to ions
or trapped electrons is present. Due to Maxwell’s relations in the stationary
case, the electric field E(r) at any position r in the space V between the
conductors has to follow

rotE(r) =V, x E(r) =0, (2.1)
and the dielectric field D(r) fulfills the relation
divD(r) = V. D(r) = pion(T) - (2.2)

As a good description for small electric field strength, the dielectric and the
electric field should be linearly related by a dielectric tensor €(r) of the second
rang,

D(r) = eoe(r) - E(r) , (2.3)

where € denotes the dielectric constant of vacuum. From relation (2.1), the
existence of an electrostatic potential &(r) follows,

! The metal island labelled by the index 0 will later be replaced by the quantum
dot. The electrodes will then still be numbered from 1 to M.
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E(r) = —grad®(r) = -V, &(r) . (2.4)

Substituting E(r) by (2.4) in (2.2), with taking into account (2.3), an equa-
tion is obtained which the electrostatic potential ¢(r) has to fulfill at position
r under the boundary conditions of given values V; on the surfaces S; of the
conductors ¢ =0 to M,

—V,{eo€(r) - Vo B(r)} = pion(r) ,ifr €V,

(2.5)
d(r)=V; ,ifr e S;.

For a homogeneous isotropic dielectric medium filling the space V between the

conductors (i.e., €(r) = € = const for r € V), the simpler Poisson equation

D ®(1) = —pion(T) /€€ is recovered, and further for pion(r) = 0 the Laplace

equation A, &(r) = 0.

Due to the linearity of (2.5), which is a result of the material relation (2.3),
the total electrostatic potential can be considered as being composed by the
superposition of several electrostatic potential contributions. A convenient
choice is

¢(Ir) = Z Oéz'(’f‘) ° ‘/z + ¢ion(r) 5 (26)

where — according to (2.5) — the a;(r) with 4 = 0 to M have to fulfill
V,{eoe(r) - Vra;i(r)} =0, ifr eV,

1,ifres;,
a;(r) = {o,ifr €S; withi#j, @7

and Pion(r) the relations

—Vr{Gof(’f') . V’r ¢i0n("')} = pion("') ) ifreV y

(2.8)
Bion(r) =0 ,ifr € Sj (j=0to M).
Therefore, a;(r) - V; describes the electrostatic potential profile in the space
V between the conductors, if the electrostatic potential on the surface S; of
electrode 7 is set to V;, and the electrostatic potential is zero on all other
surfaces S; (i # j). The functions a;(r) are completely independent of the
electrostatic potentials {V;} on the electrodes. We name «o;(r) the (electro-
static) potential profile of electrode i. If all electrodes are at the same elec-
trostatic potential (all V; = V;), there is due to potential theory no change
of the electrostatic potential between the electrodes (except those which is
caused by pion(r)), ie., &(r) = Vh. Hence according to (2.6) one obtains

Efio a;(r) - Vo = V for this case which gives the useful relation

M
Zai(r) =1 (2.9)
i=0
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generally valid for any position r between the electrodes.
The total charge (); on a metal conductor ¢ is calculated from the Gauf’
integral theorem

Qi=— ]{ D(r) dS; = 7{ (coe(r) -V, &(r)} dS;,  (2.10)
Si Si
where d.S; denotes the vector of the surface element at position r on con-

ductor ¢ with the orientation normal inward to the surface of the conductor.
With replacing &(r) by (2.6), Q; is expressed by

M
Qi=— Zoij Vi + Qijion » (2.11)
=0
with
Cij = — ?i {eo€(r) - Vraj(r)} dS; (2.12)
and
Qi,ion = fg {606("") - Vi ¢ion(7°)} ds; . (213)

For i # j, Cj; are positive values from their definition (2.12) and are denoted
as Capacitance Coefficients. 2 The relation (2.11) represents (M + 1) coupled
linear equations (¢ = 0 to M), which connects the charges and electrostatic
potentials of all (M + 1) conductors. By setting the charge or the electro-
static potential for each of the conductors, the other quantity — electrostatic
potential or charge, respectively — can be calculated from (2.11), if the coef-
ficients Cj; are known. Due to (2.12) and (2.7), these capacitance coefficients
C;; depend only on the dielectric matrix, described by the tensor €(r), the
shapes and the geometric arrangement of the conductors, as long as the finite
screening length of the surface charge — which is usually in the range of less
than a nanometer for a metal [58] — can be neglected.

Due to charge conservation for the whole arrangement of Fig.2.1, the
sum over all charges @); is constant with any variations of the electrostatic
potentials V}, i.e.,

M
0 =) 0Q:i=)_> Ci-0V;
i=0 j

i
:ZZCM-an:Z{Zciﬁcjj}-avj. (2.14)
Jj i J i#]
Since this condition is valid for any changes 0V}, the relation

% The explicit minus sign in the definition (2.12) compensates for the orientation
of the surface element vector d.S; which is normal inward to the conductor’s
surface.



Capacitance Coefficients Between Metal Conductors 47

M
Cig = —C,'i = Z Cij (2.15)
§=0
G
is generally valid. The sum Cjx of the capacitance coefficients Cj; is denoted
as the total capacitance of conductor i. The total capacitance determines the
total charge change 0@Q; on conductor 4, if its potential is changed by 0V},
while the electrostatic potential of the other conductors are kept fixed:

9Qi
V;

Cis = (2.16)

OVjzi=

To obtain the total capacitance of a conductor, it is not necessary to know
all a;(r). Due to (2.9) or — equivalent — due to (2.15), the total capacitance
C;x of conductor ¢ is directly obtained from a;(r),

CiZ = ﬁ {606(7‘) . V,. Oé,'(’l")} dSZ . (217)

Since the a;(r) are independent of {V;}, the total capacitance C;x is deter-
mined from the electrostatic potential profile which is obtained for setting
electrode 7 to potential V; = 1V and keeping all other electrodes grounded

(Vizi = 0).
In addition, the capacitance coefficient fulfill the symmetry relation
Cz'j = = C]'i - J ) (218)
6V J 10V;z;=0 BV OV;2:=0

which is easy to show from the definitions of C;; and Cj;:

Cz'j (222) —f {606(7‘) - V.,- a; (T)} dSi
S;

(2i7) —]{ {eoe -V, 043 } a;(r ,
s

since a;(r) = LifresS,
ST 0,ifreS; withi £ 5.
Here S describes the sum of all conductors’ surfaces and, therefore,
encloses the whole space V between the conductors. With Gauf}’

integral theorem, the integral over the surface S can be replaced by
an integral of the enclosed volume V,

Cij = —/V [{eoe (r)} - ai(r ]

With using V»{eoe(r) - Vr aj(r)} = 0, valid in the space V due to
(2.7), finally, one obtains
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Cij = —/ {eo€(r) - Vi aj(r)} - Vi ai(r) dr . (2.19)
\%4

Since the static dielectric tensor €(r) is symmetric in its components,
Vr ai(r) and V, a;(r) can be exchanged in the product of (2.19) so
that

Ci; = —/V {606(T) “Veai(r)} - Veaj(r) dr.

By comparing this result with (2.19), the symmetry C;; = Cj; is
shown.

The symmetry C;; = Cj; reflects the reciprocity of the system: A elec-
trostatic potential change V; = OV on electrode ¢ induces a charge change
0Q; = 0Q on electrode j, while the potentials V; (j #14) are kept constant.
In reverse, the same potential change 0V; = 0V on electrode j, while all
Vi (k # j) are kept fixed, enforces the same charge change 9Q; = 0@ on
electrode ¢: Important is only the electrostatic potential difference between
the electrodes, and not its absolute potential for the charge induced on the
electrodes. Therefore, the relation (2.11) can be transfered with (2.15) to the
differential form

M
0Qi =Y Cij - 0{Vi=V;} . (2.20)
7=0
J#i
The capacitance coefficients C;; have been introduced by (2.11) as the linear
coefficients between the electrostatic potentials V; and the charges @; of all
the conductors. In experiment, usually the concept of partial capacitances
is used where those relate the charge change AQ; to the change in the elec-
trostatic potential difference ('voltage’) A(V; — V;) between two electrodes.
Relation (2.20) demonstrates that the partial capacitances between conduc-
tor ¢ and j are numerically the same as the capacitance coefficient Cj; in
our treatment. That is because charge conservation (2.14) leads to (2.15),
which is used to obtain (2.20) from (2.11). For convenience, we can chose one
electrode as the reference electrode with electrostatic potential equal to zero
(in Fig. 2.1, electrode M with Vas = 0).

To determine the single-electron charging energy Ec = e?/2Cy introduced
in Chapter 1 for the special conductor arrangement under consideration, one
has to evaluate the total capacitance Cx, = Cpx of the metal island favor-
ably by means of (2.17). This relation provides us also with the information
that, due to certain shape modification of the metal island or the surrounding
electrodes, the total capacitance increases or decreases, respectively. This is
quantitatively proven in Appendix B. Knowing this result, geometrically sim-
pler capacitors can be constructed which are mathematically tractable and
allow to estimate upper and lower limits for the total capacitance of the orig-
inal island. This problem is treated in Appendix C. Pushing the electrodes to
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infinite distance from the island defines the self-capacitance C’éozo) of the island
(see Appendix C) which just depends on the shape of the metal island and
the surrounding dielectric medium. The self-capacitance gives a lower limit
to the total capacitance of the island in the original arrangement. Further-
more, it delivers the highest single-electron charging energy Ec achievable
for a certain island shape and size,

e> e?

Ec=—Fr—<——.
“ T 20 20

(2.21)

Expressing the capacitance coefficients Cj; for an arbitrary arrangement
by relation (2.12) allows to identify certain dependencies, for instance, as
shown in the next Section, the scaling behaviour of the capacitance coeffi-
cients of a conductor arrangement with an inhomogeneous, anisotropic di-
electric filling including ions.

2.2 Shrinking of a Metal Conductor Arrangement by
Scaling

It was already pointed out that the single-electron charging energy becomes
larger the smaller the total capacitance of the metal island is. Reducing the
linear spatial dimensions of a conductor arrangement by a scaling factor s < 1
(see Fig.2.2a to Fig.2.2b), means to replace in (2.6), (2.7) and (2.8) the
unprimed original quantities by the primed quantities of the scaled system,

r'=s-r, e(r')=¢(r), Pion(T") = pion(r) - (2.22)

Since the same equations have to be solved — with scaled spatial coordinates
r’ — the functional dependence of the physical quantities in the scaled ar-
rangement can be expressed by those of the unscaled arrangement, under the
assumption of the same electrostatic potentials V; or charge @), respectively,
on the conductors for both scaled and unscaled arrangement:

F(r') = $(s-7) = d(r),
¢{0n(7‘l) = éfon(s : 7') = dsion("‘) )
ai(r') = aj(s-r) =ai(r).
The capacitance coefficients C;; are defined due to (2.12) by an integral over
the surface S; of conductor j. With the scaling, the area of a surface element
on a conductor has decreased by

S, = &' = 5% . d%r = §* - dS; . (2.23)

The definition for C}} includes the term V,. aj(r') in the integrand which

contributes to the electric field in the arrangement, E'(r') = — 37 i Ve aj(r')-
V;. From
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(d)

L
\Island’m\ Source —

 Substrate

Dran _.---

Tunnel Barriers

Gate

Fig. 2.2. (a),(b) Scaling a conductor arrangement by a factor s < 1 decreases the
capacitances between the conductors by the factor s. (¢) An example which does
not follow such a simple linear scaling relation (2.22). (d) Reducing only the island’s
length L of a single-electron transistor by a factor s while keeping all other spacial
lengths unaffected does not reduce the total capacitance of the island by s.

Ve oy(r') = Ver ofi(s - 1) = Vepaj(r) =s7' - Voay(r),,  (2.24)

it is obvious, that the local electric field strength | E(r)| has increased by s~!

with decreasing the spatial dimensions in the conductor arrangement by s:

M
E@) =3 Vi)V,
=0
M
= - Zs‘l “Vea;(r)-V;=s"1-E(r). (2.25)
=0

It just reflects the fact that the same electrostatic potential difference between
conductors is present on a smaller length scale.

Therefore, with (2.23) and (2.24), the capacitance coefficients scale linear
with s,

Cz_ly = — ‘é, {606l('rl) . V,,./ allj(’l‘l)} ds:

i
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= —7{ {eoe(r) -s71 -V, aj(r)} s*-dS; =s-Cj; . (2.26)
Si

This proves the statement of Section 1.1: The total capacitance scales linearly
with reducing the spatial lengths,

ix =5 Cix. (2.27)

To emphasize, this relation is valid if the scaling of the conductor arrange-
ment follows (2.22). Examples not obeying this relation are shown in Fig. 2.2¢
and Fig. 2.2d. It is important to realize that we assume that the dielectric ma-
trix does not become ’denser’ with scaling: A homogeneous matrix remains
homogeneous with the same dielectric constant value. Different, the ion con-
centration becomes higher by shrinking the arrangement. These scaling rules
(2.22) will become important again in Chapter 7 when comparing a single-
electron transistor with a conventional field-effect transistor for application
in highly integrated digital circuits.

2.3 Total Electrostatic Energy of a Charged Metal
Island Surrounded by an Inhomogeneous, Anisotropic
Dielectric Containing Ion Charges and Metal Electrodes
of Fixed Electrostatic Potential

Our aim is to derive a general expression for the total electrostatic energy of
electrons on a metal island of devices described in Chapter 1. This is needed to
establish later in Chapter 4 the Hamiltonian of systems containing a quantum
dot. Therefore we specify the electrostatic properties obtained in Section 2.1
for the general arrangement (M pieces of equal metal having definite charge
or electrostatic potential) to our system consisting of only ’one metal island’
and ’M metal electrodes’. The charge Qo of the metal island (i = 0) can be
changed only in multiples of the elementary charge e.

2.3.1 Assuming AN Electron Charges on the Island

This quantized charge Q9 = AN - (—e) can be chosen arbitrarily by trans-
fering (adding or substracting) AN electrons from the reference electrode M
(’ground’) defining the electrostatic potential zero (see Fig.2.3). This choice
of the island charge is independent of the electrostatic potential V; of the
metal electrodes (1 = 1 to M) which are fixed by external voltage sources ap-
plied between each metal electrode and the reference electrode M. The total
charge Q; of each metal electrode i is according to (2.11) linearly related to
the electrostatic potential V; of all metal pieces i = 0 to M and to the ion
contribution @);ion- These surface charges (); can change continuously and
are built up by slightly shifting the ’free’ electrons in the metal against the
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Pen(T)
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€(r)
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Fig. 2.3. An arbitrary arrangement consisting of one metal island (i = 0), M
metal electrodes (¢ = 1 to M), and fixed charge distribution pion(r) embedded
in a dielectric matrix described by €(r). The electrostatic potential V; is fixed for
all electrodes by external voltage sources applied between each electrode and the
reference electrode M (’ground’) at potential Vas = 0. The island is considered
as (quasi-)isolated and carries the quantized charge Qo. When we allow electron
exchange between the metal island and the electrode M at potential Va; = 0 or
with an electrode A at potential Va, the system minimizes its energy by adjusting
the electron number on the island.

fixed positive charged ions of the crystal lattice associated with the corre-
sponding charge transfer from one electrode to the other through the voltage
sources.

The electrostatic potential V; of the metal island, derived from (2.11),
consists of the contribution Qo/Cs due to its charge Q¢ and the contribution
from all other charges in the system,

C ion
Vo(Qo; {Vjz0}; Qojion) = +ZCE; f % (2.28)

If we replace (as is formally allowed) the quantized charge Qo of the metal is-
land by a continuous charge g, the total electrostatic energy EQ, (AN; {Vjx0})
of AN electrons stored on the island can now be calculated from expression
(2.28) by integrating the differential contributions Vo(g; {Vjz0}; Qo,ion) - dg
from ¢ =0to ¢ = Qg = —ANe,
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—ANe
Egsy (AN {Vj0}; Qojion) = / Vo(g; {Vizo}; Qojion) dg
0

M
: ANe)?
=—ANe-» Co, V; + (ANe)” | EQ(AN; Qoion) - (2:29)
j=1 ¢

0x 2Chx

The first term describes the potential energy of AN electrons at the electro-
static potential which is found due to the capacitance divider at the electri-
cally neutral island (Qo = 0) without the presence of ion charges (Qg,ion = 0).
The second term takes into account the work which has to be done to sepa-
rate the charge Q9 = —AN e from its counter charge spread on the electrodes
j = 1 to M. This energy term is independent of the electrostatic potential
of the electrodes. It is the energy stored in the capacitor formed by the is-
land with all electrodes and charged by —AN e. One should emphasize here
again, that AN denotes only the change in the total number of electrons on
the metal island in reference to the electrically uncharged island. AN can be
either positive or negative describing an increase or decrease of the electron
number. The third term in (2.29) takes into account any fixed charges in the

arrangement,
ANe - ion
B8N Qojon) = SN0 Qoion,
0x

where Qion is given by (2.8) and (2.13). The quantity AEq, introduced in
Section 1.5 to describe the shift of the electrostatic energy of a single electron

by the presence of charges in the surrounding of the island, is related to
EQ(AN; Qo,ion) by AEq = Eq(AN; Qo ion) /AN, leading to

(2.30)

AEqg = eQﬂ. (2.31)
Cox
The ion charges felt by the electrons on the island are partially screened by
the electrodes. This is correctly included in (2.13) via the boundary conditions
defined by (2.8).
Inserting (2.31) into (2.29) yields for the total electrostatic energy the
expression

Ede(AN;{Vj20}; Qojion) =

M
1 2
- 2002 ’ (_ CAN) —2eAN- j;coaj V} - QO,ion (2.32)

Introduction as an abbreviation the ’offset charge’ Q§,

M
Qy=— Z Co,; V; + Qo,ion (2.33)

=1
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and using Qo = —e AN allows to rewrite (2.32) in a simpler form

(Q-Q5)" (@)
2Cox 2Cos

Eglst(ANQ {Vizo}; Qojion) = (2.34)
Since the electrostatic potentials {Vj.o} and the ion charge distribution are
kept constant when electrons are moved between electrode of electrostatic
potential zero and the island, the constant term —(Q§)?/(2Cox) depending
only on {Vjzo} and/or Qg ion can be omitted in determining the energetical
favourable value for the charge amount on the island. 3 Therefore, instead of
giving the relation (2.29) or (2.32), an expression like

(Qo —Q3)”

0 . . . . —
Eelst (ANa {V77ﬁ0}7 QO,mn) 2 C()Z

(2.35)

is found. Formally this expression reminds on the electrostatic energy Q?/2Cs
stored in a capacitor with capacitance Cx when it is charged with Q =
Qo—Q§- But one should be careful in interpreting the quantity () as the charge
being present on the island. Due to the Gauf} integral over the dielectric field
(2.10), this is given by (. For an isolated conductor, )y cannot change
continuously and is restricted to multiple of the elementary charge, Q¢ =
—AN e, whereas @ shifts continously with the electrostatic potentials V; of
the electrodes capacitively coupling to the island (see (2.33)).

2.3.2 Adjusting AN by Electron Exchange either with Ground
Electrode M or an Arbitrary Electrode A

For given AN, the electrostatic energy term (2.35) describes a parabola as
the function of any Vjo. For fixed {Vj.0}, the electrostatic energy depends
also quadratic on AN. Allowing electron exchange with the electrode M with
Vi = 0, the electrostatic energy EQ, (AN;{Vjx0}; Qo,ion) — expressed by
(2.29) or (2.35) — minimizes by adjusting the electron number AN on the
island. Minimum is reached for AN = ANy with

M
e e
2 < (—AN06+jZICo,j Vi — Qo,ion> < 3

Therefore, allowing electrons to rearrange between the island and the elec-
trode of electrostatic potential zero, the energetical minimum is reached when

3 Actually due to the electrostatic potential differences and ion charges between
the electrodes, additional electrostatic energy is stored in the arrangement not
included in (2.29) which does not depend on the electron number on the island.
Therefore that part is not affected by rearranging electrons between island and
the electrode M, and therefore need not to be considered.
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the ‘charge’ ) = Qo — @ is at or within half of the elementary charge e close
to zero.

Allowing only electron exchange with the electrode A of electrostatic po-
tential V4, it has to be taken into account the potential energy of the electrons
on the electrode A from where they are taken. By substrating this potential
energy —AN e - Va from (2.29) leads to the modified electrostatic energy

B (BN; {Vio}; Qoson) = Bt (AN; {Visio}; Qojon) + €AN - Vi (2.36)

which is minimized by the rearranging of electrons while {Vio} and Qo,ion
are kept fixed. + Minimum is reached for AN = AN(SA) with

M
e e
—5 < (—AN(SA)C + Z C(),j‘/} — (C(]Z‘ — CO,A) -Va — QO,ion) < § )
j=1
J#A
which yields explicitely for the number of trapped electrons

M
'V, (Cox —Coa) -V, ion
AN :int( 3 C"’;VJ _ (Coz = Con) Vi _ Q°é° + %) . (2.37)

e

=1
J#A

For AN = ANéA), the electrostatic potential Vo of the island, expressed by
(2.28), adjusts close to the electrostatic potential V of electrode A,
e e
2Cyx 2Cos
The smaller the total capacitance Cypyx of the island, the larger the possible

deviation of the island’s potential V from the electrostatic potential V of
the respective electrode with which electron exchange is possible.

With ANéA) electrons trapped on the island defined by (2.37), the energy
barriers AEa 1 and AFE;_, 5 for recharging the island by a single electron are
derived as

AEA 1 (AN + 1; {Vizo}; Qosion)
= QAN + 15 {Viso}; Qojion) — B (ANEY; {Vizo}; Qoion)

elst

=2, (1 _ f<A>) : (2.38)

Va — < Vo(Qo = —GANéA); {Vizi}; Qojon) < Va+

AE; A (AN {Vizo}; Qoiion) = —AEA 1 (AN {Vicio }; Qo on)
= B (ANEY = 15 {Vigzo}; Qoion) — Bid (AN {Viko}; Qoion)
—2F, f&) (2.39)

* Relation (2.36) has to be replaced if different metals for the conductors are
involved. In such a case the following relations are modified.
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with

A) _ ¢(A)
f( )= f{Vi;eo}aQo,ion

M
= mod( Z Coi Vs _ (Coz = Co.a) Vi - Qogon + %) . (2.40)

= e e
j#A

The result (2.40) generalizes fg (1.22), fq (1.35) and fg,q (1.39), introduced

in Chapter 1.

To emphasize again, the results of this Section were derived under the
assumption that the metal conductors are made from the same material.
Metal conductors of different material show intrinsic contact voltages (see
next Chapter 3) and thus modifications are expected.

2.4 Application to an Arbitrary Arrangement of a
Single-Electron Transistor with Several Gate
Electrodes, All Made of Same Metal

To find the link to the discussion of Chapter 1 and furthermore to prepare also
the description of experiments with quantum dots as island in the following
Chapters, an arbitrary arrangement of a metal single-electron transistor is
sketched in Fig.2.4a containing now as an extension two gate electrodes G1
and G2. Both are used to tune the electrostatic potential Vj of the island. The
charge state of the island adjusts by electron exchange via tunnel barriers with
the source and the drain electrode. Further electrodes might be present also
capacitively coupling to the island with capacitance C}, but those are kept
at fixed electrostatic potential for convenience. It is of importance to denote
the common reference point for the applied voltages since the characteristics
of the single-electron transistor are affected by its choice as can be seen from
the results derived in the following. For practical purpose, the electrostatic
potentials V; = V;m of all electrodes are refered to the source electrode
by voltage sources Vs, i.e., V; = Vm,s + Vi s as depicted in Fig.2.4b. The
capacitance coefficients can be replaced by the partial capacitances of the
island, and vice versa, i.e., for example Cy,s = Cs, Co,p = Cp, Co,c1 = Ca1,
Co,g2 = Ca2. Note that the total capacitance Cx; = Cpx contains the partial
capacitances of the island to all electrodes, i.e., in general Cx > Cs + Cp +
Ca1 + Caa.

For equal potentials for source and drain electrode, i.e., Vps = Vp — Vg =
0, the number of trapped electrons ANy = ANéS) = ANéD) is determined for
a certain set of parameters from (2.37) by replacing the index A by S (or D),

Ca1Vais N CarVazs Qo T l) )
e e €

AN(gS) (VDS =0; VGl,S; VGQ’S) = int( 3
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Fig. 2.4. (a) Arbitrary arrangement of a single-electron transistor: Metal island
between source, drain and gate electrodes embedded in a dielectric with fixed ion
charges. The two gate electrodes G1 and G2 are used to tune the electrostatic
potential of the metal island. (b) Equivalent capacitance circuit denoting the partial
capacitances and voltages applied in reference to the source electrode.

Vbs

The offset charge @ of (2.33) is given by
Qo = Qo(Vps = 0; Vai,s = 0; Vga,s = 0)
M
- Y Co;Vis+ Qoiion - (2.41)

j=1
j#{Gl,GZ,D}

In Fig.2.5a, the electron number ANéS) on the island and the respective
borderlines between two adjacent charge states of the island are indicated
in the plane of the two gate voltages Vgi,s and Vgas. Note that only at
the borderlines a single-electron transfer is possible and Coulomb blockade
exists in the regions in between. The absolute values where these borderlines
intersect the gate voltage axes are affected by the electrostatic potentials of all
electrodes and the ion charges, as seen from (2.41). In contrast, insensitive
to these are the periodic distance between adjacent borderlines and their
common slope. Along the Vg1 s axis the distance is given by AVgi,s = e¢/Cai,
along the Vo s axis given by AVgas = e/Cqg2. The slope of the borderlines
is described by

WVeis _ _ Ca
Vaz,s Car

(2.42)
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The relation (2.42) expresses that along these borderlines a change in the
electrostatic potential of the island by Cg1/Cx - 0Vgi,s due to the po-
tential change OVg1s on gate electrode Gl is compensated by a change
OVaa,s = —Cag1/Ca2 - 0Vai,s on gate electrode G2. Furthermore, any path in
parallel to or at the borderlines keeps equal energetic barriers for recharging
the metal island. Energy level schemes for distinct situations are also depicted
in Fig. 2.5a, valid along the respective line with slope given by (2.42). In gen-
eral, also a change in the ion charge contribution Qg ion can be compensated
by changes in the electrostatic potential of one or more gate electrodes.

On the borderlines single-electron transport between source and drain
is observable if a small drain-source voltage Vpg is applied. Any straight
path in the Vgi1,s vs. Vga,s plane crossing the borderlines allows to observe
periodic Coulomb blockade oscillations. Such straight paths are, for instance,
parameterized by

Vae,s =61 - Vais + bo (2.43)

and realized by varying Vq1,s and taking always Vao s proportional to Vg s.
By changing the proportionality constant 8, and the offset 5y, any straight
path can easily be chosen. Each path leads to an effective change in the
electrostatic potential of the island. This change can be thought of being
caused by a voltage change V{ig applied to a fictitious gate electrode G*.
According to (2.41) we have the identification

C& Vis = Car Var,s + Caz Vazs (2.44)

j Bo
= (CGI + b1 CG2) : {VGLS + Bl—f—C—Gl/CGg}

where in the last line (2.43) has been inserted.
The periodicity of the Coulomb blockade oscillations along such a straight
path is given by

Fig. 2.5. (Right Page) (a) Borderlines between two charge states of the island
sketched in Fig.2.4 at Vps = 0 in the plane of two gate voltages Vai,s and Vaas.
At these borderlines charge flucuations by a single-electron charge are obserable
(for instance as single-electron transport at small Vpg). Along paths in parallel
to these borderline with slope —Cq1/Ca2, equal energetical situation is present
for recharging the metal island. (b) Charge states in the plane of the drain-source
voltage Vps and a gate voltage path Vg crossing the borderlines in (a) (see Fig. 1.8).
Insert: Energy level scheme denoting the energy barriers AEs_,1, AE1s, AED 1
and AFE1,p for charging and discharging the island either with source or drain.
The relative height of those can be identified for each point in the Vig vs. Vps as
indicated for one point. (c¢) For Vpg > 0, the regions of stable charge configuration
(Coulomb blockade regions) in the Vgi,s vs. Vaa,s plane decrease, the regions of
charge flucuations (single-electron tunneling regions) increase. The dotted line in (b)
and (c) indicates the common path through the parameter space (Vai,s, Vaa,s, Vbs).
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€ €

AVgg= S = ¢
957 0y " Car+ B1Cas

(2.45)

and hence variable by the chosen proportionality constant S;:

e For 1 = —Cg1/Ca2 the path is parallel to the borderlines and AVg = oo,

e for $; = 0 the periodicity is AVg = ¢/Caa, i.e., identical to those of tuning
only gate G1, and

e for || — oo, AV{%g becomes e/Cg2, i.e., identical to those of tuning only
gate G2. °

Building up a drain-source Vpg while V5 and all other electrostatic poten-
tials of the electrodes except of drain remain fixed, the Ips(Vps) character-
istics of the single-electron transistor can be measured at each point in the
Vai,s vs. Vao,s plane. Taking such Ing(Vps) characteristics along a straight
path crossing the borderlines, the ’diamond-like’ Coulomb blockade regions
are obtained in the Vg vs. Vpg plane (see Fig.2.5b), similar to what is de-
scribed in Chapter 1 by Fig.1.8. Starting in the Coulomb blockade region,
one of the barriers for recharging the island, i.e.,

ABs_y; = 2Ec - (1 - f<5>) . ABs=2Ec- f©

AEn_1 =2E¢ - (]. - f(D)) , AE_p=2E¢g- f(D) ,

with f&) and f(P) derived from (2.40) to

£8) Z m0d<CDeVDS + Cai ZGI,S + Cas Z/st B % + %) ’

£ mod((CE —Cb) Vs + Ca1 Vai,s + Ca2 Vaz,s % n %> 7

e € e

is reduced first with increasing |Vps|. The respective borderlines in the V(g
vs. Vps plane are obtained by evaluating ) =0, 1 — f =0, f®) =0
and 1 — f®) = 0. The slopes of these borderlines, as given in Fig. 2.5b, are
described by

0Vis Oz —Cp Vis Cb

Vs Cr and Vs | Ck

(2.46)

Note, we have refered all applied voltages to the source electrode. Another
choice would affect the slope of the borderlines.

Choosing a certain point in the V3g vs. Vps plane, certain energy barriers
for recharging the island are present. Due to the linear relation between
electrode voltages and shift of the electrostatic potential of the island, the

® This can be seen starting from the reversed relation Vai,s = 1/81 - Vaa,s — Bo/B1
of (2.43).
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relative heights of these barriers can directly be extracted from the charge
state scheme of Fig.2.5b.

For fixed Vps > 0, in Fig. 2.5¢ the borderlines for vanished charging and
discharging barriers, respectively are plotted in the Vgi,s vs.Vga s plane.
In the dark shaded regions, the charge state of the island fluctuates by one
electron, i.e., these are the regions of single-electron tunneling. The regions of
stable charge configuration — the Coulomb blockade regions (light shaded) —
are reduced in comparison to the case of Vpg = 0 in Fig. 2.5a. With increasing
Vbs further, the regions of Coulomb blockade disappear completely as is
evident from Fig. 2.5b. This threshold is reached for |[Vpg| = e/Cs. Choosing
a path in the Vg1 s vs. Vo s plane in parallel to the borderlines, no ’diamond-
like structure’ is observed since AV{g is infinite. The positive and negative
thresholds in Vpg are independent of the gate voltage value Vg along such a
path. They depend on the distance in the V1,5 vs. Vaa,s plane to the adjacent
borderline depicted in Fig. 2.5a.

2.5 Summary

In this Chapter, starting from Maxwell’s relations, the concepts of Capaci-
tance Coefficients, Total Capacitance and Self Capacitance were introduced
for an arrangement of metal conductors embedded in an anisotropic and/or
inhomogeneous dielectric matrix. It was shown generally that by scaling the
conductor arrangement linearly in all its spatial dimensions, the capacitances
change linearly by the same scaling parameter. The self-capacitance can be
used to give a lower limit for the total capacitance of a metal island. Expres-
sions for the total electrostatic energy of a charged metal island were derived,
generalizing the expressions derived in Chapter 1. Some useful properties of
a SET using two gate electrodes for tuning the electrostatic potential of the
island were also explained.

For the discussions up to now, it was assumed that the metal conduc-
tors consist of the same material. The use of different materials enforces to
distinguish carefully between the concept of Electrostatic Potential, Chem-
ical Potential, and Electrochemical Potential. This will be done in the next
Chapter.






3. Single-Electron Transistor as a Sensor of
Contact Voltage Variations

The sensitivity of a metal single-electron transistor to the electrostatic envi-
ronment can be used to measure chemical potential variations of conducting
materials affected by an external parameter, — for instance, the magnetic
field. It enforces to distinguish carefully between the concepts of Electrostatic
Potential, Chemical Potential, and Electrochemical Potential to describe elec-
trical transport in such devices which are sensitive to the electric field. The
conditions for Coulomb blockade and single-electron charging, as obtained in
Chapter 1, have to be modified if electrodes of different materials or elec-
tronic properties are involved.

3.1 Reminding on the Concepts of Electrostatic,
Chemical and Electrochemical Potential

Let us consider two macroscopic electrically uncharged metal conductors 4
and j of different material. Usually they have different chemical potentials
pst and pjh , i.e., there exists a difference in their Fermi levels towards the
same reference. ' Or in other words, different energies W;, W; are required
in thermodynamic equilibrium for taking off an electron from the electrically
uncharged metals and bringing that electron into the vacuum far away at rest,
i.e., to the vacuum energy level e(z = o0). The jump W; or W; between metal
and vacuum level is called work function of the metal. If electron exchange is
allowed between both metals — for instance by a metal wire (see Fig. 3.1b) —,
electrons will move from the metal of higher chemical potential to the metal
of lower chemical potential to get both in thermodynamical equilibrium. Due
to this electron exchange, both metals are electrically charged: the one with
the higher chemical potential to positive, the one of lower chemical potential
to negative. The charges are present as surface charges on the metal conduc-
tors causing an electric field between both metals. Because of the macroscopic

! The chemical potential usually denotes the difference in the inner energy for a
given temperature T' between the (N + 1)- and the N-electron system, where
the electron systems are compensated in their electrical charge by background
ions. For mesoscopic metals, single-electron charging effects occur contributing
by Ec to the energy. For macroscopic metals, this electrostatic energy part is
negligible, and therefore ignored.
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Different Materials:
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Fig. 3.1. Arrangement of two metal conductors of different materials: (a) Energy
scheme of the conduction bands of two electrlcally uncharged metal conductors of
different chemical potentials p® and ,u] (work functions), i.e., their Fermi levels
lie differently with respect to a reference. Often the vacuum level is taken as the
reference by setting e(z = co) = 0. The conduction band minima are denoted by &
and €5. (b) By connecting both electrodes, electron exchange equilibrates the Fermi
levels — a contact voltage (electrostatic potential difference) is built up between both
metals. The electrochemical potential, considered as being locally composed of the
electrostatic potential and the chemical potential, is the same everywhere in the
combined system. (c) The electrochemical potentials of the electrodes are shifted
against each other by an externally applied voltage V;;. The jumps W;, W; in all
three cases remain the same.

size, the electron density in the bulk of the metals is almost not affected by
this electron exchange. The integral over the electric field along a path con-
necting the bulks of both metals defines the electrostatic potential difference
Vi — V; between both metals. The Fermi level of the metal ¢ shifts by the
change in the electrostatic potential V;. Thermodynamical equilibrium be-
tween both metals is obtained if u$" —e - V; = ujh —e-Vj, ie., the chemical
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potential difference is just compensated by the electrostatic energy difference
due to electrically charging (see Fig.3.1b). An intrinsic contact voltage Vg
(Volta voltage) is built up between both metals given by the difference of the
chemical potentials and hence also of the work functions of the metals,

e-Vig =" — s (3.1)
The sum p¢lh = ph — e - V; is denoted as the electrochemical potential of
the metal 4. It defines the Fermi level of the electrically charged metal with
respect to the reference. In thermodynamical equilibrium, the electrochemical

potential is the same everywhere in the combined system. This is also correct
for an inhomogeneous material,

() = pM () —eV(r) . (3.2)

Locally the electrochemical potential can be considered as being composed
of the local electrostatic energy of an electron feeling the local electrostatic
potential V' (r) and the local chemical potential " (r) which depends on the
local material parameters. At T' = 0, the electrochemical potential separates
the energies of occupied and unoccupied electronic states in the metal.

By putting a voltage source between both metals (see Fig. 3.1c), the elec-
trochemical potential of the metal 7 is shifted against the electrochemical
potential of metal j. An additional electrical connection between both metal
conductors (for instance by a tunnel junction or by inserting a metal island
with two tunnel junctions) would cause a permanent electron flow from the
metal of higher electrochemical potential to the metal of lower electrochemi-
cal potential. 2 In this sense the metal conductors are out of thermodynam-
ical equilibrium due to the externally applied bias voltage. If the electrical
connection does not exists or is very weak, each metal can be described by
a Fermi-Dirac function with the electrochemical potential of the respective
metal, and the applied voltage V;; determines the difference in the electro-
chemical potential of both conductors:

ch
i

/Jf?lCh _ N?lCh —e- ‘/ij i (33)

Therefore, the total electrostatic potential difference V; — V}, defined by the
integral over the electric field along a path connecting both metals, is given
by the sum of the intrinsic contact voltage Vg and the externally applied
voltage V;:

Vi-Vi=Vii + V5 . (34)

The consequence of such intrinsic contact voltages for the characteristics of
a single-electron transistor is discussed in the following Section.

2 Usual voltmeters are measuring the electrochemical potential difference and not
necessarily the electrostatic potential difference between two terminals.
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3.2 Single-Electron Transistor Made of Different Metals

As presented in Chapter 1, a single-electron transistor is sensitive to changes
in the electrostatic environment of the metal island: Adding a charge or vary-
ing the electrostatic potential of a nearby gate electrode affects the transport
characteristics of the single-electron transistor. Or in other words, the elec-
trons on the island feel the additional electric field created by such changes.

As pointed out in the previous Section, the electrostatic potential between
electrodes of different electronic properties is not only defined by the exter-
nally applied voltage, but also by the intrinsic contact voltage due to the
work function difference between the electrodes. To see the consequence for
single-electron devices, let us consider the following arrangement: In Fig. 3.2a,
a sketch of a single-electron transistor is given which consists of same metal
for the electrodes and for the island. As a function of the gate voltage Vgas,
Coulomb blockade oscillations are observable as described in Chapter 1. By
replacing the gate electrode by an electrode of different metal (see Fig. 3.2b),
an additional contact voltage Vg occurs — defining already at applied gate
voltage Vgs = 0 an electrostatic potential difference between gate electrode
and leads. Due to this replacement, the electrostatic potential of the island is
shifted (holding Vigs = 0) and AN¢ additional electrons are trapped on the
island,

c
AN¢ = int (% + %) , (3.5)
in analogy to (1.17). With varying the gate voltage Vas, the Coulomb-
blockade oscillations appear shifted along the gate voltage axis by AVgg =
—V§s (see Fig.3.2b).

What happens if one of the lead electrodes, for instance the drain electrode
(Fig. 3.2¢), is replaced by an electrode of different metal? Again, an intrinsic
contact voltage ViSg occurs between drain electrode and other electrodes. The
electrochemical potential difference between source and drain electrode is not
affected by the intrinsic contact voltage. As described in the previous Section,
a difference in the electrochemical potential, i.e., a non-equilibrium situation
between both lead electrodes occurs if Vpg is applied defined by an external
voltage source, driving the current Ins. > However due to the intrinsic contact
voltage V]SJS, the electrostatic potential of the island is shifted, and therefore,
for Vgs = 0, AN additional electrons are trapped on the island,

C
AN¢ = int (% + %) : (3.6)
e

The Coulomb blockade oscillations appear again shifted along the gate volt-
age axis — now by AVgs = —Cp/Cq - VSS.

3 Usual experiments are performed with the sample at low temperatures but the
measurement setup at room temperture. If wires of different metal are used, ther-
mal voltage do create differences in the electrochemical potential. The thermal
voltages should be avoided or be compensated.
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Fig. 3.2. Effect of intrinsic contact voltages on the transport properties of a single-
electron transistor: (a) Sketch of a single-electron transistor made of the same metal
for all electrodes. As a function of the gate voltage Vs, Coulomb blockade oscil-
lations are observable (grey-coloured line). (b) Replacing the gate electrode of a
single-electron transistor by a electrode of different metal shifts the Coulomb block-
ade oscillations (black coloured line) (c) Replacing the source or the drain electrode
by an electrode of different metal also shifts the Coulomb blockade oscillations. (d)
Replacing all electrodes around the island by electrodes of different metals causes
a similar shift as for (b) and (c) (see text). (¢) The energy schemes of an single-
electron transistor made of only one kind of metal and made of different metals are
shown for Vgs = 0. Due to the intrinic contact voltages, ANc additional electrons
are trapped if different metals are used. The electrochemical potential difference
between source and drain remains uneffected since it is given by Vps defined by an
external voltage source.
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For the case that all electrodes around the metal island are replaced by
electrodes all made of different metals (see Fig. 3.2d), AN¢ is given by

ANG = int ( (3.7)

e
CxV§
:int(ﬂ+%),
e

where the last line is obtained for the case Cx, = Cp + Cs + Cg and V& =
V§ = V§i. Here Vﬁ denotes the contact voltage between the type of metal
used for the island and the metal of electrode i (i € {S,D,G}). The Coulomb
blockade oscillations are shifted by

CoV§; + CsV§ + CaV§; + l>
2

CDVS’I + CSVSCIJ + CGV(%

AVgs = —
Vas Ce

(3.8)

along the Vgg axis.

The systems just described are realized in the following experiment: A
metal single-electron transistor is fabricated on top of a microscopic tip which
is then scanned over a substrate containing enclosures of other conductive
materials at the surface (see Fig.3.3). As a function of the position, the lo-
cal contact voltage contribute to the local electrostatic potential difference
between the SET and the substrate. Monitoring the changes in the SET char-
acteristics, the SET can be used as a local probe for the electrostatic potential
variations along the substrate surface. Such an application has already been
demonstrated by M. Yoo and coworkers [59] 4: With reducing the distance
between SET and substrate, the capacitance between substrate and SET is-
land increases roughly to 1/d with the distance d. Therefore the Coulomb
blockade oscillations, observable as a function of the externally applied SET-
substrate voltage (see Fig. 3.3b), decrease in their periodicity, squeezing to a
fix point on the SET-substrate voltage axis where the electrostatic potential
between SET island and substrate becomes zero. In case of no additional
charges trapped between SET and surface, at that point, the externally ap-
plied SET-substrate voltage just compensates for the intrinsic contact voltage
between SET and substrate. Such an SET probe on a scanning tip can be
considered as an alternative to a scanning force microscope running in the
Kelvin probe mode where the local electrostatic force between tip and sub-
strate is minimized by tuning the tip-substrate voltage [59].

Extracting the real contact voltage in the thermodynamical sense from
such measurements is usually complicated due to the presence of charges
being trapped between the tip and the substrate. Under circumstances it
might be easier to measure the variations of the intrinsic contact voltage as a

* The setup was used to probe electrostatic potential fluctuations in GaAs/AlGaAs
heterostructures and later to investigate two-dimensional electron systems in
high magnetic fields [60].



3.2 Single-Electron Transistor Made of Different Metals 69

(@ Vs
'4—
IDS
L #@ Glass Tip
\AY) * with SET
® " SET,Substrate #
#* .
Source 4| / Drain
Tunnel =5
Junctions Island
N Substrate
(b)
s
A P Vosv 0

A VSET ,Substrate

Decreasing the distance between
SET and substrate

fix point
voltage

Fig. 3.3. (a) A single-electron transistor on a glass tip probing a conductive sub-
strate with metal enclosures at the surface. (b) Measuring the current Ips through
the SET as a function of the SET-substrate voltage reveal Coulomb blockade os-
cillations (CBQO). With decreasing the distance between SET and substrate, the
periodicity of the CBO reduces, the CBO squeeze to a fix point voltage on the
SET-substrate voltage axis basically given by the local intrinsic contact voltage
(adopted from M. Yoo et al. [59]).
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function of other parameters like temperature, pressure or applied magnetic
field. An example for such a measurement will be presented in the follow-
ing Section. Compressibility measurements of two-dimensional hole system,
i.e., variations of the chemical potential with the carrier concentration, were
performed by S.Ilani et al. [61] using a similar setup as presented in the fol-
lowing.

3.3 Metal Single-Electron Transistor as a Probe of
Chemical Potential Variations of a Two-Dimensional
Electron System in High Magnetic Fields

Measuring the Hall effect on a two-dimensional electron system in high mag-
netic field at temperatures typically below 4 K leads to the observation of
the Integer Quantum Hall Effect (IQHE), and in high quality samples and
at lower temperature in addition to the observation of the Fraction Quantum
Hall Effect (FQHE) (see for review [62]). The IQHE was discovered in 1980
by K.von Klitzing [63], the FQHE in 1982 by D.C. Tsui, H.L. Stérmer, and
A.C. Gossard [64]. Since the year 1990, the IQHE is used as the international
resistance standard. The quantized Hall resistance values are in agreement
with h/(ie?) (i is an integer number) within an uncertainty of 2.4 - 1078
[65, 66] and no difference between samples (including different materials) is
observed to an uncertainty of 3.5-1071° [67, 68]. Although such a fundamen-
tal effect is observed and used in metrology, still a basic controversy exists
where microscopically the externally biased current is flowing through the
two-dimensional electron system (2DES) to build up the well-defined Hall
voltage. Local probes — like the single-electron transistor as a local electro-
meter — are an ideal tool to obtain information about the local electrostatic
potential variations in the 2DES under quantum Hall conditions. Measure-
ments using a stationary SET are presented in [69, 70, 71, 27, 31]. A SET as
a scanning probe was used by A. Yacoby and coworkers [60]. In the following,
we discuss results obtained in our group [72], showing that indeed the SET
is sensitive to variations of intrinsic contact voltages.

Fig. 3.4a shows a sketch of a metal single-eletron transistor which is de-
posited on top of a GaAs/Aly33Gage7As heterostructure. Such a typical
heterostructure contains a two-dimensional electron system (2DES) at the
AlGaAs-GaAs heterojunction [73] 85 nm below the surface: Due to the lower
conduction band minimum of GaAs, the electrons from the donors in the
AlGaAs layer have moved to the GaAs. They are attracted by the remaining
positive charged donors and are therefore trapped at the interface between
the GaAs and the AlGaAs layer. The strong triangular-shaped confining po-
tential freeze in their motion in z direction [74]: Electrons can only move
freely only along the interface in x and y direction. At low enough electron
concentration and temperature, a two-dimensional electron system is formed.
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Fig. 3.4. Sketch of a metal single-electron transistor deposited on top of a
GaAs/AlGaAs heterostructure containing in a depth of about 85 nm a two-
dimensional electron system (2DES with electron concentration n, = 2.9 - 10'°
m~2, electron mobility pge = 40 m?/Vs at T = 4 K). The fabrication of the SET
and the Coulomb blockade oscillations have already been presented in Fig.1.7.

Due to the spacial separation between ionized donors and electrons — denoted
as modulation doping [75], scattering of electrons at the donor potentials is re-
duced. Two-dimensional electron systems, defined in such modulation-doped
heterostructure, have electron concentrations typically in the range of 5-10%*
to 5 - 1015 electrons per m? and electron mobilities 5 of about 102 m2?/Vs,
leading to a ballistical mean free path of several tens of um.

The SET structure was already presented in Chapter 1. Due to the small
size of the electron island and the small area of the tunnel junctions (0.1 ym

® Up to about 3-10% m?/Vs has been recently reported by L. Pfeiffer (Bell Labs).
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by 0.1 pm), the total capacitance of the island is small leading to a single-
electron charging energy Eq = 0.1 meV. Alloyed ohmic contacts to the 2DES
allow to use the 2DES as a gate electrode for the SET island. With changing
Vabes,s, Coulomb blockade oscillations are observed at temperature T ~ 0.1
K.

Applying a magnetic field B perpendicularly to the plane of the 2DES,
the Coulomb blockade oscillations — measured as a function of the externally
applied voltage Vapgs,s — shift with magnetic field (see Fig.3.5a). As will
become clear from the following, this shift of the CBO reflects the variations
of the chemical potential of the 2DES at constant electron concentration with
changing the magnetic field.

The electrostatic potential difference between the SET and the 2DES is
proportional to the intrinsic contact voltage between aluminum electrodes
and the 2DES in the heterostructure. With applying the homogeneous mag-
netic field B, the chemical potentials of both materials are affected, causing
a change of the contact voltage given by the relation 8

e- Vs ser - dpSbes _ dpdlor (3.9)
dB dB dB |

Since the effect of the magnetic field on the aluminum electrodes in the non-
superconducting state is negligible, the magnetic field effect on the 2DES
dominates the contact voltage changes between the aluminum electrodes of
the SET and the 2DES gate. Therefore the shift of the CBO, measured in
Vapes,s, should reflect the chemical potential changes of the 2DES with mag-
netic field.

With B applied perpendicularly to the 2DES plane, the energy spectrum
of the 2DES splits into a series of Landau levels (see Fig.3.5b). The energy
difference between Landau levels increased linearly with B and at the same
time the density of states within each Landau level increases with B. Elec-
tronic states become available at lower energy. Therefore the electrons in the
2DES are redistributed from Landau levels of higher energy to Landau levels
of lower energy, i.e., with increasing B, a Landau level is depopulated at each
integer value of the Landau level filling factor v, defined as v = hng/Be,
where ns denotes the sheet electron concentration in the 2DES. Thus p§l o
changes in the zigzag-like manner as observed in the measurements shown
in Fig.3.5a. As long as the Fermi level is within a Landau level, u$h oo in-
creases continuously with B. This corresponds to shifts towards more negative
Vapgs,s values in Fig. 3.5a. Around integer filling factors, sharp changes in the
chemical potential indicate just the complete depopulation of a Landau level.
There the Fermi level is situated between two Landau levels: The bulk of the

5 A depletion in the 2DES electron density due to the contact voltage between
SET and 2DES has been compensated by applying a constant bias voltage be-
tween SET and 2DES. There might remain a modulation of the electron density
in the 2DES by mechanical strain produced at the edges of the SET at the
heterostructure surface.
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Fig. 3.5. Variation of the chemical potential of the 2DES with magnetic field at
constant electron concentration: (a) Measured current through the SET shown in
greyscale (’light’ low current, dark’ high current) as a function of gate voltage
Vas = Vopgs,s and of magnetic field. The current modulation versus Vgg at con-
stant magnetic field B reflects the Coulomb blockade oscillations. The zigzag-like
shifts of the Coulomb blockade oscillations — marked by the white line — reflect the
variations of the chemical potential of the 2DES with magnetic field. (b) Sketch of
the chemical potential variations (solid zig-zag line) of an idealized two-dimensional
electron system (spin-splitting of the Landau levels neglected) as a function of ap-
plied magnetic field B. The density of states D(e, B) of the 2DES is depicted in
four diagrams for the marked distinct B fields.

2DES behaves at low temperature as an insulator decoupling the local 2DES
below the SET island from the contact where Vaopgs s is applied. Therefore,
around integer filling factors the 2DES cannot work as a gate electrode for
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the SET as it is observed in Fig. 3.5a around magnetic field value B = 2.8
T. This effect is less pronounced at this temperature at large integer filling
factors, i.e., at small magnetic field values, where the conductivity of the bulk
2DES is still large enough to establish thermodynamical equilibrium within
the whole 2DES at time scales accessible in the experiment. The slopes of
the shifts in the chemical potential give information about the effective mass
of the electrons, the electron-electron interaction, the spin splitting and the
Landau level broadening.

Due to the small island size, the SET is able to detect the chemical poten-
tial change of the local 2DES region below the SET island. To demonstrate
this ability, we measured the change of the chemical potential variations ver-
sus magnetic field for different values of the local electron concentration. To
change the local electron concentration, a sidegate electrode is deposited on
the heterostructure, 5 um away from the SET (see Fig. 3.6a). Applying a bias
voltage between the sidegate electrode and the 2DES, the local electron con-
centration near the SET is tuned. Calculated electron concentration profiles
are shown in Fig.3.6b for the geometry sketched in the inset. In Fig. 3.6d,
the chemical potential variations with magnetic fields are shown, measured
at different sidegate voltages Vsiqe,s = 0 V to —9 V. These curves reflect the
shift of the CBOs, directly obtained by using the feedback circuit sketched
in Fig. 3.6¢. This feedback loop keeps the current Ipg through the SET con-
stant which means that according to Fig. 3.6 the feedback signal gives directly
the zigzag shift of the CBO as a function of B. It can also directly be used
to compensate for the contact voltage present between SET and 2DES at
B = 0 by applying an additional voltage to the 2DES. Actually this config-
uration assures that the electrostatic potential difference between the SET
and the 2DES is kept constant when changing B. Therefore, the presence
of the SET does not cause an additional depletion effect on the 2DES when
changing B. As seen in Fig. 3.6d, the measured curves scale in the B axis
for all Vsige,s values. Therefore, the shift AB reflects the change of the lo-
cal electron concentration ns. With decreasing the electron concentration by

Fig. 3.6. (Right page) Variation of chemical potential versus magnetic field for
different local electron concentrations of the 2DES: (a) In addition to the setup
of Fig.3.4a, a sidegate electrode is added. (b) Calculated electron concentration
profile ng(y) for the geometry given in the inset for different sidegate electrode
voltages Viide,2pEs (taken from relations given in Ref. [76]; 'frozen surface model’
with the parameters d = 90 nm, Vg = —0.29 V). (c) Feedback circuit keeping the
current Ips through the SET constant by tuning the voltage Vapgs,s. In this case,
the B dependence of Vaprs,s reflects directly the zigzag shift of the CBO shown
in Fig.3.5a. The voltage Viias is used to compensate for the contact voltage at
B =0 T. (d) Zigzag-like shifts of Coulomb blockade oscillations with magnetic field
(measured with the feedback circuit of (c)) for distinct sidegate voltages Vside,s = 0
V to —9 V (adopted from Y.Y. Wei et al. [72]). Shift AB is caused by the depletion
of the electron concentration.
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Ang, the depopulation of a Landau level at filling factor v occurs at B value
decreased by AB = hlng/ev. With this relation we calculate that the local
electron concentration is depleted by about 8% with decreasing Vsiqe,s from
0 V to —9 V, which is in the range of what is expected from Fig.3.6b for a
gate distance of 5 pum.

Using a similar arrangement, the electrostatic potential profile in the de-
pletion region of a two-dimensional electron system in high magnetic field
has been probed. The so-called compressible and incompressible strips have
been resolved [69, 70, 71, 27, 31]. They are important for understanding the
Hall potential profile in a 2DES under quantum Hall effect conditions [77].

3.4 Summary

Changing the electrostatic potential of one electrode of a single-electron de-
vice shifts the electrostatic potential of the island. This is caused by either
changing the externally applied voltages or by affecting the intrinsic contact
voltages between the electrodes. Like additional charges in the surrounding,
intrinsic contact voltages cause additional electrons to be trapped on the SET
island. But these intrinsic contact voltages do not affect the electrochemical
potential differences between the electrodes. Only the electrochemical poten-
tial differences are responsible for directed currents in the system. They are
defined by externally applied voltages.

In the further course of this treatise, conditions for Coulomb blockade
and single-electron charging are therefore expressed by the electrochemical
potentials of the source and drain electrodes instead of their electrostatic
potentials.



4. Quantum Dot as an Interacting N-Electron
System: an Artifical Atom with Tunable
Properties

In Chapter 1, the Coulomb blockade effect and single-electron charging have
been introduced based on the existence of the elementary charge —e of elec-
trons combined with simple electrostatic energy considerations. Sofar the
islands of the single-electron devices have been described as bulk metal. By
choosing the island size smaller and smaller, we must take into account that
electrons are quantum mechanical particles: They show a wave-particle dual-
ity. For electrons confined on a sufficiently small island, only certain kinetic
energies are possible. In that case, the mesoscopic island is denoted as a quan-
tum dot. In the simplest approach for a description, electrons of the island
are moving in a phenomenological confining potential chosen as a 'box con-
finement’ or as a 'parabolic confinement’. But what are the contributions to
the confining potential of real quantum dots? What can be identified as ’ca-
pacitance coefficients’ and the ’total capacitance’ of a quantum dot, used in
the previous Chapters to decribe single-electron charging effects? To clarify
these questions is goal of the discussion in this Chapter. It requires more fun-
damental quantum mechanical considerations of the electron system in the
quantum dot. To this purpose, the Hamiltonian for a quantum dot confining
N electrons of the conduction band is derived for an arbitary electrostatic sur-
rounding — inhomogeneous anisotropic dielectric medium containing a fixed
charge distribution and electrodes of fixed electrostatic potential [42, 78]. The
charges of the NV movable electrons in the quantum dot are macroscopically
compensated by the fixed ion charges and image charges on the electrodes.
The fixed valence band electrons contribute to the dielectric matrix. It gen-
eralizes the description of the electron island including in one limit the metal
island where the quantum confining effect is negligible, and mimicking in the
other limit atoms and molecules dominated by quantization effects. ! As a
result, the confining potential, but also the electron-electron interaction in
the quantum dot depend on the electrostatic surrounding: Quantum dots can

! Conformation changes of molecules with adding an electron are of course not
modelled in such a system. However the general language developed here can
also be adopted including such effects. Recent experiments [79] on single-electron
transistors embedding a Cgo molecule as the island indicate excitations due to
the motion of the molecule in its binding potential to the surface. Also such
effects might have to be included for decribing single-electron transport through
real molecules or clusters.
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be considered as artifical atoms [80, 81, 6, 5] with — in principle — tunable
properties.

4.1 Quantum Dot: Electron Island on which the Energy
of Single Electrons is Quantized

It was pointed out in Chapter 1 that for smaller metal islands the single-
electron charging energy becomes larger. Metal islands of few nanometers
are required to see Coulomb blockade and single-electron charging at room
temperature. Enclosing an electron into a small box, only certain values for
its kinetic energy become possible due to the quantum nature of electrons:
An electron in a small enclosure shows a discrete energy spectrum similar to
what is known from atoms where electrons are closely bound to a positive
charged nucleus. 2

The deBroglie wavelength A is attributed to a free propagating electron
due to its kinetic momentum p = hk = k- 27 /. Since the kinetic momentum
is directly related to the kinetic energy of the electron, e(k) = (hk)?/2m3,
where m denotes the effective electron mass in the material, we obtain

\— 2rh h

\2mie  \2Zmie’
The electron density in the conduction band of metals is high which leads in
the Sommerfeld model [82] of free electrons due to the Pauli exclusion prin-
ciple to a high Fermi energy, i.e., a high kinetic energy of the electrons at the
Fermi level. Therefore, the wavelength of an electron at the Fermi level in met-
als is usually only few tenths of a nanometer. Semiconductor materials have
lower concentrations of free electrons and therefore lower Fermi energies. A
smaller effective mass m} results in a larger deBroglie wavelength for the same
kinetic energy . Conduction band electrons in Gallium Arsenide (GaAs) are
treated well in an effective mass approximation with m} = 0.067 - m., where
m. denotes the free electron mass. Thus, for a Fermi energy of ep = 10 meV,
the Fermi wavelength is Ap = 46 nm in GaAs.

By reducing the size of the bulk material, pronounced quantization effects
can be expected when the size of the bulk becomes comparable with the
wavelength Ag of an electron at the Fermi level of the bulk material (see
Fig.4.1). If this confinement occurs in all directions, we speak from a quantum
dot ® or zero-dimensional electron system.

The simplest evaluation of a quantum dot can be done in Cartesian co-
ordinates using an electron box with the side lengths L, with z; € {z,y, 2}
and a confining potential with infinite high walls:

(4.1)

2 The conﬁning; potential in atoms is given by an attractive Coulomb potential
V(r) = —Ze*/|r| where Ze denotes the charge of the nucleus sitting at r» = 0.

3 The term ’quantum dot’ has been used in literature for a variety of systems, not
all of them fulfilling above definition.
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Fig. 4.1. The possible kinetic energies of electrons in a cubic box. The ratio of
the side length L of the cube to the Fermi wavelength Ar determines the spacing
between the energy levels.

¢ Box confinement Vr) =Vi(z) - Va(y) - V3(2) (4.2)
with  Vi(zi) = { 0 if0<a<Ls,
oo else.

Solving the respective single-particle Schrédinger equation, it is easy to show
that only certain discrete kinetic energies for the electrons are allowed in such

a quantum dot,
252 [ 2 ;2 2
I VR B A VR
Siviyiis = 5o (L—% + 7] 7] (4.3)

with L, Ly and L, denoting the length of the box in the respective directions.
The numbers i,, i, and ¢, are integer values starting from one and labeling
the electronic states in the box. The lowest possible energy is given by i, =
iy =1, =1,

> (1 1 1
— — 44— 4.4
o =5 (70 57 ) .
This represents the energy of the groundstate of a single electron in the box.
For a box with same side lengths L, = L, = L, = L, i.e., for a cube, the
groundstate energy becomes

232
S (4.5)

For convenience, the energy levels of a cubic 3D box are depicted in Fig. 4.1,
showing the spacing of the discrete energies as a function of side length L.

Depending on the aspect ratio of the quantum dot’s extensions in three
orthogonal spatial directions, we distinguish between 3D, 2D and 1D quantum
dots [7]:



80 Quantum Dot as an Interacting N-Electron System

3D: Ly~Ly~L,,
2D: Ly=Ly,>» L.,
1D: L, >» L,,L,,

where the largest length is in the order of the Fermi wavelength Ap.

The shape and strength of the confining potential determines the energy
spectrum of an electron in the confinement. A simpler energy spectrum is
obtained for an electron in a three-dimensional parabolic potential:

e Parabolic confinement
V(r) = imiwg - v = tmiwg - (2° +y° + 2%). (4.6)

It reveals the energy spectrum of a harmonic oscillator, — an equidistant
ladder of energy levels with fiwg as the level distance,

Ez'x,z'y,iz = th . (Zm + 7/y + iz + %) ) (47)

where i, = 0,1,2,---. The quantization energy hwy depends on the effec-
tive mass m} attributed to the electron and the curvature of the confining
potential at its potential minimum. It is convenient to introduce an effective
diameter D for the quantum dot with a parabolic confinement in order to
give an impression of its spatial extension. To this purpose, D is taken as the
distance between opposite turnaround points for a classical particle having
the energy fiwg /2, i.e., D is determined from V (|r| = D/2) = hwo/2. * This
definition D leads to the following relation between hwy and D,

412

hwo = —— .
m3 D?

(4.8)

Like already found for the confining potential of a box where the distance
between the energy levels scales with 1/L? of the box’s side length L, the dis-
tance between the single-particle energies in a parabolic confining potential
increases with 1/D? of the effective diameter D. On the other hand, we found
that with decreasing the linear spatial dimension D, the self-capacitance of
a metal island decreases causing that the single-electron charging energy in-
creases linearly with the inverse of the island’s diameter.

Therefore, with decreasing the island size, the influence of the quanti-
zation effect increases and exceeds the single-electron charging energy
scale at a certain island size.

For estimating the transition, in Fig.4.2, the scaling of the single-electron
charging energy Ec of a metal sphere with diameter D, which is Ec =
e?/2Cx; = €% [4megeD, is compared with the scaling of the quantization energy
fwo = 4h? /m*D? in a 3D parabolic confinement with the effective diameter

* The length I* = \/h/(m? we) = D/2 is sometimes denoted as ’oscillator length’.
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Fig. 4.2. Comparison of the quantization energy hwo in a 3D parabolic confinement
with effective diameter D and the single-electron charging energy Ec of a metal
sphere of diameter D for different ¢ and m; as a function of D in a log-log plot. At
small D below the crossing point, the quantization energy becomes dominant.

D. They become equal (Ec = hwy) for the diameter D = 16megeh? /e*m? =
0.2nm- € - m¢/m}. This diameter below which the quantization energy starts
to dominate depends on the effective mass m) and the dielectric constant
€. For € = 1, m} = m,, the transition occurs at 0.2 nm, i.e., on atomic
scale. Conventional processing technology allows to structure materials on
the hundred nanometer scale. For such large systems, a small effective mass
is required to have both energy scales in the same range. Due to the small
effective mass in GaAs (mj = 0.067 - m,) and the dielectric constant € = 13,
quantum dot systems realized in GaAs/AlGaAs heterostructures offer the
transition at about 40 nm. 5 Therefore such quantum dots with a diameter
from several hundreds to few tens of nanometers give access to investigate the
interplay between single-electron charging energy and single-particle quanti-
zation energy on an energy scale of 0.01 meV to few meV. To suppress ther-

® Usually such an estimate is expressed by the ’oscillator length’ I* = /h/(ms wo)
and by the effective Bohr radius a} = (h”4meoc)/(m} e®): The quantization
energy scales like h?/(m} - (I")?), whereas the Coulomb energy between two
electrons in distance D = 21* is given by e?/(4mwege D). Both become equal at
I* = 2a}, ie., for GaAs at I* =~ 20nm. This is equal to the estimate presented
in the text. Note, this should be taken as a rough estimate.
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mal fluctuations, low temperatures (typically below 0.1 Kelvin) are required
which are accessible in commercially available 3He-*He-dilution refrigerators.

4.2 Various Realizations of Quantum Dot Systems for
Electrical Transport Measurements

Quantum dot systems for electrical transport measurements have been real-
ized in different ways, for instance,

e by shaping bulky materials like Silicon by etching and enhanced local oxi-
dation [83, 84],

e by embedding small particles in a thin Si,N, membrane which is contacted
in a small area from both sides by metal electrodes [85],

e by self-formation during epitaxial growth of lattice-mismatched III-V semi-
conductor materials [86],

e by molecular beam epitaxy of III-V materials on a prepatterned substrate
187, 88],

e by depositing semiconductor clusters from colloids between metal elec-
trodes [89],

e by arranging single carbon nanotube [90, 91], Cgo-buckyballs [79], molecules
or atom clusters between metal electrodes or mechanical breakjunctions,
or

e by structuring GaAs/AlGaAs heterostructures.

Structuring GaAs/AlGaAs heterostructures is a very usual approach to
form well-defined 2D quantum dots with in-situ tunable parameters and
is therefore used in all the experiments presented in this work. Base is a
GaAs/Al; _,Ga,As-heterostructure which contains a two-dimensional elec-
tron system (2DES). The 2DES is located either at a GaAs/AlGaAs hetero-
junction or in a AlGaAs/GaAs/AlGaAs quantum well below the surface (see
Fig.4.3). Such GaAs/AlGaAs heterostructures offer several advantages:

e GaAs, AlAs and Al; ,Ga,As alloys can be grown with almost no lattice
mismatch monolayer by monolayer with molecular beam epitaxy (MBE),
forming a crystal.

e The energetic position of the conduction band minimum is tunable by
varying the stochiometry between Ga and Al. Potential steps or wells are
easily obtained by abruptly changing the stochiometry.

e Due to the high growth quality and the modulation-doped technique, two-
dimensional electron systems (2DES) are created as conduction band in
such heterostructure offering a mean free path for electrons without being
scattered for even up to 100 ym at temperatures below 4 K.

e The 2DES layer is typically 10nm thick and lies 35 to 250 nm below the
surface. The concentration is usually in the range of 5 - 10'* to 5 - 103
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Fig. 4.3. Examples of GaAs-AlGaAs heterostructures containing two-dimensional
electron systems: (a) at a heterojunction, (b) in a quantum well. On the right
bottom a highly resolved transmission electron micropscope image is shown of such
a heterostructure layer sequence. The lattice period in [100] direction is about 0.57
nm.

electrons per m?, i.e., in a square of 100 nm by 100 nm there are about 5
to 50 electrons.

e The electron concentration in the 2DES can easily be varied locally by
applying voltages to metal electrodes on the surface.
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e The conduction band electrons are described well within an effective mass
approximation. The effective mass is low and thus favours a large Fermi
wavelength and therefore quantum confining effects.

To realize a quantum dot system in such heterostructures, the following
approaches are common for dividing the 2DES laterally in different functional
regions (see Fig.4.4):

e By using electron-beam lithography, structured metal electrodes — denoted
as split-gate electrodes [95]— are deposited on top of this heterostructure.
Such kind of structures were the first for studying Coulomb-blockade ef-
fects in quantum dot systems (see historic review by M. Kastner [96]). An
example is given in Fig.4.4a. In this case, the split-gate electrodes con-
sists of six electrodes, — three on each side: two outer electrodes and one
inner electrode. With applying negative voltages to these gate electrodes,
the electrons are electrostatically depleted below each gate: The 2DES is
divided into a small region between the gate fingers — the quantum dot —
and two large areas of 2DES acting as source and drain electrode to the
quantum dot. The heights and widths of the tunnel barriers are tunable
by the voltage applied to the outer gate electrodes. The inner gate elec-
trodes should screen the cross acting of the outer electrodes and act as gate
electrodes for the quantum dot.

e In an another approach, the 2DES is divided by etching grooves into the
heterostructure which are defined by electron-beam lithography. An exam-
ple is shown in Fig.4.4b. The diverse regions act as source, drain, gate
electrodes and the quantum dot. Since all these components are realized
in the same plane, such an arrangement is denoted as in-plane gate struc-
ture [97]. At the constriction between two etched grooves, tunnel barriers
are formed due to electrostatic depletion around the grooves which is al-
ways present due to negative surface charges trapped on the free surface
of GaAs and AlGaAs. The electrostatic depletion length is typically 0.1 to
0.2 pm for such 2DES reducing the actually size of the electron system in
the quantum dot respectively. In this realization the barriers are also tun-
able by the gate electrodes. The present design avoids problems of earlier
layouts [98], where the gate electrodes got partially depleted with negative
gate voltages.

e Instead of etching, a focused Ga-ion beam (FIB) has been used to distort
locally the 2DES leading to insulating lines which divide the 2DES in differ-
ent regions acting as source, drain or gate electrodes, and as the quantum
dot [99]. The technique has also been combined with the split-gate tech-
nique [100]. Risk is that single ions implanted by the FIB are trapped in
the region of the quantum dot causing disturbed confining potentials.

e Isolating lines in the 2DES are also obtained by a focused laser beam
inducing p-dopant diffusion from a surface layer into the heterostructure.
A single-electron transistor has been defined by this technique [101].
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Fig. 4.4. Examples of lateral 2D quantum dot systems: (a) 2D quantum dot defined
by partial electrostatic depletion of a 2DES with split-gate electrodes. Here the
2DES is located at a GaAs-AlGaAs heterojunction or GaAs quantum well (from
J. Schmid [92] after J. Weis [42]) (b) Lateral quantum dot system by dividing a 2DES
by etching grooves. The typical depletion length at an etched groove is between 0.1
to 0.2 pm, reducing the size of the quantum dot respectively. (from M. Keller [93]
after U. Wilhelm [94])
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e Recently scanning probes microscopes have been used to modify locally
the heterostructure by scratching or oxidizing the surface. The 2DES be-
comes depleted below the modified surface, allowing to divide the 2DES
into single-electron transistor arrangements [102, 103]. The technique also
allows to combine in-plane with split-gate technique.

With these techniques, quantum dots have been realized with a typical diam-
eter between 0.1 to 1 um. The leads are laterally arranged to the quantum
dot, i.e., electrical transport takes place in parallel to the plane of the het-
erostructure layers. That is why such realizations are denoted as lateral quan-
tum dot systems. Electron transport has to occur via the edge region of the
quantum dot. An advantage is the in-situ tunability of the tunnel barriers, a
disadvantage is that these tunnel barriers are long in their spatial extensions
and shallow in energetical height. ¢ The latter also restricts the magnitude
of drain-source voltage which can be applied. Recently, Ciorga and coworkers
[104] have demonstrated single-electron transport on a split-gate quantum
dot system, where the total electron number in the quantum dot could be
tuned starting with an empty dot.

Realizations of wertical quantum dot systems where electron transport
occurs perpendicularly to the plane of the heterostructure layers and therefore
via the whole area of the 2D quantum dot are sketched in Fig.4.5:

e The structure of Fig.4.5a was presented in 1988 by M. Reed and cowork-
ers [105] and further developed by M. Tewordt and coworkers, B. Su and
coworkers, Th. Schmid and coworkers (see references in [106]). Firstly a het-
erostructure is grown with a quantum well embedded between two highly
doped layers which are separated by thin layers acting as tunnel barriers.
In the second step a pillar is etched out of the heterostructure.

e S.Tarucha, D.G. Austing and T. Honda [107] have extended the structure
in a third step by a metal electrode surrounding the quantum dot (see
Fig.4.5b). This was an important step for exploring the energy spectrum
of atom-like quantum dots.

o Fig.4.5¢ shows a quantum-dot box used by R. Ashoori and coworkers [108]
for capacitance spectroscopy: The quantum dot is formed by means of a top
gate electrode producing an electrostatic depletion except in a small area
due to a larger distance of the gate metal to the quantum well. Tunneling
is only possible between quantum dot and substrate.

Such vertical quantum dot systems offer energetically high tunnel barriers.
They are defined by the conduction band offset of the grown layers which
has the drawback of not being in-situ tunable. However, since it is easy to
start with an empty quantum dot by choosing the right thickness of the layer

% Due to these properties, the tunnel barrier regions are very sensitive to local
potential fluctuations leading to local potential valleys acting as unintentional
quantum dots in series to the lithographically defined quantum dot [94, 93].
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Fig. 4.5. Example of a vertical 2D quantum dot systems (not on scale): (a) The
quantum dot system defined by etching a pillar out of a heterostructure with a
2DES embedded between two conducting layers. The quantum dot is coupled by
tunnel barriers to source and drain. (b) Full single-electron transistor: A metal gate
electrode around the quantum dot allows to change at fixed drain-source voltage
the number of electrons confined in the quantum dot. (¢) Quantum-dot single-
electron box: Thick barrier between quantum dot and top gate electrode prohibits
tunneling. The gate electrode allows for loading the quantum dot by tunneling from
the substrate site. Such a structure has been used for capacitance spectroscopy.

containing the quantum dot, beautiful experiments could be done [108, 5]
which demonstrate quantum dots with properties reminding on real atoms.
Quantum dots of various shape have been presented, — for instance, cir-
cular [107], elliptical [109], ring-like [86, 110], and irregular [111]. One should
have always in mind that intrinsic potential fluctuations due to donor dis-
tributions might break any symmetry intended by the lithography [93, 94].
The larger the device, the larger the risk of having these disturbed confin-
ing potentials. This is not unusual: Devices originally intended as quantum
wires break up into several valleys acting as a series of strongly or weakly
coupled quantum dots [112]. Quantum dots are found below the finger of
a split-gate structure [113] or in the depletion region of a split-gate defined
quantum point contact [114]. The characteristic might even change with each
warming-up and cooling-down cycle. Therefore, quantum dot system require
extensive characterization measurements by tuning several parameters:
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Although prepared in the same way, quantum dots are individuals
distinct more or less in their properties due to variations in the con-
fining potential.

Common of all mentioned quantum dot structures is that various ma-
terials are combined, and metal electrodes and charges are present to form
the quantum dot. The diverse regions of semiconductor heterostructures be-
have under experimental conditions, i.e., low temperature, either metal- or
insulator-like. Donors and acceptors are fixed in their charge state. Therefore
the diverse regions can be treated either as a metal electrode or as a dielectric
with a fixed charge distribution. 7 To determine the confining potential for
the electrons in the quantum dot, these ingredients have to be taken into
account. Finding an adequate description is goal of the following Sections of
this Chapter.

4.3 Popular Model of a Quantum Dot: The Constant
Interaction Model (CIM)

A simple model was proposed and elaborated in 1991 by different authors
[32, 115, 116]. To take into account the quantization of the kinetic energy on
the electron island, the single-electron energies ¢; due to the kinetic energy of
the electrons in are added to the electrostatic energy term (2.29) derived for
the metal island arrangement. The energies ¢; are measured with respect to
the bottom of the confining potential with is the conduction band minimum
e, where €§ is given relative to a common reference for the case of an

electrically neutral bulk material. This yields the total energy

N
Eot(N;{V3}) = Z (i +Eg) —ANe-

i=1

M
Co,j

= Cox

(ANe)?

IR VA
it 2Cox

(4.9)

where AN = N — Ny. Here, Ny denotes the total number of (conduction
band) electrons for the electrical uncharged quantum dot, i.e., Ny electrons
of the total number N are compensated in their negative charge by positive
background charges, and AN is therefore the number of additional electrons. 8

" The term ’semiconductor quantum dot’ found in literature has to be understood

as 'quantum dot being realized from a (at room temperature) semiconducting
material’.
Eot has also been written with AN being replaced by IV, the total electron num-
ber. There was some argueing [117] whether (Ne)?/2Cosx or N(N — 1)e?/2Cox
is the correct ansatz. As one can see from the discussion in Section 4.8.2, for a
pure Coulomb interaction between the electrons in the quantum dot, the ansatz
N(N — 1)e*/2Cox is more feasible. In case of nearby electrodes, the interac-
tion with the induced image charges have to be taken into account which are
seen even by the first electron, i.e., a dependence (Ne)?/2Cox might become
plausible, although not exact.
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Fig. 4.6. Energy scheme for the Constant Interaction Model: Single-electron en-
ergies €; are measured relatively to the bottom of the confining potential which is
the bottom €§ of the conduction band. The position of the bottom of the confin-
ing potential is shifted by —eVy with the electrostatic potential Vo of the island,
which depends on the electron number N and the electrostatic potentials of the
surrounding electrodes.

The energy spectrum describes the possible energy levels for the electrons in
an effective confining potential. One should note:

The single-electron energies &;+¢§ are assumed to be affected neither
by the electron number nor by the electrostatic potential changes on
the electrodes.

For charging the quantum dot with the (N + 1)th electron from a ref-
erence electrode with the electrochemical potential zero, not only the elec-
trostatic charging energy is required but also the energy for getting into the
first unoccupied single-particle state with energy e 1. Therefore the energy
difference AEot (N + 1;{V;}), which an electron feels between being located
on the quantum dot and being located on the reference electrode with the
electrochemical potential equal zero, is given by

AE‘cot(]\r +1; {Vz}) = Etot(N +1; {Vz}) - Etot(N; {Vz})

C = Co, 1 e
:€N+1+60—GZ@'V}ﬁ-(N—No-Fg)@. (4.10)
j=1

The charging energy is modified by 1 +€§ in comparison to (1.15). Chang-
ing N, the energy difference (4.10) defines energy levels for charging the
quantum dot, similar to what was used in Chapter 1. With other words: The
Constant Interaction Model with the ansatz (4.9) implies that

e a single-electron spectrum exists which is not affected by the number of
electrons in the quantum dot. Moreover,

89
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e the interaction between charges are only described by capacitances which
are independent of the electron number on the quantum dot. This founds
the name ’Constant Interaction Model (CIM)’.

Both are ad hoc assumptions usually not valid. ® A more accurate description
is developed in the following. A comparison between the Constant Interac-
tion Model and the general description in terms of an interacting N-electron
system is done in Section 4.8 and in Chapter 5. There the spectroscopy of
energy levels of a quantum dot is described, visible in electrical transport
experiments with increasing drain-source voltage.

4.4 Electrostatics of Realistic Quantum Dots: N
Electrons Embedded in an Inhomogeneous Anisotropic
Dielectric Medium with Charged Ions and Surrounded
by Metal Electrodes

As presented in Section 4.2, a quantum dot is usually defined in semiconduc-
tor materials by etching, by electrostatic depletion due to voltages applied
to gate electrodes, by local doping and/or by changing the stochiometry of
the compound semiconductor material. To find a more proper description
of a quantum dot confining N conduction-band electrons, we have first to
consider the physical elements, i.e., the electrostatic arrangement, modelling
the essentials of a real quantum dot. Thereafter we are able to derive in this
Section expressions for the electrostatic potential and the classical potential
energy of the electron system, needed to establish in Section 4.6 the Hamil-
tonian of a realistic quantum dot. This description was introduced in 1994
[42] and published in 1996 [78].

In Fig.4.7, the physical elements of a real quantum dot are sketched
in which N conduction-band electrons are confined. The negative electron
charges of these N electrons are partly or fully compensated by an explicitely
given charge density pion (1), — @ homogeneous positive background charge is
not assumed as usually done. The environment is composed of M metal elec-
trodes (1 = 1 to M) with fixed electrostatic potential V; and a dielectric
matrix, filling the volume V' between the electrodes, in which the electrons
are embedded. The dielectric matrix contains the contribution of the va-
lence band electrons being shifted against the positive nuclei lattice and is
described by the dielectric tensor e(r) which allows for the dielectric ma-
trix being anisotropic and/or inhomogeneous. Charged impurities, dopants
or trapped surface charges, usually present in real systems, are modelled

® The Constant Interaction Model has been applied to rather large quantum dots
of irregular shape to extract level spacings for a comparison with Random Matrix
Theory. The status is discussed in [118]. A detailed analysis [5] on experimental
data obtained on atom-like quantum dots shows some trues but also limitations
in the use of the CIM in such a case.
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Fig. 4.7. Sketch of the physical elements of the electrostatic environment present
for N conduction-band electrons confined in a real quantum dot. The electrons and
a fixed charge distribution pion(r) are embedded in a dielectric matrix which fills
up the space V. The properties of the dielectric matrix are decribed by e(r). M
metal electrodes (i = 1 to M) of fixed electrostatic potential {V;} enclose the whole
space V by their surfaces {S;}.

by the charge distribution pion (7). The quantities €(r) and pion(r), and the
shape and position of the metal electrodes are considered as being given for
a certain arrangement. They are unaffected by the redistribution of the N
movable electrons.

These electrons are treated as point charges at the positionsr; € V, s =1
to N, i.e., the electron charge density pei(r) is written as

N
pa(r) = —62(53(1‘ -7 . (4.11)

Each electron s at location 75 is interacting with the charges present on the
electrodes, with the fixed charge distribution pion () and with all other (N —1)
electrons.

The total electrostatic potential & (r) at location r between the elec-
trodes (r € V), in the presence of the N electrons, is determined by the
Poisson equation under the boundary condition of defined values {V;} on the
surfaces {S;} of the M electrodes:

—Vr{e€e™) - Vo BN (7))} = pion(r) + pa(r) , ifr €V,

(4.12)
@N(T)ZV;' ,ifreS;.

Because of the linearity of (4.12), the total electrostatic potential @y (r) can
be written as a sum of three contributions: ®g(r) of the electrodes, $ion ()
of the fixed charge distribution and & () of the N electrons,
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@N('r') = @E(r) + ¢ion("') =+ ¢e1("') . (413)

Each of these potential contributions has to fulfill either the Poisson equation
or the Laplace equation with specific boundary conditions. For the following
discussion it is convenient to satisfy the boundary conditions of (4.12) on the
electrodes entirely via $g(r), i.e., demanding $g(r) = Viifr € S; (i =1
to M). Therefore, due to (4.13), the other potential contributions @ (r) and
®;on () have to vanish on each electrode, i.e., Pei(r) = 0 and Pipn(r) = 0 if
r € {S;}. Then & (r) is the electrostatic potential caused by the electrons
and o, (r) the electrostatic potential caused by the ions in the presence
of grounded electrodes, whereas @g(r) is the electrostatic potential of the
system when the electrodes are set to their respective potential values V;
but the electrons and ions are absent. Therefore, the electrostatic potential
contribution @ (7) of the N electrons obeys the Poisson equation

~Vr{eoe(r) ¥, Palr)} = palr) i r eV, (4.14)
Bei(r) =0 ,if r € {S;} .

The electrostatic potential contribution @;,,(7) due to the fixed charge dis-
tribution has to fulfill the Poisson equation

—V,{€(r) - Vo Bign(r)} = pion(r) ,if r €V,

4.15
¢ion(r) = 0 ) lf T E {Si} . ( )
The solutions for (4.14) and (4.15) can be expressed by
Bion(T) = / pion(r") - G(r,7") &7’ , (4.16)
%
N
Bo(r) = / pa(r') - G(r,r') d®r' = —e)_G(r,m,), (4.17)
14 s=1
where the Green’s function G(r,r') is the solution of
-V, r)-V,G(r,r")} =8@r -2, ifreV,
{eoe(r) (r,r")} = 6% )i (4.18)

G(r,7")=0 ,if r e {S;}.

For the last result in (4.17), expression (4.11) has been inserted. The relations
(4.16) and (4.17) show: By multiplying the Green’s function G(r,r’) with
the charge g, the electrostatic potential is obtained at location r, caused by
the charge ¢ located at position 7' € V, in the case of all electrodes being
grounded, i.e., V; =0 for i = 1 to M. The associated dielectric field is due to
(2.3) and (2.4) described by

D(r) = —€oe(r) - VoG(r,7') - q . (4.19)

The electrostatic potential contribution g (r) due to the electrodes at
certain potential values V; (i = 1 to M) obeys the Laplace equation
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V. {eoe(r) - V. Pg(r)} =0 ,ifreVv,

' (4.20)
Pp(r)=V;,ifres;.

The solution @g(r) of (4.20) can be written as a superposition of contribu-
tions from each electrode

M
=Y )V (421)

where the dimensionless «;(r) are determined by
V,{eoe(r) - Vroa;(r)} =0, ifrev,

1 ,ifresS;,
oi(r) _{0 freS withizj. (222

Physically, a;(r) - V; describes the electrostatic potential of the system with-
out electrons and ions, with the potential of the electrode ¢ fixed to V; and
all other electrodes grounded. These functions a;(r) were named electrostatic
potential profile of electrode i in Chapter 2 and used to express the capaci-
tance coeflicients C;; between electrode i and electrode j.

The functions a;(r) and G(r,r') are determined by the shapes and geo-
metric arrangement of the electrodes and the dielectric medium in between.
They are independent of the electrostatic potential {V;} of the electrodes.
But they are not independent themselves. Indeed, «;(7) can be expressed by

G(r,r"):

Using the integral definition of the delta function, relation (4.18) and
the product rule of differential calculus, we obtain

(r) = /V S (r'— 1) - aa(r) dor”
/V{eoe )V G(r',7)} - ai(r') dr'
v
/ — Vi {eoe(r' )V G(r',7) - a;(r") } &r'
v
+/ {eoe(®") Vo G(r',7) } - Vi as(r') &3 .
v

Applying Gauf}’s law to the first integral, and considering the symme-
try of the dielectric tensor in its components for the second integral,
one finds

Cl,'(’f‘) = —f {606 )V,.l G ’I‘ ,Tr } Cl, dSI
S

+ / {eoe(t") Uy as(t")} - Vo G 7) P |
|4
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The surface integral over S covers all electrode surfaces (S = {S;})
and, therefore, encloses the whole space V' between the electrodes.
The surface element vector dS directs normal inward into the elec-
trode, i.e., normal outward to the surface of V. Since a;(r') = 0 for
r' € S; (j # i), the surface integral has to be taken only over the
surface S; of electrode i, on which «a;(r') = 1. The volume integral
vanishes due to Gauf}’s law, (4.18) and (4.22).

Therefore, the relation looked for is
ai(r) = — ]{ {coe(t") Vo G(r',7)} dS, . (4.23)
Si

What is expressed by this relation? The integrand times charge g represents
according to (4.19) the dielectric field D(r') at location ' caused by the
point charge ¢ at position r. Thus

—q-a;(r)=q- fs'{eoe(r')Vrz G(r'\r)} dS; = - ﬁ'D(r') dS; = 6Q;
l l (4.24)

determines due to Gauf} the image charge §@; on the surface S; of electrode ¢
induced by this point charge ¢ located at 7. Since Efil a;(r) =1 (see (2.9)),
the total charge, induced on all electrodes by a charge ¢ at position r, sum
up to the counter charge —q = Zzﬂil 0Q; (see Fig.4.8a).

In Chapter 2, it was pointed out that a;(r)-V; represents the electrostatic
potential at location 7, if the electrode 7 is set to V;, the other M electrodes
are grounded and p;on(r) = 0 (see Fig. 4.8b). Combining both physical inter-
pretations of «;(r) reveals an equivalency for interpreting q - a;(r) - V;: The
charge ¢ possesses the electrostatic energy ¢ - a;(r) V; which is equal to the
work which was done to transfer the image charge —q - a;(r) onto the elec-
trode ¢ with potential V;. We will refer to this equivalency — denoted as the
electrostatic reciprocity between charge/image charges and potential/electrode
potentials — in several contexts (see discussion to (4.39) and Chapter 7).

Assuming that the Green’s function of the electrostatic arrangement is
known, the total electrostatic potential @y () of N electrons can be expressed
by combining (4.13), (4.16), (4.17), (4.21), and (4.23), as

ON(r) = Dol + Pion + PE
N M
= - ZeG(r,rs) + /pion(r') G(r',r) d®r' + Zai(r) Vi. (4.25)
s=1 v i=1

This expression takes into account the electrostatic potential of the electrodes
{Vi}, the fixed charge distribution pion(r), the N electrons, and the image
charges on the electrodes induced by pion(7) and the N electrons. Due to (2.4),
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(a) 6Qi=-0(i(?)-q (b) d(r)= Ziai(?)'\/i

Fig. 4.8. The twofold meaning of the dimensionless function «;(7): (a) Putting
a charge ¢ to position 7 induces the additional image charge §Q; = —a;(7) - ¢ on
electrode ¢ if the electrodes’ potentials V; (j = 1 to M) are fixed. Therefore a;(r)
gives the fraction of image charge induced on electrode 7. (b) The electrostatic
potential @(r) at position 7 is proportional to the electrostatic potential V; of
electrode i. The proportionality factor is given by a;(r).

the electric field E(r) present in the arrangement at position r is obtained
by

E(r) = —V,o(r) (4.26)

Let us consider for the moment such a system containing not N but s —1
electrons. Taking one electron from a reference electrode with electrostatic
potential zero and putting it to position 7, while keeping the electrostatic
potentials {V;} of the electrodes fixed, work has to be performed: 1° The
electron feels along its way the electric field —V,.@,_; (), caused by the (s—1)
electrons already present, by the ion charge distribution pion(r) and by the
gate electrode potentials {V;}. They finally contribute by —e &,_1(r5) to the
potential energy of the electron s at position rs. However, the electron induces
its own image charges on the electrodes also contributing to its potential
energy. Like it was done for obtaining the electrostatic energy of the charge
Qo on ametal island (see (2.29)), the potential energy AE;(:))t (r) of the electron
s at position r is obtained by integrating the differential electrostatic energy
contributions {®;_1(r) + ¢G(r,r)} - dg from ¢ = 0 to ¢ = —e, leading to

—e

BER() = [{@u1()+4-Grim) } dg = —e8y1(r) + 162 Gl )

0
(4.27)

10 The system fulfills charge conservation, i.e., the total charge of the system is
uneffected, since respective image charges are induced on the electrodes.
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One should note, the force F'(r) felt by the electron s at position r is obtained

from the gradient of AE')

ot (T) in position,

F(r) = -V, [AE(S)

pot

(r)] = eV, B, 1(r) — 1’V,G(r,7),  (4.28)

which is different to —e- E(r), where E(r) is the electric field in the arrange-
ment at position 7 given by (4.26),

—eE(r)=eV,8,(r) =eV,b,_1(r) — *V,G(r,T) . (4.29)

Comparing the second term of (4.28) with that of (4.29), it deviates by the
prefactor % since this force contribution is induced by the electron charge
itself. 1!

The potential energy Epot(IN) for a total of N electrons in the arrange-
ment is found by adding one electron after the other from the reference elec-
trode to its positions into the system while keeping the electrostatic potential

of all electrodes constant:

N N
Epou(N) = Y BES (1) = - [~ e i(n) + 162 Glraym)| - (4:30)

s=1

Inserting @;_1(7s) from expression (4.25) yields for the potential energy of
N electrons confined in the quantum dot

N s—1

Epot(N) = Z [Z e’ G(rs,ry) + 1> G(rs,15)

s=1 Fs'=1

(4.31)

The first term of (4.31) represents the electrostatic electron-electron energy,
the second the electrostatic self-energy of the electrons for the given electrode
arrangement and the dielectric matrix. Both are determined by the Green’s
function. The third term takes into account the ion charge distribution, the
fourth term the electrode potentials. Also their contributions are expressed
by the Green’s function.

! The factor 1 in the second term of (4.28) is also found in the force between two

charged conductors in a capacitor arrangement, — due to the same reason.
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4.5 Electrostatic Green’s Function for Special
Arrangements

The electrostatic Green’s function was defined by (4.18). For a homogeneous,
isotropic dielectric medium without any electrodes, the Green’s function is

G(m)(r,rs) = 1

= . 4.32
dmege |1 — 15| (432)

Multiplying with the electron charge —e yields the well-known Coulomb po-
tential at r caused by an electron at position 7. If we put a second electron
a position 7 = 7y, the Green’s function (4.32) describes a pure Coulomb
interaction between both electrons (compare first term in (4.31)). In pres-
ence of electrodes or an inhomogeneous dielectric matrix, G(rs, ry) deviates
from (4.32) taking into account the induced image charges. The electron-
electron interaction is therefore reduced by the presence of the metal elec-
trodes in comparison to the pure Coulomb interaction. This is understood
by a simple example (see Fig.4.9c): Two electrons are confined in the (z,y)-
plane between two parallel metal plate electrodes at distances di and da (see
Fig.4.9¢(right)). These are, for instance, electrons of a 2D quantum dot be-
tween parallel electrodes. The Green’s function for the more general case of
this arrangement (see Fig. 4.9c(left)), has been derived 1996 by Hallam, Weis
and Maksym [78]. Expressed by the point to point separation, projected into
the (z,y)-plane, p = ry| — 1y where 75, 79| denote the in-plane component
of r; or ry, respectively, and the z and 2’ coordinates of these points, the
solution for Fig.4.9c(left) reads in a two-dimensional Fourier representation
as

1

G(rs,re) = G(p; 2,2') = (§> /gk(z,z')exp(ik p) &’k (4.33)

with the Fourier transform gg(z, 2') for given z, 2’

sinh(k - {dy + d» — 2'}) sinh(k z)

0 < ,
eoeksinh(k-{d1+d2}) ,if0<z< 2

9r(2, z’) =
sinh(k 2') sinh(k - {d1 + d» — z})
€o€ k sinh (k . {dl -+ dz})

,if 2! <z2<di+dy.
(4.34)

Special cases of (4.34):
e The electron-electron interaction in a plane parallel to the electrodes (z =

z' = di, see Fig.4.9¢c(right)) is therefore determined by

11 [ fk
Glpidi, dh) = Arege 2 gc :

exp (zk p) a2k (4.35)
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(a) Free space: (b) One plane electrode:

Metal Electrode

Origin
(¢) Two parallel electrodes: Origin
Metal Electrode
z—+ o,
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z7+ d
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Fig. 4.9. Electrostatic electron-electron interaction: (a) In free space, the interac-
tion between two electrons located at 75 and 7, is decribed by the Green’s function
of infinite space, i.e., a pure Coulomb interaction. (b) The presence of a metal elec-
trode screens the electron-electron interaction. (c) Left: For two parallel electrodes,
the Green’s function is known (see (4.34)). It contains as limits the cases (a) and
(b). (c) Right: Electrons restricted to a plane between the electrodes simplifies the
description (see (4.35)). (d) The electron-electron interaction is also affected by the
polarization at interfaces between media of different dielectric constants.

with
_ 2sinh(kd,) sinh(kds)

fth) = sinh(k - {di + d»})

e For large electron-plate separations (d;y — oo and d2 — o0), f(k) becomes
unity and (4.35) reduces to the pure Coulomb interaction potential.

(4.36)
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e For only one plate electrode close-by, i.e., dy > di, f(k) reduces to f(k) ~
1 — exp(—2kd,), leading to the electrostatic electron-electron interaction

78
—1/2
11 4d12> '

Grg,my) = ——— 31— (1422 . 4.37

07 = frgge |p|{ (5o 30

For small electron-electron distances |p| < d1, the interaction follows 1/|p|,
whereas for |p| > di, the screening by the plate electrode leads to an
interaction following 1/|p|®>: Two electrons at a distance d in front of a
plane metal electrode feel at large distances |rs — 7| > d between them
only the dipole formed by an electron and its image charge on the metal
electrode.

The discussed examples shows clearly that the electrode arrangements de-
termines the electron-electron interaction. This is also true for the self-energy,
governed by G(rs,7s) which gives divergent energy contributions. However,
the self-energy term in (4.31) cannot just be excluded from the sum since it
contains the contributions of the electron with its image charges induced on
the electrodes. For a continuous charge distribution, techniques are known to
overcome the self-energy divergency. Since later, quantum mechanical expec-
tation values are calculated and the electrons are represented by a continuous
wavefunction in space, the self-energy divergency need not be cancelled for
the following. A discussion how to exclude this self-interaction term at this
stage is done by Hallam, Weis and Maksym [78].

4.6 Hamiltonian of N Electrons Confined in a Realistic
Quantum Dot

We consider a realistic quantum dot, as discussed in Section 4.4 and schemat-
ically depicted in Fig.4.7, containing N (conduction band) electrons. The
Hamiltonian for these electrons is obtained by adding the kinetic energy
Zi\rzl{psz/@m:) + €5 (r5)} to the potential energy Epot(N) of (4.31). By
replacing the moment vector p, and the position vector rs of the electrons
by their respective operators ps; and ¥4, the Hamilton operator H for the
N electron system with fixed electrostatic potential at all electrodes can be
written in coordinate representation (£5 = 7,) as

A(N; {V}}) = [ 2‘;’5* _ e@ext(rs)] + %Z 3 P G(r,ry) (438

with the ezxternal or bare confining potential

Bext (1) = Pion(r) — 1eG(r,r) + Pp(r) — eS(r)/e
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= /Vpion(r') G(r',r) &®r' — LeG(r,7) + Zai(r) Vi—e(r)/e.

(4.39)

Energetical differences in the conduction-band minima between the different
materials have been taken into account by the position-dependence of £§ (r).
For considering a local variation of the effective mass due to the local variation
of the material, the kinetic energy operator has to be modified (see [74]). Such
a general treatment including band structure effects is beyond the scope of
what should be discussed here. Let us now have a closer look to the different
terms of the Hamiltionian derived.

4.6.1 Electron-Electron Interaction

The electron-electron interaction in the quantum dot is described in the
Hamilton operator (4.38) by the term

1NN
Hel,el = 5 Z Z 62 G("'s;"‘s’)
s=1 g'=1
s#s’

and is therefore directly given by the electrostatic Green’s function for
the given electrode arrangement and dielectric matrix. Hence, the electron-
electron interaction is reduced by the presence of the metal electrodes in
comparison to the pure Coulomb interaction « 1/|rs — 7y | between two point
charges as was explained in Section 4.5. That is, the electrode arrangement
determines the electron-electron interaction. This modification is especially
important in cases where the diameter of the quantum dot is comparable
to distances to metal-like electrodes [78]. In vertical quantum dot systems
presented in Fig. 4.5, the source and drain leads are only separated by tunnel
barriers of few tens of nanometers whereas the quantum dot diameter is in the
range of hundred nanometers. Therefore in such structure, the close-by leads
might screen 12 the electron-electron interaction in the embedded quantum
dot. 13

Also an inhomogeneous dielectric matrix or a dielectric mismatch causes
modifications of a pure Coulomb interaction. For instance, such dielectric
mismatch is found at the surface of an etched structure, at the interfaces of
heterostructures [74], at semiconductor/insulator interfaces or at the surface
of colloidally prepared semiconductor clusters with organic surface passiva-
tion [119]. These modifications are also taken into account by the Green’s

12 Metal electrodes or the dielectric screen the electron-electron interaction. Fixed
ion charges do not screen but compensate for electrical charges.

13 Usually calculations refering to the experiments using these structures assume
a pure Coulomb interaction adopting the dielectric constant € and the confining
energy to the experimental results.
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function (4.18) describing the complete electrostatic arrangement. Recently
in 2001, Orlandi and coworkers [120] calculated spherical quantum dots with
a radial dielectric mismatch. The respective Green’s function is found there.
For a quantum dot embedded in a matrix of lower dielectric constant, the
electron-electron interaction is enhanced, and also the many-electron states
in the quantum dot are modified compared to the case without dielectric
mismatch.

4.6.2 External Confining Potential

The external confining potential Pexy(r) for the electrons which depends on
the arrangement but not on the electron number N is given by (4.39). The
contributions are interpreted in the following, and sketched in Fig.4.10:

1. The first term ®;on(r) describes the electrostatic potential contribution
caused by the fixed charge distribution pion (7) if the electrostatic poten-
tials of the electrodes are set to zero. Image charges of this ion charge
distribution induced on the electrodes and seen by the electrons are taken
into account by the Green’s function G(r,r') (Fig.4.10a).

2. The second term —1e-G(r,r) contains the interaction of the electron at
position 7 with its own image charges on all the M electrodes. This term
was already mentioned at the end of Section 4.5. The following examples
may illustrate its importance: An electron in front of a metal electrode
(Fig.4.10b) is attracted by its image charges, i.e., its electrostatic po-
tential varies with its position r relative to the metal electrode. It is
the origin, for instance, of the Schottky effect of lowered barriers in field
emission devices. It contributes to the external confining potential since
it does not depend on the position of the other electrons, only on the
position of the electron itself in the arrangement. Also interfaces, giving
a local change in the dielectric properties, create a contribution to the
confining potential via G(r,r) [74]. An example is given in Fig.4.10b.
Goldoni, Rossi and Molinari [121] proposed using the dielectric confine-
ment for enhancing exciton binding energies in nanostructures. A dielec-
tric mismatch can be either attractive or repulsive for the electrons.

3. The third term @g(r) in (4.39) depends linearly on the electrostatic po-
tentials {V;} of the electrodes: The electrostatic potential change of an
electron at position r due to a change in the electrostatic potential V;
of electrode 4 is proportional to the fraction of image charge e a;(r) (see
(4.22)) induced by the electron on the electrode i,

Pext (1) X ea;(r) -V . (4.40)

This reflects the electrostatic reciprocity (see discussion to (4.22)). Volt-
ages applied to gate electrodes can be used intentionally to change the
bare confining potential of the quantum dot [111, 109].
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Fig. 4.10. Contributions to the external confining potential of the quantum dot:
(a) A fixed charge distribution with its image charges. (b) The image charge of
a single electron induced on a metal electrode. Also the field induced polarisation
of an interface between dielectric media of different electric constants attracts the
electron to the interface if € < €® or repels the electron from the interface
if € > €®. (c) The electrostatic potential differences between the electrodes
define an electrostatic potential landscape. (d) The variation of the conduction-
band minimum due to material varying with position.

4. The last term &5 (r) describes a position dependent conduction-band min-
imum due to different materials at positions of the quantum dot. It in-
cludes, for instance, the conduction-band offset at heterojunctions or the
steep confinement present at etched surfaces due to the transition to vac-
uum (see Fig.4.10d). Surface charges usually present on such surfaces
and repelling the electrons from such surfaces are modelled by the first
term in (4.39) via pion (7).
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To emphasize, the external confining potential $eyi(r) is not equal to the
electrostatic potential profile with no electrons present in the quantum dot.
The latter neglects the second term —Le-G(r, ') describing the contribution
due to the own image charges. One should also be aware of that the external
confining potential is different to the effective confining potential seen by the
single electrons in a Hartree- or Hartree-Fock-like ansatz.

4.7 Energy Spectrum, Groundstate, Excited States, and
Addition Spectrum of an N-Electron System Confined
in a Quantum Dot

Due to the wide variety of arrangements for a quantum dot, the exact solution
of the Schrodinger equation for N electrons in a quantum dot cannot in
general be given. In this Section, firstly a notation is introduced labeling the
N-electron states starting from the groundstate of the N-electron system.
Then some approximations for treating N interacting electrons in a quantum
dot are briefly mentioned. Thereafter, the total energy spectra of a parabolic
2D quantum dot with one, two and three electrons are presented to emphasize
the importance of talking in terms of few or many-electron states instead
of single-electron states when discussing in general the electronic properties
of quantum dots. Finally the concepts Addition Spectrum and FExcitation
Spectrum are distinguished.

4.7.1 Exact Solution of the N-Electron Schrédinger Equation

The energy spectrum of the quantum dot, filled with N electrons, is obtained
by solving the N-electron Schrédinger equation

H(N;{Vi}) |V, 1:{V;}) = E(N,1;{Vi}) - [N, ;{Vi}) . (4.41)

E(N,1;{V;}) denotes the total energy of the state |N,I; {V;}) of the N elec-
trons in the quantum dot. The number ! stands for a multiplet of quantum
numbers which have be chosen properly for characterizing the states of the
N-electron system. Good quantum numbers are found for quantum dots pos-
sessing certain symmetries, leading to integrals of motion (like angular mo-
mentum), but also other quantities like the total spin or the spin projection
characterize the N-electron system as quantum numbers. Irregular shaped
quantum dots usually do not offer integrals of motions. Nevertheless for each
set of parameters N and {V;}, it should be possible to denote the N-electron
states definitely. To avoid explicit quantum numbers in the following, the
states are labeled by [ = 0, 1,2, - - -, starting from [ = 0 for the groundstate of
the N-electron system in the quantum dot. The excited states are numbered
unambiguously with increasing energy, i.e., E(N,[;{V;}) < E(N,l+1;{V;}),
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allowing also for degeneracy due to the spatial symmetry of the quantum dot
or due to the spin, for instance.

None has solved the N-electron system for arbitrary confining potential
and electron-electron interaction. The physics of quantum dots is rich

e due to the variety of the external confining potenial, — for instance, with
or without geometrical symmetry,

e due to the variations in screening the electron-electron interaction, and

e due to different relative magnitude of quantization energy by confining and
electron-electron interaction energy.

The Schrédinger equation (4.41) covers in one limit metals, in the other limit
single atoms. The interesting physics in the interplay between confinement
and electron-electron interaction leading to correlations between the electrons
is found between both limits.

4.7.2 Approximations for Treating IN Electrons in a Quantum Dot

Models for quantum dots have been investigated and applied to certain ex-
periments. A more complete presentation of the large amount of theoretical
work which has been done is found in the collection of diverse reviews [7, 6, 8].
Here we emphasize only certain aspects.

o Usually a box-like [122] or parabolic confining potential [123, 124] is as-
sumed for describing the shape of the external confining potential. The
latter gives a first approximation to a local minimum in a potential land-
scape of the true external confining potential.

e With few electrons in such a system (less then 10), the Hamiltionian of the
interaction electrons can be exactly solved numerically with reasonable
effort. As the base for the few-electron wavefunction, the superposition
of Slater determinants with single-electron states fitting to the external
confining potential are used and the Hamiltonian in the matrix presentation
of this base is numerically diagonalized (see, for instance, [122]).

e For high electron numbers approximations have to be done — usually based
on Hartree or Hartree-Fock-like states. An effective confining potential is
obtained for the single electrons. Single-electron states are obtained with
eigenenergies €;. These might be more adequate to be used in the Constant
Interaction Model than those electronic states and single-electron energies
found for the external confining potential.

e For high electron numbers, the Thomas-Fermi approximation has been
used combined with Poisson equation [125].

e Usually for the description of a quantum dot, a 1/|r — 7'| interaction is
assumed (see, for instance, [122, 123, 124, 126]). As pointed out, this is
equal to the Green’s function of the infinite space filled by a homogeneous
dielectric medium.
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o If the Poisson equation and Schrédinger equation are solved self-consistently
[127] for a given electrostatic surrounding, image charges are taken into
account by the boundary conditions for the total electrostatic potential.
These calculations are usually based on a Hartree-like or a Hartree-Fock-
like ansatz. Correlation effects between the electrons (besides exchange
interaction) are excluded by such an ansatz since those are not described
by a single product ansatz of single-particle states (for instance, by a sin-
gle Slater determinant). Functional density methods are used for improving
here [128].

e Spherical symmetry in the bare confining potential and in the Coulomb
interaction leads to a shell-like structure in the energy spectrum minimizing
the energy for adding an electron to the quantum dot for certain 'magic’
numbers. It reminds on the variation of the ionisation energy in the periodic
system of real atoms. Hund’s rule is found, well known for real atoms. A
generalized Hund’s rule can be derived for such quantum dots in magnetic
fields [129].

e Correlationsin the spatial position of the electrons are found for low density
quantum dots, since the electrons prefer due to the electrostatic Coulomb
interaction certain configurations between point charges.

e The modifications of the few-electron states in a 2D quantum dot by screen-
ing the electron-electron interaction by parallel plate electrodes was inves-
tigated by Hallam and coworkers [78].

e For an electron-electron interaction term following 1/|r — r'|? instead of
a pure Coulomb interaction, even analytical solutions have been found for
parabolic confining potentials [7]. Such an ansatz mimicks screening of wide
range Coulomb interaction.

e For large quantum dots of irregular shape, the Constant-Interaction Model
has been applied to extract single-particle energy level spacings and com-
pare it statistically with Random Matrix Theory (for review: [118]).

e A systematic comparison between CIM model and experimental data was
presented by L. Kouwenhoven, D.G. Austing and S. Tarucha [5] for vertical
quantum dot systems, denoted as atom-like quantum dots where the quan-
tization energy due to confining just dominates over the electron-electron
interaction. Some trues but also limitations of the CIM are presented. Mod-
ifications due to electron exchange interaction and correlations have to be
taken into account for a proper desciption of the experimental data.

Applying a magnetic field B modifies the electronic states of the quantum
dot. That is why the magnetic field is an important tuning parameter to learn
more about the realized quantum dot and the confined interacting few- or
many-electron system. The effect is stronger for quantum dots than for real
atoms since the magnetic confinement — expressed by the cyclotron energy
hwe = e B/m} — increases with 1.7 meV per Tesla for the effective mass in
GaAs, i.e., exceeds at few Tesla the typical quantization energy hwg given by
a parabolic electrostatic confining. The Zeeman energy Ez = gugB is small
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(0.33 meV/T) since the Landé g-factor for GaAs is only g = —0.44. The
following remarks to quantum dots in magnetic fields:

e The single-particle states of a 2D quantum dot with a parabolic external
confining potential are described in a perpendicular magnetic field by so-
called Fock-Darwin states [130, 131].

e With the first experiments in 1991 on 2D quantum dots in high magnetic
fields the Thomas-Fermi approximation has been applied [125] leading to
so-called compressible and incompressible regions [132] in the quantum dot.
It was the first demonstration that the CIM model is not the adequate
description for such a quantum dot system.

e Most of the calculation on few-electron quantum dots focus on changes in
the energy spectrum with applying magnetic field. Since an in-situ tunable
parameter, it allows to reveal correlation effects —like, for instance, a singlet-
triplet transition induced by magnetic field [133].

4.7.3 N Electrons in 2D Quantum Dot With Parabolic Confining
Potential and Pure Coulomb Electron-Electron Interaction: The
Total Energy Spectrum

To demonstrate the complexity of an interacting N electron system already
in a simple example, the total energy spectra are shown in Fig.4.11 for one,
two and three electrons in a 2D quantum dot with a parabolic confining
potential:

e A single electron in the quantum dot has a groundstate energy E(N =
1,1 = 0) = hwo and an excitation spectrum revealing an equidistant ladder
of energy levels.

e For two electrons in the system, the total energy E(N = 2,1 = 0) for the
groundstate includes the kinetic energy of both electrons and the electron-
electron interaction. Important to realize, the excitation spectrum of this
two-electron system does not reflect simply the excitation of the electrons
in higher single-particle states with constant electron-electron interaction.
It is more complex.

e With three electrons, the excitation spectrum becomes already dense at
low excitation energies, i.e., below the confining quantization energy hwy.

To keep the discussion for electrical transport through quantum dots general,
such an energy spectrum asks to talk of few- or many-electron states on the
quantum dot instead of single-electron states.

4.7.4 Addition Spectrum and Excitation Spectrum of a Quantum
Dot

To describe the rearrangement of electrons between quantum dot and elec-
trodes, it is convenient to introduce the minimum energy which is required
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Fig. 4.11. Total energy spectrum of one, two and three electrons in a two-
dimensional parabolic confining potential assuming hwo = 2 meV and a pure
Coulomb electron-electron interaction. The parameters are m; = 0.067 m. and
€ = 12.4 leading to an effective diameter (4.8) for the quantum dot of D = 45 nm.
The electron-electron interaction between two electrons dominates the quantization
energy hwo. The system with one electron has been denoted as QD Hydrogen, with
two electrons as QD Helium, and with three electrons as QD Lithium (adopted
from D. Pfannkuche and S. Ulloa [134]).

to add the next electron from a reference electrode to the quantum dot when
already N electrons are present there in their groundstate. This addition
energy w(N + 1;{V;}) is defined by the difference between the groundstate
energy E(N +1,1 =0;{V;}) of (N +1) electrons in the quantum dot and the
groundstate energy E(N,l = 0;{V;}) of N electrons in the quantum dot,

WN +13{Vi}) = B(N +1,1 = 0;{V;}) - E(N,l = 0; {Vi}) . (4.42)

It is sometimes denoted as the (electro-)chemical potential of the quantum dot.
Starting with IV electrons in the quantum dot and adding the next electron,
this energy is the analogous of the affinity of real atoms. The other process
— starting with IV electrons in the groundstate and taking off one electron
to the reference electrode with electrochemical potential ug" — reflects an
ionisation process of the quantum dot and requires the minimum energy

P+ BN = 1,1 = 0:{Vi}) = BV, 1 = 0:{Vi}) = u" — u(N3 {Vi}).
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The energies u(N;{V;}) with N = {0,1,2,---} are defining an energy
ladder, which will be used in the next Chapter 5 to describe the thresholds
for single-electron transport through a quantum dot and generalize the energy
ladder introduced in Chapter 1. Variations in the level distance of this energy
ladder !4

AEaqa = p(n + 1;{Vi}) — p(n; {V;}) (4.43)
withn=--N—1,NN+1---

are referred as addition spectrum of the quantum dot and should not be
mixed up with the excitation spectrum of the quantum dot of a fixed electron
number,

AEexc = E(n,l # 0;{Vi}) — E(n,0;{V;}) (4.44)
withn=---N—1,N,N+1---.

These quantities are indicated in the energy spectrum depicted in Fig.4.11.

4.7.5 Collective Excitations and Single-Particle Excitations

It is worthwhile to emphasize that different kind of excitations might exist
in quantum dots:

e Exciting an electron from a single-particle state to a single-particle state of
higher energy and thereby creating a hole at lower energy is denoted single-
particle excitation (see Fig.4.12). These are the only excitations described
in the Constant-Interaction Model.

e Electron systems in quantum dots with a parabolic confining potential
characterized by hwy and bare Coulomb interaction obey the Kohn’s the-
orem [135] which allows to separate between the center-of-mass motion of
the whole electron system and the relative motion of the electrons. Far in-
frared spectroscopy on 2D quantum dots [136] reveals this center-of-mass
motion as a collective excitation of the electron system. It is quantized
in hwg independently of the number N of confined electrons. Applying a
magnetic field, so-called magneto-plasmons are found as collective exci-
tations [136]. Those can still be found if a slightly anharmonic potential
contribution is introduced [137].

e As indicated in Fig.4.12b also vibrational or rotational collective excita-
tions might be observable. Those have been predicted for electron systems
in quantum dots dominated by Coulomb interaction. For large electron
numbers, a hydrodynamical model might be applicable [138, 139].

4 In literature the term 'addition energy’ is also used to denote the quantity p(n +
1; {Vi})—pu(n; {V;i}) instead of our association with p(n+1; {V;}). Both definitions
are in use.
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Different
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Fig. 4.12. Examples for various kinds of excitations which might exist for the few-
or many-electron system confined in a quantum dot: (a) Single-particle exitations:
Single electrons are lifted to single-particle states of higher energy. (b) Excitations
in the collective motion of the electrons, i.e., for instance, center-of-mass motion,
rotation, vibration, or breathing. For a large number of electrons, these excitations
are plasma-like excitations. (c) Spin texture in which excitations, i.e., spin-waves
or skyrmions, can occur.

e High magnetic fields applied to a two-dimensional electron system freeze
the motion of the electrons so that the electron-electron interaction in the
system leads to correlated states which have been related to states present
in the Fractional Quantum Hall Effect or in a Wigner solid. Collective ex-
citations within a spin-texture — so-called skyrmions —have been predicted
(for instance, [140]). Similar excitations can be expect under circumstances
also for 2D quantum dots, denoted as quantum Hall droplets. For such sys-
tems low-lying charge density excitations have been predicted (for instance,
[141]).

Within the Constant Interaction Model, there is an obvious identity of
addition spectrum and excitation spectrum: Single-electron states are consec-
utively filled with adding single electrons, and are also used for single-particle
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excitations. For collective excitations in real many-electron systems, such a
correlation is not obvious. D. Stewart and coworkers [142] reported from their
experiments some correlations in comparing the addition and the excitation
spectrum of a rather large quantum dot.

4.8 Is the Concept of Capacitance Coefficients for a
Quantum Dot Reasonable?

To describe the effect of Coulomb blockade and single-electron charging, the
concepts of capacitance coefficients were introduced in Chapter 2. The defi-
nition (2.12) of capacitance coefficients C;; are based on the assumption of
the existence of surface charges at the electrodes where the dielectric field
ends. This treatment involves that the bulk density ng of free electrons in
the electrodes is sufficiently high in order that the external dielectric field
can end on the surface charge within atomic distances near the surface of
electrodes. Due to the Thomas-Fermi theory of screening by a Sommerfeld
electron gas [82] with fixed ion background, the screening length is

_ | 2eg€ (T s 1 Me —1/3
(= W Ep = (g) 5 € m; ag Ny (445)

where er = (312ng)%/3h%/2m?, the bulk electron concentration ng and the
Bohr radius ag = 4megh’®/mee? = 5.3 - 10711 m. Since for metals the mean

distance ng '/3 between conduction-band electrons is in the range of 0.2 nm
to 0.5 nm, the Thomas-Fermi screening length £ becomes smaller than the
distance between atoms in the crystal lattice which justifies the concept of
surface charges for usual metal electrodes.

In contrary, the system of conduction-band electrons in a quantum dot
has a more or less pronounced discrete energy spectrum due to the meso-
scopic size, and the electron concentration ng is usually less than in a metal
system. The screening length £ obtained from (4.45) for much smaller elec-
tron concentrations is comparable or even larger than the diameter of the
quantum dot. Therefore, does it make physically sense to define capacitance
coefficients Cp ; and Cpx; between the quantum dot (index ’0’) and the M
electrodes j = 1--- M surrounding this quantum dot? To address this issue,
we compare the electrostatic energy (2.29), derived for a metal island which
is surrounded by M metal electrodes and charged by AN electrons under the
assumption Qo jon = 0,

(ANe)?
2Cos

M
C .
Eagt(AN) = —ANe - > C"’J Vi + (4.46)
ox
Jj=1

with the total energy of N electrons in the state |N,l; {V;}) (normalized to
N) in the quantum dot,
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E(N,{V;}) = (N, {Vi}| H(V; {Vi}) [N, 5;{Vi})

= (V.5 {v) i:j i) [Wtsv)
+(N, 1 {3} Efj S Girare) NGV . (d47)
R

To find expressions for the capacitance coefficients for a quantum dot by
comparing (4.46) and (4.47), we will follow different approaches which are
characterized by the following questions:

e In Section 4.8.1: How does the total energy of the quantum dot change
with varying the electrostatic potential of a gate electrode? For a metal
system, this depends on the ratios of capacitance coefficients.

e In Section 4.8.2 and Section 4.8.4: How does the electron-electron interac-
tion varies with the electron number? For a metal island, it is described by
a constant — the total capacitance.

e In Section 4.8.3: How large is the gate voltage change needed to add an
additional electron to the quantum dot? For a metal island, it is given by
e divided by the capacitance coefficient to the respective electrode.

These comparisons will reveal that the concept of capacitance coeflicients
might be reasonable only under certain circumstances. However, they may
be fulfilled by special geometric arrangements of quantum dot and metal
electrodes.

4.8.1 Ratios of Capacitance Coefficients

For the quantum dot, IV electrons in the normalized state |N,1; {V;}) induce
the image charge Q); on the electrode i which is obtained as the quantum
mechanical expectation value

5Q; = <N,z;{v,-}‘ eiai(rs) ‘N,l;{V}}> , (4.48)

where (4.24) has been used.

For the metal system, the ratio between the capacitance coefficient C ;
and the total capacitance Cyy determines the charge fraction d@Q); which is
induced on electrode i by the charge ()o = —ANe on the metal island,

5Q,’ = Co,,'/COE -AN e. (4.49)

A comparison of the results (4.49) and (4.48) suggests to define a ’capacitance
ratio’ for N electrons in the state |N,l; {V;}) by
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V|G
Cox J\n vy

= (Vi {v;-}|ﬁai<rs) NG{V}) . (@50)

This quantity governs also the change of system energy with electrostatic
potential variations: For N electrons in state |N,l;{V;}) the change of the
total energy by a change of V; follows from (4.47) and (4.50). In first ap-
proximation, i.e., neglecting a change in the wavefunction with V;, i.e,,
O|N,1;{V;})/0V; = 0, we obtain

OE(N,1;{V;})
V;

__N ‘[Co,i] .
Viezi Cox IN{Vi B

(4.51)

In case of a metal island, varying V; by dV;, the total electrostatic energy for
the electrons on the island is changed by —ANe - Cy,;/Cos; - OV;, i.e., from
(4.46) we obtain
OFeist (N; {VJ}) _ CO,i

v, = —eAN Cox (4.52)
The definition (4.50) indicates that the ratios of capacitance coefficients for
a quantum dot depend explicitly on the N-electron state |N,; {V;}), which
is denoted by the corresponding index. This is contrary to the classical con-
cept of capacitance coefficients which should be independent of any electron
number and electrostatic potentials {V;}. Thus, (4.50) delivers formally only
an abbreviation.

The circumstances have to be checked under which such defined ra-
tios of capacitance coefficients become almost independent of |N,1; {V;}).
Only then it can be considered as a classical Cy;/Cox; ratio.

e Arbitrary Electrode Arrangement:

Obviously from (4.50), a state dependence is expected if strong varia-
tions occur with N and [ in the normalized position probability density
(N,LA{V;}IN,1;{V;})/N, which is presumable important for small quan-
tum dots with a small electron number N, or for quantum dots with more
than one valley in the confining potential. This statement is valid for an
arbitrary geometry as indicated in Fig.4.13. Choosing carefully the gate
electrode for tuning the electrostatic potential of the quantum dot might
allow to dissolve in such arrangements internal structure of the confined
N-electron system, since the total energy of states with different spatial
distribution change differently with the electrostatic potential variations of
the electrodes. 1%

5 Large quantum dots might possess more than one valley in the external confin-

ing potential. In such a case, the charge distributions of the diverse /N-electron
states differ significantly inducing different image charge fractions on the respec-
tive electrodes. With changing an electrode voltage, even groundstate transitions
might be induced, changing to a N-electron state with more favourable charge
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e Special Electrode Arrangements:

In special arrangements and situation, this is different: In Fig.4.13b, a
spherical or cylindical electrode arrangement is depicted. Any spherical
(cylindrical) charge distribution present in the center induces the same im-
age charge fraction on the respective electrode. ¢ In Fig.4.13c, two par-
allel plate electrodes are shown. Any strict 2D charge distribution between
these electrodes induces the same image charge fraction on the respective
electrode. Such an arrangement is in favour for investigating the energy
spectrum of a N-electron system in a fixzed confining potential shape: All
energies E(n,l) are shifted by the same amount by changing the electro-
static potential of the respective electrode if the distance remains unaf-
fected. It allows to do spectroscopy of confined N-electron systems. With
the formalism developed above, this can be proven: The a;(r), defined by
(4.22), is easily found for this arrangement in the strict 2D case to be

di+dy— 2 Z
) =) = B ) =) =

(4.53)

The image charge —qa;(rs) on electrode ¢ induced by a charge ¢ at 7
between the plate electrodes depends only on the z coordinate of the charge
g- A single electron in the plane of the 2D quantum dot at z = d; induces
therefore the image charge fractions a;(d1) = da/(d1 + dz2) on electrode
i and as(dy) = di/(dy + d2) on electrode 2. For a strict 2D N-electron
system, the charge fractions become independent of the state |N,1;{V;}),

N

NNV enlr) [N (V)) = aada) = -2 (@59)
N

N1 .<N,l;{l/}}‘2a2(rs) N,l,{‘/}}> =0(2(d1) = dlt-i:dz . (455)

Due to the electrostatic reciprocity, the ratios a;(d;) and as(d;) describe
also the fraction by which the electrostatic potential of each electron is
shifted in the plane z = d; by tuning the electrostatic potential V7 and V5,
respectively. This behaviour has been denoted as the ’'lever arm’ mecha-
nism [108]. In view of (4.50), we can state that the strict 2D quantum dot
between two plane electrodes can exactly be treated by the classical ratios

distribution for {V;}. Note, the states differ in their charge distribution with
respect to the electrodes, and only this causes the different 'capacitance ratios’.
Experimental data on carbon nanotubes have been overinterpreted [90] in this
context as being indicative for electron-electron correlations. Experiments on
vertical quantum dots used the effect to resolve the redistribution of charge in
the quantum dot with increasing magnetic field [143].
Note, the confinement potential for the electrons might be dominated by other
contributions, i.e., with changing the electrode potentials, the spherical symme-
try remains unaffected.

16
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(a) Arbitrary Electrode Arrangement:
(0) Spatial Extensionof [N,m)  ([3) Spatial Extension of |N',m'’)

‘ Different fractions of image charge are induced. ‘

(b) Spherical or Cylindrical Electrode Arrangement:
Spherical/Cylindrical Spatial Extensionsof |N,m) and |N’,m’)

‘ Same fraction of image charge are induced. ‘

(c) Parallel Plane Electrode Arrangement:
2D Spatial Extensions of [N,m) and |N’,m’)
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Same fraction of image charge are induced.
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Fig. 4.13. (Left page) (a) Arbitary electrode arrangement: (o) A N-electron sys-
tem in state |V, m;{V;}) in the quantum dot induces a certain fraction of image
charge on the electrode i. (8) A many-electron state |N',m’; {V;}) with different
spatial extension — due to different electron number or different quantum num-
ber — induces in general a different fraction of image charge on the electrode ¢,
since this fraction depends on the spatial extension of the many-electron state rel-
atively to the electrodes. Therefore, with varying the electrostatic potential V; of
electrode i, the potential energy per electron is changed differently by comparing
(a) and (B). Only in keeping certain symmetries, these fractions are independent
of the many-electron-state: (b) In a spherical or cylindrical electrode arrangement,
any spherical/cylindrical many-electron state induces the same fraction of image
charge on the respective electrode. (c) Confining electrons in the plane of a strict
2D quantum dot, the shift of the electrostatic potential with varying the electro-
static potential of one of the plane electrodes is described by a ’lever arm’ ratio (or
'leverage’ factor), i.e, independently of the two-dimensional many-electron state. In
this case, the fractions of image charges are independent of |V, m; {V;}), which is
in favour of doing spectroscopy of an interaction N-electron system in a confining
potential of fixed shape.

of capacitance coefficient to describe the energy shift due to changes in V;.
It is also the optimal arrangement for doing transport spectroscopy (see
Chapter 5). Vertical 2D quantum dot systems can come close to such con-
ditions. To be applicable, the extension of the wavefunction in z direction
has to be much smaller than the distance d; and ds to the electrodes.

4.8.2 Total Capacitance (Version I)

The electron-electron interaction in (4.38) gives an energy contribution which
is proportional to the square of the total charge in the quantum dot. A similar
term is found for the metal case — the charging energy for the capacitor
formed by the metal island and the other electrodes. Therefore it is tempting
to relate the quantum mechanical expectation value of the electron-electron
interaction in the quantum dot with this electrostatic energy. Hence we choose
the abbreviation

[(N(N— 1)6)2]
2Cox NV

s N N
%Z Z G(rs, ) ‘N,l;{Vi}>-

s=1 g'=1

s'#s

= <N,l;{Vi}

(4.56)
This definition includes only the (screened) interaction between electrons.
The interaction of each electron with its image — in the previous Section
described as a contribution to the external confining potential — might also
be considered as a contribution to the capacitance, especially in case of N = 1.
Then one might consider
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52,0,
2Cos I ingqviyy

Z Z Glro,me) [N {VIY) . (457)

s=1g'=1

Again such an attempt of identification depends on the state |N,I; {V;}), in
which the electron system of the quantum dot is found. Describing | N, ; {V;})
by a Hartree-like ansatz, the expression (4.57) delivers the classical Coulomb
interaction of the charge distribution in the quantum dot taking the induced
image charges into account. The closer the electrodes, the better the screen-
ing: The total capacitance value calculated from (4.57) becomes large. The
lowest value is obtained by replacing the real Green’s function of the arrange-
ment by the Green’s function G(°) (r,, r,/) of infinite space with an adequate
dielectric constant € = min[e(r);r € V],

l(N(N —1)¢)” (N(N — 1)6)2]
200 ey L2665 s
= < X; Z 4”06'“ 7 ‘N l; {V}> (4.58)
s -755

while keeping the same state |N,I;{V;}). This could be interpreted as the
self-capacitance of the quantum dot.

For a Hartree-like ansatz for |V, [; {V;}), relation (4.57) gives the classical
Coulomb interaction of the charge distribution —e (N, l; {V;}|N,1;{V;}). For
a Hartree-Fock-like ansatz for |N,I; {V;}), exchange terms due to the indis-
tinguishability of electrons are included in (4.57). In an exact treatment, even
contributions due to electron-electron correlation might be contained. Only
if (4.57) becomes independent of the many-body state |N,; {V;}), a mapping
on the Constant Interaction Model becomes reasonable.

4.8.3 Capacitance Coefficients

Capacitance coefficients C;; have been introduced in Chapter 2 for arrange-
ments of metal conductors to relate the charge ); which is induced on con-
ductor ¢ by an electrostatic potential change V; of electrode j,

Qi

Cij:—avj .

(4.59)

For quasi-isolated metal conductors, the charge on the conductor is quantized
in units of e. A finite electrode potential change of AV; = e/C;; is required
for recharging the island by e.

Adopted to quantum dots, the change required for charging another elec-
tron onto the quantum dot is given by the electrostatic potential difference



Concept of Capacitance Coefficients for a Quantum Dot Reasonable? 117

AV = Vj’ —V}, where V; and Vj’ are implicitly given by the resonance condi-
tions in Vj for charging the Nth and the (IV +1)th electron onto the quantum
dot,

p(N + V] {Vizs}) = pg"

1(N; Vi, Vs }) = pg® .
If p(n;Vj

75{Vk;}) shifts linearly by changing V; with the factor a; (see
discussion in Section 4.8.1), then we obtain from (4.60)

(4.60)

p(N + 1LV {Vi}) —aje- (Vi = V) = w(N; V;, {Vi}) (4.61)

leading to the attempt of identification

[N+1I=0;{Vi}) e
[ O’J] N,1=0:{Vi}) V-V,

62

YU ¥ LV () - s (N5 VL (D)

(4.62)

This reminds on the thermodynamical definition of a capacitance in meso-
scopic electron systems. As can already be seen from the Constant Interaction
Model, leading to

IN+1,1=0;{V; }) e? 463
[ O’J]|N,l=0;{Vi}) - ent1 —en +€2/Cox’ (4.63)

the electrostatic potential change AV; = V/ —V; depends on the quantization
effect and on the electron number N, and therefore varies. High degeneracy
or constant level spacing without degeneracy lead to a constant spacing. In
general, such a ’capacitance coefficient’ depends on the groundstates of the
N- and the (N + 1)-electron system.

4.8.4 Total Capacitance (Version IT)

The difference in the energy ladder u(N +1;{V;}) for a metal island is given
by €?/Cs. Therefore, it has been suggested [128] to define the total capaci-
tance of a quantum dot by the distance in the energy ladder for charging a
quantum dot — denoted as the addition spectrum:

IN+1,1=0;{V;}) e’
[ 02] = (4.64)

IN=0;{Vi}y (N +1) — p(N)

Such an approach delivers a similar result as the one discussed in the previous
Section since ZZ a; = 1 as long as indeed capacitance coeffients as discussed
in Section 4.8.1 can be defined. The definition (4.64) is different to the first
definition of a total capacitance given by (4.57). Here the total energy is
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included into the definition whereas in (4.57) only the interaction term is
considered. However also here, this is not a quantity which is in general
independent of the N- and (N + 1)-electron groundstate.

If the quantization effect due to the confining environment are negligible
in comparison to the electron-electron interaction, the quantum dot resem-
bles a metallic island. For such a system, the effects Coulomb blockade and
single-electron charging are reasonably well described by the concept of ca-
pacitances.

4.9 Summary

The energy spectrum for IV electrons confined in a realistic electrostatic sur-
rounding is described by the Hamiltonian (4.38). An expression for the ex-
ternal confining potential, which characterizes the realistic quantum dot, is
given by (4.39). In case of a small change of the electrostatic potentials of
one of the electrodes, the quantities (4.51) reflect the change in the total
energy of the N-electron system in the state |N,[; {V;}). In general, this shift
depends on the state |N,l;{V;}). The electron-electron interaction present
between the electrons is characterized by the electrostatic Green’s function
G(r,r"). Therefore, it usually deviates from a pure Coulomb interaction be-
tween two point charges due to screening by electrodes or inhomogenities in
the dielectric matrix. The electron-electron interaction (4.57) is responsible
for the Coulomb blockade effect.

Although the electrostatic Green’s function is known as an analytical
expression only for certain specific arrangements, it is a useful concept to
define notations and — more important — to identify what contributes to the
external (bare) confining potential and the electron-electron interaction. It
helps to choose the right approximations for the proper theoretical description
of a real quantum dot. Moreover, it allows to estimate how strong the bare
confining potential shape is affected by the change of the respective electrode
potential change in experiments.

Band structure effects — like spatial variations of the effective mass, non-
parabolicity of the conduction band dispersion, band mixing and spin-orbital
coupling due to the lack in the inversion symmetry of the underlying crystal
structure — have not been included here since we have focused on getting the
link in the description between the capacitive description of a metal island and
the quantum mechanical description of a quantum dot. Due to the gradient
in the confining potential, the Hamiltonian might even have to be extended
by a spin-orbital coupling term. This so-called Rashba effect might play a
role for 2D quantum dots [144, 145] at heterojunctions where electrons feel
the steep asymmetric effective confining potential perpendicular to its plane
leading to such spin-orbital coupling.

The popular Constant Interaction Model is in general not suitable. There-
fore, to account for the complexity of the electron system confined in the
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quantum dot system, we will describe in the following the single-electron
transport through quantum dot systems in terms of few- and many-electron
states, i.e., in terms of the difference in the total energy between a N- and a
(N + 1)-electron system.






5. Transport Spectroscopy on a Quantum Dot

In the previous Chapter 4, the electron system confined in a quantum dot has
been described as an interacting N-electron system. As a consequent contin-
uation, single-electron transport through such a quantum dot is discussed in
this Chapter by using the general description in terms of N-electron states in
the quantum dot. The spectroscopy of ground- and excited states of the few-
to many-electron system in the quantum dot is discussed by energy conserva-
tion arguments for rearranging an electron between quantum dot and leads,
and by Pauli’s exclusion principle. The access to excited states leads usually to
an increase but sometimes also to a decrease of current with increasing mag-
nitude of the drain-source voltage. The dynamics leading to this behaviour is
discussed within a master equation approach. The complexity of the dynam-
ics with opening channels to excited states on emitter and on collector side
makes it difficult to deduce from a single Ins(Vps) curve information about
the energy spectrum of the quantum dot without further assumptions. In case
of correlations in the electron system of the quantum dot, (quasi)-selection
rules exists weighing transitions between N- and (N + 1)-electron states for
adding or taking off an electron.

5.1 Measured Coulomb-Blockade Oscillations of a
Quantum Dot System

In Fig. 5.1a, the experimental setup of a quantum dot is shown which will
be used in this Chapter to demonstrate some of the electrical transport
properties of quantum dots. The quantum dot system is defined by partial
electrostatic depletion of a two-dimensional electron system (2DES) ! in a
GaAs/Alg.33Gag g7 As heterostructure (see also Fig. 4.3a) at the GaAs/AlGaAs
heterojunction interface 86 nm below the surface: Metallic split-gates were
deposited on top of a mesa remained after partially etching the surface of
the heterostructure. The diameter of the area between the tips of the gates is
about 350 nm. In addition to these topgates, a metallic backgate electrode on
the reverse side of the undoped substrate (0.5 mm thick) was used to change

! Electron density ns = 3.4 - 10" m™2, electron mobility y. = 60 m?/Vs at the
temperature of T = 4.2 K.
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Fig. 5.1. (a) Setup of a quantum dot system realized by partial electrostatic de-
pletion of a two-dimensional electron system (2DES) contained in a GaAs/AlGaAs
hetereostructure. Splitgate-electrodes (see SEM image) with suitable gate-source
voltages Vai,s are used to form the quantum dot between source and drain. Here
in addition a backgate electrode is used to tune the electrostatic potential of the
quantum dot. (b) Coulomb blockade oscillations: Conductance modulation mea-
sured as a function of the backgate-source voltage Vas (Vbs = 5 pV, T = 0.1 K).
The marks (a), (8) and () denote distinct Vas values and are used in conjunction
with Fig. 5.3. (data from [42])
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the electrostatic potential of the quantum dot. Note that the application of a
backgate ensures that the shape of the external confining potential remains
almost unaffected. Therefore, to emphasize this property, the hitherto used
gate-source voltage Vs is now specified to be the backgate-source voltage
VBs. The sample was mounted in a 3He/ 4He dilution refrigerator with a base
temperature of 22 mK.

In Fig.5.1b, a typical curve of conductance Ing/Vps versus the backgate-
source voltage Vpg for small drain-source voltage Vpg is shown. A series
of conductance peaks is observed which is interpreted in the following as
Coulomb Blockade Oscillations (CBO). In contrary to the characteristics
shown for a metal single-electron transistor (see Fig.1.7c), the peak heights
are strongly modulated. Applying in addition a magnetic field B (see Fig. 5.2),

e these peaks of CBO are shifting,
e their distance in the gate voltage is changed, and
e the heights are modulated.

This indicates that the character of the electronic states of the quantum dot —
changed by the magnetic field — affects the electrical transport. This property
was demonstrated first by P. McEuen and coworkers in 1991 [146]. In the last
decade it has been used by many groups to explore the electronic properties
of confined N-electron systems (see for review [3, 4, 6, 5]).

By using the general description in terms of N-electron states on the
quantum dot, in the following the regimes of Coulomb blockade and single-
electron transport are reconsidered for the quantum dot system and the base
for interpreting transport data is given.

5.2 Coulomb Blockade in a Quantum Dot System:
Thermodynamical Considerations

Let us start looking at a quantum dot weakly coupled by electron tunnel-
ing to an electron reservoir with the electrochemical potential ug" of the
source. It generalizes the arrangement of a single-electron box discussed in
Chapter 1. The electron states of the quantum dot, denoted by |N,l;{V;})
with the total energy E(N,;{V;}), are considered as being those of the iso-
lated quantum dot.? Allowing electron exchange between the quantum dot
and the weakly coupled electron reservoir, the quantum dot can come to an
equilibrium with the reservoir for fixed electrostatic potentials {V;} on the
surrounding electrodes.

2 Although at first view a reasonable approach, this assumption is not generally
valid as will be discussed in Chapter 6 where under certain conditions a new
state is formed between the electron system confined in the quantum dot and the
reservoir even in case of weak tunnel coupling with approaching zero temperature
— a Kondo state.
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Fig. 5.2. (a) Conductance Ips/Vps through quantum dot system at Vps =~ 0 as a
function of magnetic field B applied parallel to the plane of the 2DES. (b) Same
data as (a) presented in a greyscale plot. (adopted from [144])
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The question arises: Which number N of electrons will be found at suf-
ficient low temperature in the quantum dot in thermodynamic equilibrium?
The probability P(N,;{V;}) of finding the electron system in the quantum
dot in the state |N,; {V;}) is given by the Gibbs’ distribution function [115],

E(N,;;{Vi}) — N pg*"
kT ’

PN, 1 {Vi}) = 27" - exp (— (5.1)

where Z is the partition function

E . " _ elch
7 = Z exp (— (n7 k7 {‘If}% nl”’S ) )
all [,k {Vi}) B

summing over all n-electron states |n, k; {V;}) of all electron numbers n =
1,2,3--- at given {V;}.

The probability P(N;{V;}) for having N electrons in the quantum dot
is the probability of finding the quantum dot in any state of the N-electron
system,

P(N;{Vi}) = Y P(N,1;{Vi})

alll

gt (N0 (Vi) — N e
=7Z""-exp (— el S )
. {1 (BN B0 } 52)

Thermal fluctuations of the number of electrons in the quantum dot are
suppressed and the number fixed to N if P(N — 1;{V;}) < P(N;{V;}) and
P(N + 1;{V;}) < P(N;{V;}). Due to the first exponential factor in (5.2) at
low temperature, one obtains with the quantities already introduced in (4.42)

u(n;{Vi}) = E(n,0;{Vi}) — E(n — 1,0;{Vi})
withn € {+-N —1,N,N+1,---} (5.3)

the conditions

p(N +1;{V;}) = p€" > kT,  and
pdh — u(N;{Vi}) > ksT. (5.4)

The u(n;{V;}) according to (5.3) are the differences in the groundstate ener-
gies of the n- and the (n — 1)-electron system at fixed electrostatic potentials
{Vi}.®> The relation (5.3) defines a ladder of energy levels which is plotted

3 Here, p(n;{Vi}) denotes the difference between groundstate energies. We will
avoid the term chemical or electrochemical potential of the quantum dot used in
other publications for y(n; {Vi}). In the combined system quantum dot /reservoir,
at thermal equilibrium, there exists only one electrochemical potential, although
none of these levels u(n; {V;}) might be aligned with pg".
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Fig. 5.3. Quantum dot system: Energy scheme for the different Vs marked by

(a), (B) and (v) in Fig. 5.1b. For the source and the drain electrode, the respective

electrochemical potential pg and pi" are indicated. For the quantum dot, the

energy ladder p(n; {V;}) defined by (5.3) is plotted shifting relatively to ug®® with
varying any electrostatic potential V;. In general, distances between energy levels
in the ladder are not equal.

in Fig. 5.3 relative to the electrochemical potential ug® of the source elec-

trode. A similar energy scheme was already presented in Chapter 1 for metal
single-electron charging devices.

The energy barriers for changing the number of electrons in the quan-
tum dot is maximal if pg" lies in the middle between u(N + 1;{V;})
and u(N;{V;}) as depicted in Fig.5.3a. At certain values of {V;} where
w(N + 1;{V;}) = pg?, the number of electrons in the quantum dot fluc-
tuates between N and (N + 1) even at lowest temperature (see Fig. 5.33).

For electrical transport investigations, the quantum dot has to be coupled
to a second reservoir with the electrochemical potential ufl®". Depending on
the sign of the applied drain-source voltage Vps, which defines the difference
pgleh — 8t = eVhg, the electrons flow from the source to the drain reservoir,
or vice versa. To cover both cases within one discussion, in the following the
reservoir with the higher electrochemical potential will be denoted as emsitter
E, the reservoir with the lower electrochemical potential as collector C. The

respective electrochemical potentials are

elch — elch  elch elch — _ elch  elch
ps = max{ug", up and  p&® = min{ug", uh

Due to Pauli’s exclusion principle, at low temperature, the electrochemical

potentials 8" and &M separate the occupied from the unoccupied states in

the emitter and collector reservoir, respectively. Since &t > €It electrons
with higher energy are available in the emitter, whereas unoccupied states of
lowest energy are available in the collector.

Finding the quantum dot in the groundstate | N,0; {V;}) of the N-electron

system, single-electron transport through the quantum dot is blocked if the
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minimal energy
AEgqp = u(N + 1;{Vi}) — ug™ ,

for the (N +1)th electron being added from emitter to the quantum dot, and
the minimal energy

AEqpc = pd™ — p(N;{V;}) ,

for the Nth electron being taken off the quantum dot to the collector, greatly
exceeds the thermal energy kgT'. Similar energy differences for recharging the
electron island were given for the metal single-electron transistor in Chapter
1. Thus, an electron transport process from emitter to collector, changing the
number of electrons in the quantum dot in the meantime, is suppressed, if
the relation

N + L {Vi}) > gl > plleh > u(N; (Vi) (5.5)

holds. The condition (5.5) is sketched in Fig. 5.3(c). The quantum dot system
is in the Coulomb blockade regime.* Changing the electrostatic potential of a
gate electrode (for our sample the backgate electrode), the energy barrier is
overcome and electron transport through the quantum dot occurs if u(N +
1;{Vi}) lies between p&i" and pg". Electron transport happens due to single
electrons passing the quantum dot one after the other if

u(N +2{Vi}) > pgi™ > (N + 1{Vi}) > u@" > (N3 {Vi}) -

This situation is sketched in Fig. 5.38. It is the regime of single-electron tun-
neling where the electron number on the quantum dot fluctuates between N
and N +1. Increasing the gate-source voltage further, the number of electrons
becomes fixed to N + 1, because

(N + 2, {Vi}) > p&" > @ > (N + 1;{V;})

suppresses the fluctuations by one or more electron charges (see Fig.5.3(7)).

Therefore, when increasing the gate-source voltage at vanishingly small
bias between p&" and p&", a series of conductance peaks are observable sim-
ilar to a metal single-electron transistor — the Coulomb blockade oscillations

(see Fig. 5.1b). A conductance peak is observed at Vj g if

> >
pp™ & p(N; Vjs) ~ gt (5.6)
{Vizi}
The resonance condition for the next conductance peak along the gate voltage
axis Vj s is achieved at Vjg + AVj s if

* Suppression of conductance might not exist for correlated multi-electron tun-
neling processes which change the electron number in the quantum dot only
virtually [147]. This will be discussed in Chapter 6.



128 5. Transport Spectroscopy on a Quantum Dot

PR R u(N +1; V] g + AV s) R pge . (5.7)
’ {Viz;
One should note that with changing a gate electrode potential, in general, the
confining potential for the electron system in the quantum dot is affected. Let
us look closer to this problem: For small changes of the electrostatic potential
Vj, the total energy E(N,l;{V;}) of N electrons in the state |N,l; {V;}) is
shifted linearly with V;, which can be described by

DE(N,1;V;)
av;

= —a;(|N,;{Vi})) - Ne ,
{Vizs}

where a;(|N,l;{V;})) denotes the fraction of image charge induced in the
electrode j by the confined N-electron system in the state |N,l;{V;}) (see
Section 4.8):

o (N, 5 (Vih) = N7 (N, (V)

N
3 ay(r) N,l;{v,-}>.

s=1

As pointed out in Chapter 4, under certain conditions the fraction might
become independent of the n-electron state, so that we can assume that

o (|N,{Vi) = a; (IN + L,U;{Vi}) = «; (5.8)

is valid over a wider range for the gate-source voltage Vj s and the electron
number. The energy ladder u(n;{V;}) withn € {---N —1,N,N +1,---},
depicted in Fig. 5.3, is just shifted linearly with the change of the gate-source
voltage V5. We obtain

p(n; Vis +AVjs) = p(n; Vis) — a; - eAVjs . (5.9)

Substracting (5.6) from (5.7) and taking into account (5.9), the distance AV g
between adjacent conductance peaks is derived to

a; - ebVis = p(N + 1 {Vi}) - u(N; {Vi}). (5.10)

To emphasize, for obtaining (5.10), the geometric arrangement between gate
electrode j, where the electrostatic potential is changed, and quantum dot
has to be chosen in favour of the validity of (5.8). On one hand, the factor
a; gives the fraction of image charge present on electrode j induced by the
charge in the quantum dot. On the other hand, as given by relation (5.10),
it converts changes AVj s to the real energy shift of the quantum dot. For a
metallic single-electron transistor or within the Constant Interaction Model,
«; is given by the capacitance ratio Co ;/Cos. For a metal system the distance
AV g is periodic, AV s = e/Cy,; (see Chapter 1). For a quantum dot system,
— in general — deviations from this periodicity are expected as can be seen,
for instance, from the calculated energy spectrum shown in Fig.4.11. Clearly
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observable are these in the magnetic field dependent measurements presented
in Fig. 5.1c where the distance between two adjacent conductance peaks varies
with magnetic field. Within the framework of the Constant Interaction Model,
the distance between two conductance peaks is described by

Co 7 62

—= - eAV;g =¢ —eN+ 5,

COE 7.8 N+1 N COZ

i.e., not periodic if the energies €,, of the single-particle eigenstates are not
degenerate, i.e., eny1 #ep forn={--N—-1,NNN+1---}.

5.3 Charge-Stability Regions of a Quantum Dot in the
(VBs,Vps) Plane

In Chapter 1 we have discussed the occurrence of charge-stability regions in
the (Vas,Vbps) plane — the Coulomb blockade regions where only one defi-
nite number N of electrons exists on the island. Adjacent to these are the
single-electron transport regions where two definite numbers N and N + 1 of
electron charges are allowed on the metal island, and finally regions with even
more possible charge states. We investigate in this Section the corresponding
regions in the (Vas,Vbg) plane for a quantum dot.

5.3.1 Basic Experiment

In Fig. 5.4, the Ins(Vps) characteristics, measured on the quantum dot sys-
tem depicted in Fig.5.1a, are shown for distinct backgate-source voltage
values Vgg. Clearly the Coulomb-blockade regions are visible. In addition,
’step-like’ increases in the current are observed. Some Ing(Vpg) characteris-
tics show even a decrease in Ipg with increasing |Vpg|. To better resolve the
changes in Ipg, the differential conductance dIpg/dVpg is prefered for pre-
sentation because changes in the Ipg(Vpg) are enhanced — a step-like increase
becomes a peak in dIpg/dVpg at the respective value of Vpg.

In Fig. 5.5 the differential conductance dIpg/dVpg is shown in greyscale as
a function of the backgate voltage Vis for the different bias voltages Vpg. 3 At
vanishingly small Vg, the Coulomb blockade oscillations are observed as de-
scribed in the previous Section. Note, the differential conductance dIpg/dVps
at Vpg = 0 is equal to the conductance Ipg/Vpg for small |[Vpg|. By increasing
the absolute value of Vpg, the range in backgate voltage Vgs where transport

5 The differential conductance through the quantum dot was measured by using
an ac lock-in technique at a frequency of 13 Hz and an effective ac drain-source
voltage of 5 V. In addition to the ac source-drain voltage (5 uV), a dc voltage
Vps in the range of mV could be applied.
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through the quantum dot occurs is broadened linearly with |Vpg|. These re-
gions of transport enclose almost rhombically shaped ¢ regions between them,
where transport through the quantum dot is blocked — the Coulomb blockade
regimes.

5.3.2 Comparison with Expectations from Energy Considerations

In Fig.5.6, a scheme is given for the different transport regimes in the
(VBs,Vbs) plane, derived from energy considerations:

e In the Coulomb blockade regime, the number of electrons on the quantum
dot is fixed, for instance to N, since

p(N +1;{V;}) > pg™ > pg > p(N;{Vi}) . (5.11)

With increasing |Vpg|, the energy ladder p(n;{V;}) is shifted due to the
capacitive coupling to the drain electrode. At certain positive and negative
Vbs threshold values, the Coulomb blockade is overcome and the number

of electrons on the quantum dot can energetically fluctuate, for instance
between N and N + 1, if

pE™ > p(N +1;{V;}) > pg . (5.12)

In Fig. 5.6, such a region is marked by hatching.

e The larger the bias [Vpg|, the more charge states for the quantum dot be-
come possible. The regimes of single-electron tunneling, where energetically
the electron number is only allowed to fluctuate between N and N + 1, are
defined by the condition

p(N +2;{Vi}) > pg™ > p(N + 1;{Vi}) > pg™ > p(N;{Vi}) . (5.13)

The possible (Vas,Vbs) values fulfilling (5.13) are restricted to the rhom-
bically shaped regions adjacent to the Coulomb blockade regimes (see
Fig.5.6).

e Due to (5.12), the boundaries VB(? (Vbs) and Vé]sj)(VDs) in the (Vas,Vbs)
plane, between which the electron numbers N and N + 1 on the quantum
dot are energetically possible, are defined by the conditions

P = p(N + Vi3, Vos)  and ™ = u(N + Vi), Vos) |

where  pg? — 48N = eVpg . (5.14)

These borderlines are plotted in Fig.5.6. As visible in the experimental
data of Fig. 5.5, these borderlines Vég) and VB(IS?) depend linearly on Vpg.
It tells that indeed in this experiment the energy ladder p(n; {V;}) is shifted

8 More correct: ’parallelogram-like shaped’. Of common use is the term ’diamond-
like shaped’ [5].
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Fig. 5.4. Current-voltage characteristics Ips(Vps) for distinct backgate-source
voltages VBs, measured for the quantum dot system presented in Fig. 5.1a. Grey-
shaded are three Coulomb-blockade regions. Note by tracing single Ins(Vps) curves
that the current |Ipg| increases but sometimes also decreases with increasing |Vpg|.

(Data from J. Weis, 1993, unpublished)
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Fig. 5.5. Differential conductance dIps/dVps through the quantum dot system
shown in Fig.5.1a, measured as a function of drain-source voltage Vps (between
—3mV and 3 mV in 0.1 mV steps) and backgate voltage Vas. In the linear greyscale
plot, white regions correspond to dIps/dVps below —0.1 uS and black ones to
dIps/dVbs above 2 uS. Positive peaks in the differential conductance indicate a
step-like increase in the Ins(Vps) characteristics at the respective gate voltage value
VBs, negative peaks a step-like decrease in the current. Interpreting the height of
peaks in the differential conductance dIps/dVbs, one has to be careful: The height
depends on how the current step shifts in the (Vas,Vps) plane. In the extreme case,
that the step in the current Ips shifts almost parallel to the Vps axis, dIps/dVps
is almost zero, i.e., the smaller the slope |dVss/dVpg|, the smaller the height in
dIps/dVps. (adopted from J. Weis et al. [148, 149])
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linearly with changing the electrostatic potential Vi of the backgate elec-
trode by Vgg and the electrostatic potential Vp of the drain electrode by
VDS5
Ip(n; {Vi}) Ip(n; {Vi})
- _ d =— } 5.15
Vo eap an Vo eap ( )
Here ap denotes the fraction of image charge induced on the backgate
electrode by the electron charges in the quantum dot and ap the fraction
induces on the drain electrode. The two slopes dVgs/dVps, characterizing
the borderlines VB(S) and VB(ISD), are obtained by differentiating (5.14) with
respect to Vpg and to Vg and taking into account (5.15):
Veg ooy s 1o (5.16)
dVDs N aB dVDs N aB ) )

In case of the Constant Interaction Model or a metal single-electron transis-
tor, the slopes are given by —Cop /Cop and (Cox — Cop)/Cos, respectively
(see also Fig.1.8).

At certain (Vas, Vbs) values, the relations

" = u(N +1;Ves, Vos) and  pg™ = u(N; Vas, Vos) ~ (5.17)

are fulfilled at the same time. The respective energy scheme is shown in
Fig. 5.6. It allows to obtain the difference p(N + 1; {V;}) — u(N; {Vi}), the
distance in the energy ladder, directly from the respective drain-source
voltage V5g™:

(N +1;{Vi}) — p(N; {Vi}) = e- Vi§E™) . (5.18)

In the quantum dot under investigation the distance is about 1.3meV
with variations in the order of 10% for different N. In Chapter 1 for a
metal single-electron transistor, u(N + 1;{V;}) — p(N;{Vi}) = €*/Cox
was used. For a quantum dot within the Constant Interaction Model, we
obtain u(N + 1;{V;}) — u(N;{V;}) = eny1 —en + €2/Cox- In general, the
variations in u(N + 1;{V;}) — u(N;{V;}) have been denoted as addition
spectrum of the quantum dot (see Section 4.7.4).

The fraction of image charges a; on the electrodes (i = {B,D,S} can also
be determined from the experimental data:

Comparing (5.18) with (5.10), one obtains the proportionality factor

ap = V%) /AVgs . (5.19)

Thus, the scaling factor between a change of Vgg and the shift of the energy
ladder relatively to the Fermi level of the source electrode is obtained
by comparing the distance AVpg in gate voltage between two adjacent
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Fig. 5.6. Transport regions of the quantum dot system. The scheme is similar to
the one presented for a metal single-electron transistor in Fig. 1.8, except that in
general the size of the Coulomb blockade regions varies with the electron number.
The hatched region marks where the electron number N and N +1 might be found.
Single-electron transport, restricted to transitions only between n + 1 and n elec-
trons on the quantum dot, is found by energetical considerations in the rhombically
shaped regions adjacent to the Coulomb blockade region of n and n + 1 electrons.
Such regions are denoted here as regimes of single-electron tunneling.

i |

conductance peaks at Vps = 0 and the maximum threshold value Vé‘snax)

of the respective Coulomb blockade region: ap = V]:(,glax) /AVes = (4.5 +
0.2) x 10~*. To emphasize again, besides the scaling factor, ap gives the
fraction of image charge on the backgate electrode induced by the electrons
in the quantum dot (see electrostatic reciprocity, Fig. 4.8).

From the slopes in Fig. 5.5 and the relation (5.16), the fraction ap of image
charge induced on the drain lead is obtain to ap = 0.30 £ 0.02.

By redoing the measurements of Fig. 5.5 by choosing the drain instead of
the source contact as the reference for all applied voltages to the system,
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the relations derived above remain valid by exchanging the index S with
D. Then ag is obtained instead of ap (here ag = 0.21 £+ 0.02).

The sum as + ap + ag = (0.51 £ 0.04) is less than unity, since further
image charges are induced on the split-gate electrodes on top of the het-
erostructure defining the quantum dot. This is proven by determine their
(678

5.4 Quantitative Transport Spectroscopy of Ground and
Excited States of the Quantum Dot

In the previous Section, the regimes of Coulomb blockade and single-electron
tunneling have been identified within the parameter space (Vss,Vbs) by en-
ergy considerations and are schematically given in Fig.5.6. In experimental
data of Fig. 5.5, within the regimes of single-electron tunneling, additional
peaks in the differential conductance dIpg/dVpg occur, forming a grid-like
structure in the (Vg,Vbs) plane. They indicate that additional transport
channels through the quantum dot become available in the region of single-
electron tunneling, leading each time to a step-like increase of the current Ipg
with increasing |Vps|. Such additional transport channels have been reported
and interpreted in 1992 by several groups [150, 113, 151, 148]. Impressive
results are obtained later from vertical quantum dots [5]. Since in such a
single-electron tunneling regime the number of electrons can energetically
fluctuate only between n and n + 1 withn € {---N —1,N,N +1.--}, these
additional single-electron tunneling channel have been attributed to excited
states of the quantum dot being used by electrons tunneling into and out of
the quantum dot. Following [148, 149, 152], here we will discuss this in terms
of n-electron states without restricting the description to a specific model for
the quantum dot.

As visible in the experimental data of Fig. 5.5, the peaks in the differential
conductance dIpg/dVpg shift either parallel to the borderline VB(E) or the

borderline Vé]SD) of the region of single-electron tunneling. This indicates that
new channels are either opened in resonance with the Fermi level pg® of
source or the Fermi level p&® of drain. For Vg > 0, the source electrode
acts as the emitter, for Vps < 0 as the collector, for the drain electrode it
is vice versa. With applied bias Vpg, electrons from the emitter are entering
the quantum dot, and electrons are leaving the quantum dot to the collector
side. It is therefore natural to distinguish between additional channels being
opened on the emitter side and additional channels being opened on the
collector side.
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5.4.1 Single-Electron Tunneling Regime of N and (N + 1)
Electrons: Additional Channels on the Emitter Side due to
Excited States of the (N + 1)-Electron System

In Fig. 5.7, a single-electron tunneling regime is schematically shown, in which
the number of electrons can fluctuate between N and N + 1. One additional
transport channel of those observed in Fig. 5.5 is depicted with its borderline
(dotted line) parallel to the borderline to the Coulomb blockade regime with
N electrons, i.e., it opens in resonance to the Fermi level of the emitter. " To
explain the origin, let us consider what happens at finite bias Vpg with varying
the gate voltage Vs along the path indicated by the dashed line in Fig. 5.7a.
Due to the fixed Vpg, the electrochemical potential difference between drain
and source is fixed. With changing Vgs, the electrostatic potential of the
quantum dot is shifted. For some Vgg values (marked in Fig. 5.7a by (), (8),
(7), (0) and (g)) the respective energy schemes are given in Fig. 5.7b. Let us
discuss in the following the electronic properties of the quantum dot for four
of these (Vas,Vbs) values:

e Operation point o: In the Coulomb blockade regime at Vi§g, the number
of electrons in the quantum dot is fixed to IV, since

(N +1; Viss, Vos) > g™ > p&™ > u(N; Vs, Vos) ,

shown in Fig.5.7b(a). On one hand, the electrons from the Fermi level of
the emitter do not enter the quantum dot since for them the energy barrier
(N +1; Vg, Vps) — it exists. On the other hand, no electron can leave
the quantum dot since by starting from the groundstate of the N-electron
system, an electron would gain at maximum the energy u(N; Vs, Vbs) =
E(N,0;Vi8, Vbs) — E(N —1,0; ViS, Vbs) which is less than & i.e., the
energy to reach an unoccupied state in the collector.

e Operation point § and §: By increasing the backgate voltage Vag, the

energy ladder u(n; Vs, Vps) is shifted down relatively to pfih and pdeh.

7 Parallel to Vég) for Vbs > 0, and parallel to VéSD) for Vps < 0.

Fig. 5.7. (Right page) (a) Sketch of the transport regions between the Coulomb
blockade regions of N and (N + 1) electrons around zero Vps in the (Vgs,Vbs)
plane. An additional single-electron transport channel (the position is indicated
by the dotted line) opens within a single-electron tunneling region, parallel to the
borderline to the Coulomb blockade regime of N electrons. (b) Energy schemes
to (VBs,Vps) values indicated in (a) with (a) to (g). In case of (7), an additional
channel is opened for electrons entering the quantum dot by inducing a transition
to an excited state |N + 1,k) of the (N + 1)-electron system. This is done (see
(c)) either by starting from the groundstate |V, 0) of the N-electron system or by
starting from an excited state |N,[) of the N-electron system. The latter has to
be reached by the preceeding process, for instance, by a tunneling process of the
(N + 1)th electron to collector, leaving behind the excited state | N, I).
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At VBﬂS, where

>
pl 2 (N 15V, Vos)

an electron from the Fermi level of the emitter has enough energy to allow
with entering a transition from the groundstate of the N to the ground-
state of the (IV 4 1)-electron system in the quantum dot (see Fig.5.7b(3)).
This is the transition with lowest possible energy when starting from the
groundstate of the N electron system. Single-electron tunneling remains
possible within the gate voltage interval Vlfs < Vs < Vg since there

pE™ > w(N + 15 Vs, Vbs) > ug™ . (5.20)

The right side of relation (5.20) ensures that starting from the groundstate
of the (N + 1)-electron system in the quantum dot, the (N + 1)th electron
leaving the quantum dot finds with its energy u(N + 1; Vs, Vbg) an unoc-
cupied state in the collector. This becomes blocked at Vg (see Fig. 5.7b())
with entering the Coulomb blockade regime of N + 1 electrons.

e Operation point v: At VJg within the gate voltage interval defined by
(5.20), a step-like increase in the current occurs, indicated by a peak in the
differential conductance at that position: Electrons from the Fermi level of
the emitter seems to have an additional channel for entering the quantum
dot. What defines such a level as indicated in Fig.5.7b(y)? Starting from
the groundstate | N, 0; Vg, Vbs) of the N-electron system in the quantum
dot, with an additional electron entering the quantum dot from the emitter,
the quantum dot ends in an excited state |N+1, k; Viig, Vbs) of the (N +1)-
electron system (see Fig.5.7c). Such a process is opened at Vg if

pich (2) E(N + 1,k; Vgs, Vbs) — E(N, 0; Vs, Vos) - (5.21)

By opening this channel, electrons for the emitter can either use the way
via the groundstate or via the excited state of the (N + 1)-electron system
as depicted in Fig.5.7b(). These channels are taken from electrons of
different energy, but they cannot be used at the same time due to the
electron-electron interaction in the quantum dot allowing fluctuations only
between N and (N + 1) electrons in this parameter regime. Therefore, the
additional channel increases only the probability that an electron enters
the quantum dot from the emitter side, and leads by this to an increase in
the current Ips.

Actually it is not obligatory that the quantum dot is in the groundstate of
the N-electron system before the (IV 4 1)th electron enters the quantum dot.
As we will see in the next Section, also excited states of the N-electron system
become accessible in this single-electron tunneling regime. Therefore, starting
from the excited state |N,l; Vg, Vbs), in general, an additional channel to
the emitter is opened, leading to an excited state of the |N + 1, k; Vg, Vbs)
(see Fig. 5.7c), if
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piclch ) E(N + 1,k; Vg, Vbs) — E(N, 1; Vgg, Vbs) (522)
> u(N +1,k; Vg, Vbs) > pé™ . (5.23)

This additional single-electron channel described by (5.21) or by (5.22) is
only possible if anyhow the quantum dot can fluctuate between N + 1 and
N electrons, i.e., (5.23) is fulfilled. Otherwise, although the energy differ-
ence E(N + 1,k;{V;}) — E(N,l;{V;}) might fall between p$i" and g,
this channel via the excited state cannot be used. An example is given with
Fig.5.7b(e).

At Vgs and V{y, the respective resonance conditions

pseh (2) E(N + 1,05 Vlfs,VDs) - E(N70§VI§S7VDS) )
et 2 BN + 1, k; Vs, Vos) — E(N, 1; Vi, Vis)

are obtained. Based on the assumption (5.8), the difference AVs = ViJs —Viag
in the gate voltage Vs between (8) and () in Fig. 5.7a is then given by

ap -elAVpg = E(N+ 1ak; {‘/z}) - E(N,l,{‘/@})
~[BN+1,0:V:h) - EN,0, (VD] (5:24)

The processes leading to excited states of the N-electron system are described
in the following Section.

5.4.2 Single-Electron Tunneling Regime between N and (N + 1)
Electrons: Additional Channels on the Collector Side due to
Excited States of the IN-Electron System

Once again, a single-electron tunneling regime is schematically shown in
Fig. 5.8, in which the number of electrons can fluctuate between N and N +1.
But now an additional transport channel is opened with its borderline (dotted
line) parallel to the borderline to the Coulomb blockade regime with N + 1
electrons, i.e., it is opened in resonance to the Fermi level of the collector. ®
Again, to explain the origin, let us consider what happens at a bias Vpg with
varying the gate voltage Vg along the path indicated by the dashed line in
Fig.5.8a. The respective energy schemes for different gate voltages — marked
in Fig.5.7a by (), (8), (v), (6) and (g), are given in Fig. 5.8b. Here we take
the opposite direction in Vgg — starting from the Coulomb blockade regime
of N + 1 electrons.

e Operation point a: At Vi, the quantum dot is in the Coulomb blockade
regime of N + 1 electrons, i.e., (see Fig.5.8b(a))

u(N + 25 Vigs, Vos) > pfi® > p&™ > p(N + 1; Viss, Vbs) -

® Parallel to V5 for Vbs > 0, and parallel to V3’ for Vps < 0.
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Fig. 5.8. (Left page) (a) Similar to Fig.5.7a, except that an additional single-
electron transport channel (the position is indicated by the dotted line) opens within
a single-electron tunneling region, parallel to the borderline to the Coulomb block-
ade regime of N + 1 electrons instead of N electrons. (b) Energy schemes to the
Vas values indicated in (a) with (a) to (g). In case of (y), an additional channel is
opened for electrons leaving the quantum dot by ending in an excited state |V, 1)
of the N-electron system. This is done (see (c)) either by starting from the ground-
state |V 4+ 1,0) of the (V + 1)-electron system or by starting from an excited state
N + 1,k) of the (N + 1)-electron system. The latter has to be reached by the
preceeding process, for instance, by a tunneling process adding the N + 1 electron
from emitter (see Fig.5.7).

e Operation point 3: With decreasing the gate voltage Vgg, single-electron
transport becomes possible at Vgs since there

u(N + 1;Vigs, Vos) 2 pugieh

(see Fig.5.8b(B)). Starting from the groundstate of the (N + 1)-electron
system in the quantum dot, maximum energy is obtained for an electron
leaving the quantum if the quantum dot ends in the groundstate of the
N-electron system. At VBﬂS the energy pu(N +1; Vgs, Vbs) of the electron is
just enough to reach an unoccupied state at the Fermi level of the collector.
For V]fs > Vs > Vgs, single-electron transport remains possible since

pE" > p(N +1; Vas, Vbs) > pg™ . (5.25)

e Operation point y: At Vg within the gate voltage interval defined by

(5.25), an additional channel is opened in resonance to the collector: There

is another channel for electrons leaving the quantum dot. Starting from

the groundstate |N + 1,0; Vg, Vbs) of the (N + 1)-electron system in the

quantum dot, an electron can escape from the quantum dot to the collector

so that the quantum dot is left behind in an excited state |N,I'; Vi, Vbs)
of the N-electron system (see Fig. 5.8¢). This becomes possible at Vg if

E(N +1,0; Vs, Vos) — BN, I'; Vi, Vog) 2 pdeh | (5.26)

i.e, the electron gains enough energy to find an unoccupied state at the
Fermi level of the collector.

By opening this channel, a single electron from the quantum dot can leave
to the collector by either transfering the quantum dot into an excited
state or into the groundstate of the N-electron system. As in the case of
an additional channel from the emitter side, these channels at the collector
side are taken from electrons of different energy, but again they cannot be
used at the same time. The additional channel increases only the probability
that an electron is leaving the quantum dot to the collector side.
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Due to the possibility of obtaining an excited state |N + 1, %'; Vg, Vbs)
of the (N + 1)-electron system by tunneling from emitter into the quantum
dot, the relation (5.26) has to be generalized to

i S BN + 1, Vs, Vos) - BV, U Vs, Vos) (5.27)
< (N +1,k; Vgg, Vbs) < pEt (5.28)

This transition between the N and the (N + 1)-electron system is indicated
in Fig. 5.8c.

The additional single-electron channel described by (5.26) or by (5.27) is
only possible if anyhow the quantum dot can fluctuate between N + 1 and
N electrons, i.e., (5.28) is fulfilled. Otherwise, although the energy difference
E(N + 1,k';{V;}) — E(N,U'; {V;}) might fall between puf® and pd®, this
channel via the excited state cannot be used (see Fig.5.8b(¢)).

At VBBS and V{g, the respective resonance conditions

E(N +1,0; Vs, Vbs) — B(N, 0; V&, Vbs) 2 pleh |
E(N +1,k; Vs, Vbs) — B(N, I Vi, Vo) 2 pucleh

are obtained. Based on the assumption (5.8), the difference AVgg = Vgs - Vs
in the gate voltage Vgs between (v) and (8) in Fig. 5.8a is then given by

OB - eAVBs = E(N + 1,kl§ {Vz}) - E(N7 ll; {Vz})
—[B@V +1,0,{vih) - BV, (VD] (5.29)

This result is very similar to the result (5.24) for opening an additional chan-
nel for electrons entering the quantum dot from emitter side.

5.4.3 Is Separate Quantitative Spectrocopy of the IN- and of the
(IV 4 1)-Electron System Possible?

Eqn. (5.22) describes the situation when an excited state of the (N + 1)-
electron system is reached, whereas Eqn. (5.27) describes the condition for
an excited state of the N-electron system becoming accessible. In the general
case where the initial state before tunneling is an excited state, these reso-
nance conditions include the total energy of excited states of both systems
which makes the spectroscopy rather complex.

But if the initial state of the quantum dot before the (N + 1)th electron
enters the quantum dot from the emitter is always the groundstate |N,0) of
the N-electron system (see Fig.5.9a), then (5.22) reduces to

N%Ch (;) E(N + 1, k; V];s; VDS) - E(Na 0; V];S’ VDS) (5'30)
> u(N + 1,k Vids, Vos) > pgeh .
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As a consequence, the distance AVgg in the backgate-source voltage from the
borderline to the Coulomb-blockade regime of N electrons to opening the
additional channel on the emitter side is given by

ap-eAVas = B(N + Lk {Vi) — E(N +1,0:{Vi}) . (5.31)

Similar for the channels to the collector: If the initial state of the quantum
dot before the Nth electron leaves the quantum dot to the collector is always
the groundstate |N +1,0) of the (N 4 1)-electron system (see Fig. 5.9a), then
(5.27) reduces to

udet S BN 4+ 1,0, V35, Vos) — B(N, I3 Vils, Vos)  (5.32)
< (N +1,k; Vg, Vos) < pg" .

The distance AVpg in the backgate-source voltage from the borderline to
the Coulomb blockade regime of (N + 1) electrons to opening the additional
channel on the collector side is given by

ap -eAVs = E(N, k; {Vi}) — E(N,0;{Vi}) . (5-33)

Under such conditions, indeed, quantitative spectroscopy of the (N + 1)-
and the N-electron system can be done separately, just distinguished by the
shift of their borderline in the (Vgs,Vbg) plane (see Fig. 5.9b):

Within the single-electron tunneling regime of N and N +1 electrons,
a quantitative spectroscopy of the (N + 1)-electron system is done
with respect to the borderline to the Coulomb blockade regime of
N electrons,” whereas a quantitative spectroscopy of the N-electron
system is done with respect to the borderline to the Coulomb block-
ade regime of N +1 electrons.!? This is possible if a fast and complete
relaxation to the groundstate of the confined electron system in the
quantum dot occurs before the next tunneling process through one
of the barriers starts.

However, negative differential conductance in Fig. 5.5 indicates that (at
least for some excited states) relaxation does not occur within the mean time
T = e/|Ipg| between successive electrons passing through the quantum dot
[148]. We will come back to this effect in Section 5.8. The question arises:
Are there other features indicating that the initial states for the tunneling
process are in the respective groundstates? This topic will be addressed in
the following Sections.

® Parallel to Vg for Vs > 0, and parallel to V5’ for Vbs < 0.
10 Parallel to Vi\g’ for Vbs > 0, and parallel to Vo' for Vis < 0.
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Fig. 5.9. Separate spectroscopy of the N- and the (N + 1)-electron system can
be done if the initial state of the quantum dot before a tunneling process starts
is always the groundstate of the respective m-electron system. (a) If an excited
state has been reached, a relaxation process to the respective groundstate has to
occur before the next tunneling event takes place. (b) Sketch of the single-electron
tunneling regimes of N and (/N +1) electrons on the quantum dot: The dotted lines
mark the borderline for opening an additional channel on the emitter side and are
therefore due to excited states of the (IV + 1)-electron system. The dashed-dotted
lines mark the borderline for opening an additional channel on the collector side
and are therefore due to excited states of the N-electron system. These channels
are suppressed in the Coulomb blockade regime since there the number of electrons
on the quantum dot is fixed.

5.5 Construction of Possible Transport Threshold Lines
in the (Vgs,Vps) Plane from the Known Energy Spectra
of the Quantum Dot

Is it possible to construct the positions for opening additional single-electron
transport channels in the (Vag,Vps) plane if we know the energy spectra for
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the N- and the (N + 1)-electron system in the quantum dot? A scheme for
doing so is derived here [42]:

Let us assume the total energy spectra for the N- and the (N +1)-electron
system as shown in Fig. 5.10a. For simplicity, degeneracy in the spectrum is
absent, i.e., with increasing quantum number index the energy of the n-
electron states increases. The differences between the energy spectrum of
the (N + 1)-electron system and those of the N-electron system for fixed
potential {V;} are denoted in the following as transition energies. They are
plotted in Fig. 5.10b with respect to the electrochemical potentials of emitter
and collector represented by the horizontal lines. By changing a gate electrode
potential V; by dVj}, all transition energies are shifted relatively to puf® and
paeh by —ea; V.

The scheme of Fig.5.10b is constructed in the following way: First the
transition energies E(N + 1,k) — E(N,0) from the groundstate of the N-
electron system to the ground- and excited states of the (N + 1)-electron
system (k € {0,1,2,---}) are plotted along the vertical energy axis. The exact
vertical position of this ladder with respect to p&" and p&" depends on the
operation point in the (Vgs,Vps) plane. The respective levels are marked
by (0,%). At horizontal distances, given by the transition energies E(N +
1,0) — E(N,!l) with [ € {0,1,2, -}, the ladder of transition energies E(N +
1,k) — E(N,!l) with k € {0,1,2, -} are plotted, marked by (I, k). We obtain
a grid-like pattern with nodes each indicating an energy level with respect
to pgt and pgh for a transition between the N- and the (N + 1)-electron
system. By the vertical solid line crossing a node (I,k) all transitions are
connected involving the same state |N,I) of the N-electron system. By the
dashed oblique line, the transitions involving the same state |N + 1, k) of the
(N + 1)-electron system are connected. The arrows on the connecting lines
indicate possible directions for relaxation in the system for fixed electron
number. Any path following the arrows will end at the transition between
the groundstates, denoted by (0, 0).

How to interpret this scheme to derive the possible transitions for the
given drain-source voltage Vps and gate-source voltage Vgs. To succeed, con-
sider the following statements:

1. A direct transition from |N,1) to |N + 1,k) is only allowed if
pE" > E(N + 1,k {Vi}) — E(N,1;{Vi}) -

The node (I, k) has to lie below p&h. Prerequisite for such a transition
is that the state |N,!) is the initial state, i.e., |N,[) has been prepared
by a preceeding process. This might happen due to a direct transition
from a (N + 1)-electron state or by relaxation from a N-electron state of
higher energy. A transition from |N + 1, k') to |N,1) is only energetically
allowed if

E(N +1,K3{Vi}) = E(N,;; {Vi}) > pg" .
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Fig. 5.10. (Left page) Interrelation between the total energy spectrum and ex-
tended energy-level scheme: (a) Fictitious total energy spectra of the N- and the
(N + 1)-electron system. The distance between the N- and the (N + 1)-electron
spectrum increases linearly with changing an electrode potential V;. Transitions are
indicated, possible for the situation depicted in (b). (b) Scheme where the transition
energies E(N+1, k) — E(N,1) derived from (a) are plotted for a certain drain-source
voltage and gate voltage combination relatively to the electrochemical potentials
of emitter and collector. Construction and interpretation: see text. (c) Extended
energy scheme for the quantum dot to decribe single-electron transport: All tran-
sition energies E(N + 1,k) — E(N,l) are plotted. The thick solid line represents
the transition between the groundstates, i.e., u(N + 1). Black are marked possible
transitions, grey those which cannot be used under these conditions. The transition
(1,0) is usable only from the emitter side, i.e., (1,0)E (black to emitter side, grey
to collector side).

The node (I, k') has to lie above p&® and prerequisite is that the initial
state [N + 1, k') has been prepared by the preceeding process.

2. If the transition |N,l) — |N + 1,k) becomes possible, all transitions
|N,I) = |N 4+ 1,k') with 0 < k' < k become energetically allowed. It
means in Fig.5.10b: If the transition |N,l) — |N + 1, k) occurs, transi-
tions to all states of the (N + 1)-electron system become energetically
possible which are reached along the solid line through (I, k) for which
the transition energy lies below u&h.

3. Similar, if the transition |N + 1,k) — |N,I) occurs, all transitions |N +
1,k) — |N,l') with 0 < I' < | are energetically allowed. It means in
Fig. 5.10b: If the transition |N + 1,k) — |N,I) is possible, transitions to
all states of the N-electron system become possible which are reached
along the dashed line through (I, k) for which the transition energy lies
above pdh.

4. If the state |N + 1,k) is reached, by relaxation also the states |[N +
1,k"y with k' < k might occur. Similar, if the state |N,[) is obtained, by
relaxation also the states |N,1') with I’ < [ might be present.

In Fig.5.10b, the transition energy between the groundstate of the N- and
the (N + 1)-electron system lies between pfih and pg, i.e., single-electron
tunneling is possible and the electron system in the quantum dot is found
in both groundstates |N,0) and |N + 1,0) from time to time. Which other
transitions are possible? Starting from (0, 0) along the connecting lines further
transitions have to be searched. Along the solid vertical line, transitions are
only possible if the respective transition energy lies below p&. It is a channel
for an electron entering the quantum dot. Along the dashed oblique line, a
transition is only possible if its transition energy lies above pd. It is a
channel for an electron leaving the quantum dot. If a possible transition is
found, from this node further transitions can be searched along its connecting

lines to neighboring nodes.
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We can summarize: If the transition (I, k) is possible, all transitions are
energetically possible which are

e reached along the solid vertical line with transition energy below pg®, or

e reached along the dashed oblique line with transition energy above p&h.

Let us apply this result to the situation depicted in Fig.5.10b: Starting
from (0,0), along the solid line, transitions from the groundstate |N,0) to
excited state |N + 1,k) of the (N + 1)-electron system are found marked
by (0, k). Only the transition (0,1) is possible since its transition energy lies
below pfh. Therefore, the state [N + 1,1) is reached. Again, starting from
(0,0), along the dashed line the transition (1,0) is reached which cannot be
used since it lies below p&". Therefore the transition [N + 1,0) — |N, 1) is
not energetically allowed. From (0, 1) only (0,0) (solid line, below u&") and
(1,1) (dashed line, above p&M) lead to possible transitions. From (1, 1), also
(1,0) is reached along the solid line. Since it lies below p&®, the transition
|N,1) — |N + 1,0) is energetically allowed. In summary, for the situation in

Fig. 5.10b the following transitions are energetically accessible:

(0,0)EC : |N,0) ¢ [N +1,0),
(0,1)EC : [N,0) ¢ [N +1,1),
(1,1)EC: [N,1) & [N +1,1),
(1,0E :|N,1) = [N +1,0).

The transition |[N,1) — |N+1,0) but not the transition |N +1,0) — |N, 1) is
possible, whereas all other transitions are bidirectional. All these transitions
are marked in total energy spectra shown Fig.5.10a. Is the key transition
|N,0) = |N + 1,1) not allowed due to other selection rules besides energy
conservation, then all transitions described above are not usable since these
are linked to (0,1)E. If this key transition occurs, then all transitions de-
scribed above are energetically allowed.

In conclusion, the dynamics of single-electron transport is rather com-
plex, since by opening a transition to a new excited state of the N or the
(N +1)-electron system, generally a whole series of other transitions between
both electron systems become energetically allowed. The scheme presented in
Fig.5.10b allows to explore systematically these energetically possible tran-
sitions as described above.

How does it looks like in the (Visg,Vbg) plane? In Fig. 5.11, the borderlines
derived from the fictitious energy spectrum and described by the relations

E(N +1,k; Vas, Vos) — B(N, I; Vs, Vos) = pglet | (5.34)
E(N +1,k; Viss, Vbs) — E(N, I; Vs, Vo) 2 pucleh (5.35)

are plotted in the (Vas,Vbs) plane. By (I, k)E, the borderline decribed by
(5.34) is marked, by (I,k)C that described by (5.35). The borderline for
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single-electron tunneling towards the Coulomb blockade regimes are equiv-
alent to (0,0)E and (0,0)C. Borderlines involving excited state can only be
used within the single-electron tunneling regime, and there only if the initial
state has been reached by another process. The lines (I, k)E and (I, k)C are
drawn as a thick line for (Vps, Vag) where these transitions become possible
for higher |Vps|. There a peak in the differential conductance is expected.
For example, the borderline (1,1)E is drawn as a thick line after crossing a
line (1,0)C because the initial state |N, 1) for (1,1)E became available at the
crossing with (1,0)C.

The pattern of transport spectroscopy of Fig.5.11 is obtained by con-
sidering direct transitions between the N and the (N + 1)-electron system.
Under this assumption, it seems to be possible to conclude on the initial
state for each transition visible in the transport spectrum. Unfortunately, if
certain transitions are not allowed, the story is not so easy as the following
example shows: Let us assume the transition (I, k)E, i.e., |N,l) = [N +1,k),
is not possible although energetically allowed. But |N + 1, k) might be ob-
tained from relaxation from a state [N + 1,k') of higher energy, which was
reached by the transition (I, k')E. Therefore transitions involving the state
|N + 1,k) are not enabled by (I, k)E but by (I', ¥')E: Borderlines of (I",k)C
end on (I, k')E instead of (I, k)E. Therefore, from the transport spectrum, in
general, we cannot conclude unambituously on the initial state!

Additional channels which are opened from groundstates as the initial
state are ending at the borderlines (0,0)E and (0,0)C. Can be concluded in
the opposite direction that all those borderlines ending at the borderlines
of single-electron tunneling are due to transitions involving a groundstate?
Unfortunately not: Let us look at the following example. We assume that
the transition energy for (1,1) is the same as for (0,0). Then (1,1)E falls
in Fig.5.11 onto the borderline (0,0)E and is activated with (0,1)C for in-
creasing |Vpg|. Therefore (2,1)C which is linked to (1,1)E ends also on the
borderline (0,0)E.

Obvious from Fig. 5.11, transitions (k,l) with

E(N +1,k) — E(N,1) > u(N + 1), (5.36)

i.e., with an energy level above the groundstate transition are candidates for
opening additional channels on the emitter side, whereas, transitions (k',1")
with

E(N +1,k') — E(N,I') < p(N +1) (5.37)

i.e., with an energy level below the transition energy between groundstates
might open additional channels on the collector side. In the first case, a new
channel is created for an electron entering the quantum dot, whereas in the
second case a new channel is created for electrons leaving the quantum dot.
In analogy to Section 1.2, the first one can be denoted as an ’electron-like’
channel whereas the second one as a ’hole-like’ channel.
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Fig. 5.11. (Left page) Interrelation between total energy levels and borderlines
in the (VBs, Vbs) plane: In (a) a fictitious energy spectrum is given which leads
to the energy ladder defined by the transition energies E(N + 1,k) — E(N,1) and
plotted in (b). It includes u(N + 1) = E(N + 1,0) — E(N,0), i.e., the transition
between the groundstates. With changing the gate voltage Vas, the energy ladder is
shifted, i.e., these levels come in resonance for certain Vas values as marked in (c).
These transitions might open an additional channel on the emitter or the collector
side defining the borderline shifting up or down with |Vps|. If these borderlines fall
into the single-electron tunneling regime, they might be usable. Prerequisite is that
the initial state has been reached: Groundstates are reached at the borderlines of
single-electron tunneling, excited states usually after crossing another borderline
which leads to the required initial state.

In conclusion, from experimental transport spectrum it is not straight
forward to extract unambiguously the energy spectra for the N- and the
(N + 1)-electron system. Further information about the system has to be
collected and incorporated into the interpretation of such an experimental
transport spectrum.

5.6 Transport Spectrum: From Metal-Like to Atom-Like
Quantum Dot

Single-electron transport is caused by the repulsive electron-electron inter-
action on the island, described in metal systems by the electrostatic single-
electron charging energy Ec. As described in Chapter 4, with descreasing
the size of an island, the kinetic energy of the electrons gets quantized. The
single-particle level spacing Aeqy, ! increases and even exceeds Ec.

The energy scheme to describe single-electron transport through the quan-
tum dot includes all possible transitions between the N- and the (N + 1)-
electron system. Depending on the relative size of the single-electron charging
energy Fc and the quantization energy Aeqy, one can distinguish the follow-
ing cases:

e For a metal island, the single-electron charging energy is the dominant en-
ergy scale: Eg > Aeqy. The single-particle excitation spectrum is continu-
ously dense, i.e., the transition energies between the N- and the (N + 1)-
electron system are also dense. As sketched in Fig. 5.12a, very regular and
uniform regions of Coulomb blockade should be observed as a function of a
gate voltage Vgs and drain-source voltage Vps. Due to the dense excitation
spectra of a metal island, continuously additional single-electron transport
channels are opened with increasing |Vps| (see Ips(Vps) characteristics in
Fig.1.9, Fig. 1.10 and Fig.1.11).

1 For a harmonic confining potential, we have Aeqy = Awo.



152 5. Transport Spectroscopy on a Quantum Dot

(@ Ec>>Agyy (b) Ec 2 Agqy () Ec<<A&qu

Metal Island Quantum Dot Atom-Like Dot
NF1L N+1
/77777, s /77777, /777777,
Source V777777 N V7777777 ~| V7777777
Drain — —
N-2
N-2
Ves Ves VBs
N+2 N+1 N+1
N+1] 4
N N
N
N-1
N-1 N-1
° Vps °©  Vps 0 Vbs
, VBs
(d) Empty Dot (N=0)
1
3
2
1
7777777 ol
0 Vbs

Fig. 5.12. With decreasing the typical size of a quantum dot, the quantum-
mechanical energy-level spacing Aecq, increases and might even exceed the single-
electron charging energy Ec due to the electron-electron interaction in the quan-
tum dot. With increasing the ratio Aequ/Ec, the Coulomb blockade regions in the
(VBs, Vps) plane vary more and more in size with the electron number, and a less
number of additional channels occur in the single-electron tunneling regime.

e For a typical quantum dot obtained by structuring bulk material, the quan-
tization energy Aeq, is comparable to the single-electron charging energy:
Ec =~ Aeqy. The excitation spectrum is discrete close to the respective
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groundstate. The shapes of the Coulomb blockade regions vary in size with
the electron number and additional channels in the single-electron tunnel-
ing regime should be resolved (see Fig. 5.12b).

e In case of really small islands, the quantization due to the confinement
dominates — like in atoms: Aegy > Ec. Almost no additional channels are
expected to be opened within the single-electron tunneling regime since
the single-electron excitation energies usually exceeds the classical single-
electron charging energy (see Fig.5.12c). Reminiscences of the electron-
electron interaction in the n-electron system might still deliver low-energy
excitations.

In the case that the quantum dot becomes completely empty of conduction-
band electrons, the Coulomb blockade region N = 0 is not closed as indicated
in Fig. 5.12d. Such transport spectra were observed by Kouwenhoven, Aust-
ing, Tarucha and coworkers [5]. Such a Coulomb-blockade region gets in prin-
ciple closed by taking off the first electron from the valence band (N = 0):
The distance in the addition energies u(N = 1) — u(N = 0) becomes about
the relatively large semiconductor’s bandgap energy.

5.7 Transport Spectroscopy by Applying a Magnetic
Field

We have already presented in Fig. 5.2 conductance measurements versus Vpg
at Vps = 0 for varying an applied magnetic field B. We found that the dis-
tance in the Coulomb blockade oscillations varies with magnetic field: Each
CBO peak shifts slightly differently, i.e., shows a characteristic ‘'magnetic
field dispersion’. Furthermore, the peak heights in the CBOs are modulated.
The effects are independent of positive or negative magnetic field orienta-
tion. From these observations we conclude: Applying a magnetic field to the
quantum dot system changes the energy spectrum of the electron system
confined in the quantum dot. This leads to changes in the transition energies
between the N- and the (N + 1)-electron system in the quantum dot for
fixed electrostatic potentials {V;} on the surrounding electrodes. The change
in the transition energies E(N + 1, k; {V;}, B) — E(N,[;{V;}, B), induced by
the magnetic field B, can be compensated by a change in an applied gate
voltage, for instance, Vgs. Therefore, the values of the applied gate voltage
Vis, which fulfill the resonance conditions

E(N +1,k; Viss, Vbs, B) — E(N, I; Vis, Vos, B) = uglh | (5.38)
E(N +1,k; Vas, Vos, B) — E(N, I; Vas, Vos, B) 2 pdeh | (5.39)

for opening transport channels, are shifted along the Vgg axis. McEuen et
al. [146] demonstrated this kind of transport spectroscopy in a magnetic field
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Fig. 5.13. Differential conductance dIps/dVps in greyscale through the quantum
dot system of Fig. 5.1 with magnetic field parallel to the plane of the 2DES, mea-
sured as a function of Vgg for the magnetic field range —15T to +15T in 0.5T
steps: (a) for drain-source voltage Vps = 0, (b) for Vps = —0.7 (white regions cor-
responds to dIps/dVps < 0 puS, black ones to dIps/dVps > 2 uS). Arrows indicate
where a degeneracy in the groundstate either of the n- or the (n+1)-electron system
occurs. (adopted from J. Weis et al. [149])

in 1991. The magnetic field B was orientated perpendicular to the plane
of their 2D quantum dot realized in an AlGaAs/GaAs-heterostructure by
split-gates. Due to the weak confinement in the plane perpendicular to the
magnetic field orientation, defined by the split-gate electrodes, the spectrum
is dominated by orbital effects. The method has been used by several groups
to explore the electronic structure of quantum dots in high magnetic field
(for review see for instance [81, 3, 4, 6, 5]). In Fig. 5.13, some of our own data
are shown from the quantum dot presented in Fig.5.1 where the magnetic
field is applied parallel to the plane of the two-dimensional electron system.
Due to the strong confinement for the 2DES in the growth direction of the
heterostructure, orbital effects are diminished and the observed magnetic field
dispersions are less complex, allowing to discuss the principles of transport
spectroscopy with applying a magnetic field.

In Fig. 5.13a the differential conductance dIps/dVps measured at Vpg =
0mV is plotted in greyscale as a function of the backgate voltage Vgg and of
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the magnetic field B between —15T and 15T in 0.5 T steps. 2 In Fig.5.13b
similar measurements are shown for Vpg = —0.7mV. In Fig.5.13b the
backgate-voltage regions, where single-electron-tunneling occurs, are broad-
ened since the difference between the electrochemical potentials of emitter
and collector has been increased. Additional transport channels due to ex-
cited states of the quantum dot become accessible and the magnetic field
dispersions of Vg for opening these channels by the resonance conditions
(5.38) and (5.39) are visible. The magnetic field behaviour is symmetric in
changing the sign of the magnetic field B.

The upper and lower boundaries VB(]SD) (B) and VB(? (B) of each single-
electron tunneling regime show the same magnetic field dispersion
as predicted by conditions u(n;Vég),VDs,B) = p&ih respectively
u(n; Vég), Vbs, B) = p®, where the difference pg'® — p$it = e|Vpg|
is independent of the magnetic field and defined by the externally
applied drain-source voltage Vpg [149].

This is the same magnetic field dispersion which is observed at vanishingly
small bias voltage |Vpg| in Fig. 5.13a. The kinks observable in Fig.5.13a can
be identified with crossings of different magnetic field dispersions in Fig. 5.13b
(marked by arrows). Therefore, kinks in the magnetic field dispersion of the
boundaries VB(IS?) and VB((SS) of a single-electron tunneling regime indicate a
change in the character of the groundstate of the N- or (N + 1)-electron
system (change in the quantum numbers): The groundstate of the quantum
dot is degenerate either for the N- or the (IV + 1)-electron system, at these
magnetic field values, i.e., E(n,0; B) = E(n,l; B).

Different magnetic field dispersions are visible in Fig. 5.13b. In principle,
one should be able to derive further information about the magnetic field
dependence of the transition energies E(N + 1,k;{V;}, B) — E(N,[;{V;},B)
between states of the N and the (N + 1)-electron system of the quantum
dot from such measurements. However, in interpreting the shift of Vgg values
with B, that fulfills the condition (5.38) or (5.39), one has to be careful:

e On the one hand the magnetic field changes the states of the quantum dot.

e On the other hand the magnetic field also affects the states of the 2DES
electrodes, acting as leads, and of the metal electrodes used as gates: The
electronic states of the electrodes are energetically shifted and the density
of states is changed by the magnetic field.

The latter effect causes a change in the electrostatic environment of the quan-
tum dot: As discussed in Chapter 3, the differences of the electrostatic poten-
tials of the electrodes are not given by the external electrical circuit, only the
differences of the electrochemical potentials of the electrodes are given by the
external applied voltages (Vas, Vbs, etc.). Intrinsic contact voltages between

12 Note, at Vs = 0 the differential conductance dIps/dVps is equal to the conduc-
tance IDs/VDs for Vps = 0.
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the electrodes lead to a shift of the electrostatic potential of the quantum dot
by a; - AVS(B). Thus, the differential shift (9Vgs/0B) - dB of the applied
gate voltage Vps, required to remain at the resonance position for opening
a transport channel, can be obtained from (5.38), (5.39) and the shift of the
electrostatic potential of the electrodes with magnetic field [42, 144, 153]):

Vi 8
ey - 0 [E(N+ 1, k; Vas, Vos, B) — E(N, lVBS,VDS,B)] ‘{v,-}
ave

The essential result of (5.40) is:

The measured magnetic field dispersion of the applied gate voltage
VBs(B), fulfilling the resonance condition for opening a new trans-
port channel, is due to the change in E(N + 1,k;Vss, Vps, B) —
E(N,I;VBs, Vbs, B) at fixed electrostatic potentials {V;}, and due
to the changes in the electrostatic potential of the surrounding elec-
trodes by variations in the contact voltages induced by the magnetic
field.

Therefore, if OV;°(B)/0B is unknown, the interpretation of the measured
magnetic field dispersion Vis(B) is difficult. '* However, since the last term in
(5.40) can be replaced by using -0V, /0B = du$" /OB, it gives a contribution
to all magnetic field dispersions. Consequently, reliable information about the
magnetic field dispersion of E(N + 1, k; Vs, Vbs, B) — E(N,1; Vs, Vbs, B)
at fixed electrostatic potentials {V;} can be obtained by a direct comparison
of two magnetic field dispersions.

5.8 Dynamics of Single-Electron Transport Through
Quantum Dots

If excited states of the electron system in the quantum dot become acces-
sible, usually the current through the quantum dot is increased. But this
is not true in all cases as visible in the experimental data of Fig.5.5 where
negative differential conductance occurs: The electrical transport seems to
be suppressed by accessing certain excited states. Why is this possible? In
the regime of single-electron tunneling, the number of electrons in the quan-
tum dot fluctuates by one during electron transport. At finite drain-source
voltage, electrons of different energy in the emitter are competing in enter-

ing the quantum dot, and electrons of different energy in the quantum dot

13 This is a consequence of p'™ = —e V; 4+ pus® = const (see relation (3.2)), i.e., the
change of the electrostatic potential V; is given by the change of the chemical
potential p® of the electrode i.
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are competing for leaving the quantum dot to collector. The electrons are
competing [148], since within the regime of single-electron tunneling only one
electron can tunnel at a time: Due to the repulsive electron-electron inter-
action, tunneling of electrons using different channels is not independent of
each other. Long life times in certain excited states might lead to blocking of
single-electron tunneling through the other channels. The dynamics of single-
electron transport through quantum dots will be discussed in the following
based on a master equation approach.

5.8.1 Master-Equation Ansatz for Describing the Dynamics of
Single-Electron Transport

A first approach to the dynamics of single-electron tunneling in a quantum
dot system is a master equations ansatz [32, 115, 9, 134]: After preparing
the quantum dot in the state |n,l; {V;}), the quantum dot system develops
in changing its state because

e single electrons are entering,

e single electrons are leaving,

e the electron system in the quantum dot relaxes to a state of lower energy
of the same electron number, or

e the electron system is excited to a state of higher energy of same electron
number.

These transitions can be described by rates giving the time scale for the
respective changes. Such rates can be derived from Fermi’s golden rule [9].
A transition from the state |n,l; {V;}) to |n+ 1, k; {V;}) is either induced
by an electron entering from the source or from the drain side. Both tunneling
processes occur under energy conservation between initial and final state of
the system, i.e., E(n + 1,k;{V;}) — E(n,l;{V;}) — e = 0, where & denotes
the energy of the electron entering. The tunneling rate F((Z?l) (k) for the
transition from the respective reservoir r € {S,D} is described by 14

r 27 2
F((n,)l)—>(n+1,k) = B T;(In, 1), In + 1,k); €5)

-§(E(n+1,k) — E(n,1) — &,) - frp (€5, p&", T) . (5.41)

The factor |T,(|n, 1), |n + 1,k);€)|? represents the tunneling matrix element
for the transition |n,l;{V;}) to |n + 1,%;{V;}) with an electron of energy e
entering the quantum dot from the reservoir 7. The Fermi-Dirac distribution
function frp(e, uS", T) = 1/{exp((e — pu,)/ksT) + 1} gives the occupation

!4 The sum over s, numbering the single-particle states of reservoir r € {S, D}, can
be replaced by an integral with introducing the density of states D, (&) in the
reservoir r at the energy e: ) — fs D, (e)de
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probability of finding an electron at energy ¢ in the reservoir r at temperature
T for a Fermi level pgleh.

The tunneling rate for a transition from the state |n + 1,k; {V;}) to the
state |n,l; {V;}), induced by an electron leaving the quantum dot to reservoir

r, is given by
(r) 2w 2
F(r: 1)+ (n+1, k) h

Tr(In, 1), In + 1,k);e5)

- 5(E(n+1,k) — E(n,1) — ) - (1 — fep (es, ph, T)) . (5.42)

The rate is proportional to the probabilty of finding an unoccupied state
in the reservoirs r at the respective energy e which is given by (1 —
fe (e, uSn, T)).

By relaxation the electron system in the quantum dot reaches a state of
same electron number at lower energy. These relazation rates are denoted by

Iy With 0<I'<1€{0,1,2,--},
ie, E(nl;{Vi}) <Em,;{Vi}).  (5.43)

Excitations from energetically low lying states to states of higher energy can
also be incorporated with respective excitation rates,

L) Ly With 0<I<l'€{0,1,2,+},
ie, EMm,UI;{V;})>EMm,{Vi})).  (5.44)

Preparing the quantum dot in a certain state, the time evolution of
the probability P(n,l; {V;}, ugt, u@lh) of finding the electron system in the
quantum dot in the state |n,l; {V;}) is given by the master equation 1°

dP(n,l) ) )
at Z (Fm 1,m) = (n.0) +F<n71,m>ﬁ<n,n) “P(n—1,m)
(D )
(D)
+ Z ( (n)«(n+1,k) T F(n D+ (n+1, k)) P(n+1,k)

(S) (D)
Z (F Do(nt1e) T (n,l)—»(n-ﬁ-l,k)) - P(n,1)

(rel) (rel)
+ Zr(nel)‘—(n IS zp(n ) (n,0) P(n,1)
>l <l
(exc) (exc)
+ 2 Tl ) ) =Y Tont sty - P, 1) - (5.45)
r >l

5 For brevity, P(n,l) = P(n,l; {V;}, pd, p3™).
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Such a master equation exists for each state |n,l;{V;}) withn € {---N —
1,N,N+1---}and! € {0,1,2,---}. Since the quantum dot has to be found
in one of these states, the probabilities of all states should sum up to unity,

Y > Pn)=1. (5.46)
n l

The rates and the energies depend on the electrochemical potentials of source
and drain and the electrostatic potentials of all surrounding electrodes in-
cluding source, drain and gate electrodes. Therefore, the rate have to be
determined for each set of parameters ug", p&" and {V;}.

Under stationary conditions, the probabilities do not change, i.e.,

P
wza foral ne{---N—-1,NN+1---}

and 1€{0,1,2,--}. (5.47)

With drain-source voltage Vpg = 0, the probability of finding the quantum
dot in a certain state is given by the Gibbs’ distribution function (5.1), solving
(5.45) for the case of thermodynamical equilibrium at temperature 7.

For Vps # 0, a situation of non-equilibrium is enforced. If possible, elec-
trons will hop between quantum dot and reservoir leading to a net stationary
current from the reservoir of higher electrochemical potential to the reservoir
of lower electrochemical potential. Whether transitions are allowed and on
which time scale, this is described by the respective rates. Starting from a
state [n+1, k; {V;}), the (n+1)th electron can tunnel either to source or drain
given by the respective tunneling rate. The stationary current Ipg, defined
positive if a net flow of positive charges occurs from drain to source with
Vbs > 0, can be determined from the net single-electron hopping towards
drain, i.e., for the transitions |n + 1, k; {V;}) to |n,l; {V;}), electron hopping
to drain is counted positive, electron hopping to source negative:

_ (D) (s)
Ins=e) > > (F(n,l)<—(n+1,k) - F(n,we(nﬂ,k)) ~Pn+1,k). (5.48)
n k 1

A similar relation for the same Ipg is obtained by considering the probability
P(n,1;{V;}) of finding the quantum dot in any of the states |n,l; {V;}), and
counting per time interval the transitions |n,l;{V;}) to any |n + 1,k;{V;})
induced by electrons entering from source positive, by electrons entering from
drain negative:

_ () (D)
Is=e) > > (F ()= (nt1.k) ~ L (n7l)—>(n+1,k)) ~P(n,1) . (5.49)
n k l

Restriction to Low Temperatures. At low temperature, the edge be-
tween occupied and unoccupied single-particle states in the reservoirs is
sharp. Therefore, we can assume
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frp (e, p™) =0 for e > peh and
fop(e, @) =1 fore < pd. (5.50)

With applied drain-source voltage Vpg, either the drain or the source reservoir
becomes the emitter, the other the collector. Due to (5.50), certain tunneling
rates, defined by (5.41) and (5.42), vanish:

C .
L) oy =0 fore > pd™t since  fen(e, ud™) =0,

(E)
F(n,l)(—(n+1,k

y =0 for pat > ¢ since 11— fpp(e, uS") =0.

As a consequence, electrons can enter the quantum dot only from emitter side,
and leave to collector side. It is the factor (1 — frp (e, u&!")) prohibiting that
an electron enters the reservoir with an energy e below the electrochemical
potential " of the reservoir r: Single particle states at the respective energy
are already occupied and Pauli’s exclusion principle does not allow double
occupation of states. Therefore this factor is denoted in this context as Pauli
blocking factor.

The master equations (5.45) simplify under these low temperature condi-
tions, and the stationary current is obtained from (5.48) and (5.49) to

_ (©)
Ice =€) > ) T miry - P+ 1,k)
n k l

=€ Z ; ; F((f,g)ﬁ(n—i—l,k) ’ P(TL, l) . (551)

Transitions might contribute if their respective tunneling rates differ from
zero. Due to

L) cmiiny < 8B +1,k) = B(n,0) =) - (1= fin (e, ")) ,
Loy & S(E(m+1E) = Bn,l') —e) - foo (e, ™) |
the respective transitions might be active in the (Vgg,Vps) plane beyond
certain threshold lines Vps(Vgs) defined by
E(n+1,k;{Vi}) = E(n, ; {Vi}) = p&" |
E(n+1,K;{Vi}) — E(n,l';{Vi}) = pgi" .
These resonance conditions have been used before to derive a transport spec-
trum from fictitious energy spectra E(n+1, k) and E(n,l) shown in Fig. 5.11.

Restriction to Single-Electron Tunneling Regime. In the regime of
single-electron tunneling, the number of electrons in the quantum dot fluc-
tuates between NV and N + 1, i.e., the quantum dot is only found in states of
these two electron numbers. Therefore the constraint (5.46) reduces to
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S P(N,)+> P(N+1,k)=1. (5.52)
l k

and the stationary current Icg is expressed by

Q)
Tom = GZZF((N e PN+ 1K)

=€ Z Z (N, l)—>(N+1 k) P(N,1) . (5.53)

Let us first assume that electron transfer from emitter to collector can only
occur by transitions between the groundstates of the N- and the (N + 1)-
electron system as it is the only possibility at small drain-source voltage.
Then the master equations (5.45) reduce under stationary conditions further
to

0 =dP(N +1,0)/dt = —dP(N,0)/dt

=r® . P(N,0)—I'Y

(N,0)—=(N+1,0) (N,0)«(N+1,0) -P(N+1,0), (5.54)

with the constraint P(N,0) =1 — P(N + 1,0). The stationary current Iéqbio)

— where the superscript (0,0) denotes the transition between groundstates —
is obtained from (5.53) and (5.54) to

(0,0) _ (©
Iep” = e Iinoye (41,0 PV +1,0)

-1
= ) L [p® -1
=e- |:[F((N,O)<—(N+1,0)] + I:F(N,O)—>(N+1,O)j| ] . (5.55)

The inverse tunneling rates through emitter and collector are adding to the
inverse of an effective rate for single-electron transport from emitter to col-
lector. The inverse of the tunneling rate to collector can be interpreted as the
life time Tn 41 of the charge state of N + 1 electrons in the quantum dot,

_ [ -1 _[p® -
v = [T ving] o+ whereas 7y = ([0 L v4i0)

denotes the life time of the charge state with N electrons in the quantum dot
under these conditions. By comparing with (5.55), the current is expressed by

700 _ €
CE = .
TN+1 + TN

Under the low temperature condition (5.50) we will discuss in the fol-
lowing within a single-electron tunneling regime (see constraint (5.52)) the
increase and decrease of current through the quantum dot by reaching an
excited state of long life time.
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Fig. 5.14. Affecting the lifetime of charge state of the quantum dot changes the
current Ipg through quantum dot: (a) Every mean time 7 = e/Icg = e/|Ips| a
single electron is passing the quantum dot. (b) By reducing the life time 7 of the
N-electron charge state by an additional channel for entering the quantum dot, the
period 7 is decreased and the current is increased. (c) By reducing the life time
7n41 of the (N + 1)-electron charge state by an additional channel for a single
electron leaving the quantum dot, the period 7 is also decreased and the current
is increased. (d),(e) Due to excited states of long life time which are reached from
time to time, the life time of the respective electron system is increased reducing
the current |Ipg|.

5.8.2 Long Decay Time of an Excited State Can Block
Single-Electron Transport

During single-electron tunneling, every mean time 7 = e/Icg = e/|Ipg| a
single electron is passing the quantum dot. In average, during such a single-
electron tunneling process, the quantum dot is found for the time 741 =
> P(N + 1,k) - 7 in a state of the (N 4 1)-electron system and for the
time 75y = Y, P(N,1) - 7 in a state of the N-electron system (see Fig. 5.14a).
T = 7n41 + 7N is valid (see (5.52)). By opening a channel to an additional
excited state, these life times are affected. How, this depends on the efficiency
of relaxation processes occuring in the quantum dot.

Instantanous Relaxation. With instantanous and complete relaxation,
ie.,

(rel) E
Iinoyevay > TNy —(N+1.8)»

(rel) C
Iiniroyevine > Tinpeavrie » (5.56)
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the initial state for the following tunneling process is always the groundstate
of the respective electron system. Let us assume that L excited states of the
N-electron system and K of the (N + 1)-electron system are accessible. The
master equations become under stationary conditions

for the groundstate of the N-electron system:

0 = dP(N,0)/dt

= F((IS)O)HNH o) PN +1,0) - F((I}\E:T?O)—)(N-i-l,o) - P(N,0)
+ D TNy POVD
1>0
for the L excited states of the N-electron system (1 <1 < L):
0 =dP(N,1)/dt
= TV heveroy PN +1,0) = I0) C vy - POV,
for the groundstate of the (VN + 1)-electron system:
0=dP(N +1,0)/dt
= Iy sviro - POV0) = T van0) - PN +11,0)

(rel)
+ ZF(N-H etk PN +1,k),
k>0

for the K excited states of the (N + 1)-electron system (1 < k < K):

0=dP(N +1,k)/dt

— r®

0Nk - P(N,0) = I -P(N +1,k) ,

(N+1,0)(N+1,k)
with the constraint

K

L
S P(N+1,k)+ > P(N,l)=1.
=0

k=0
Solving for P(N,1), from (5.53) the stationary current is deduced to

ICE(I{7 L) = TIV_H%TJV , where
-1

Z (Nl)<—(N+10)] v TN =

The terms 7y and 7y41 can again be interpreted as the life times of the
respective charge state in the quantum dot. With each additional channel,
the current is increased by

TN+1 =

K -1
T NOH(NHM] - (5.57)
k=0
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E
-1, 3] Z[l
=0 =
L
(B
(S0+3) <t (Z[]+Z[>
k=0 k=0
o K
1930 2.0
k=0 =0

Icg(K,L+1) — Icg(K,L) = ;

(Z +Zn) +I{5h - <Z +k )

ICE(K =+ ].,L) — ICE(K, L) =

=0
with
K K L
D=3 IiNospvarn s 20= Z (VD410
k=0 k=0 1=0
FI((EJ21 = F((Jl:jr)o)a(NH K41) 7 FL(r(j-)l = F((IS?L+1)<—(N+1,0) .

The increase becomes simple for very asymmetric tunnel barriers: 16

(E) (€) ~
For F(N70)_>(N+17k) < F(N,l)(—(N-H 0) 1 and K ~ L, then

(E)
Iep(K +1,L) — Iop(K, L) = e - T30, (N4 1.641) -

©

(E)
for I (N, 1)+ (N+1,0)

(N,0)—(N+1,k) >

C)
Ice(K,L+1) —Ice(K,L)=e- F(N L1)(N41,0) -

, and K ~ L, then

How to interpret the result (5.57)7 By opening an additional channel on the
emitter side, the rate for an electron entering the quantum dot is increased.
Therefore the life time 7, in which the quantum dot remains in a N-electron
state, is reduced. Due to the instantaneous relaxation, nothing has changed
for electrons leaving the quantum dot since for this the initial state is still the
groundstate of the (N + 1)-electron system: the life time 7541 in the (N +1)-
electron charge state remains unaffected. With 7 the sum 7 = 7541 + 77 is
reduced, and therefore the current Icg = e/7 increased (see Fig.5.14b).
Similar with opening an additional channel on the collector side: The rate
for an electron leaving the quantum dot is increased reducing the life time
Tn+1 of the quantum dot being in a (N + 1)-electron charge state. Due to the
instantanous relaxation from the excited state of the N-electron system, the
initial state for adding an electron from emitter is always the groundstate of

'8 Note, this result describes also the linear increase |dIps| = |[dVps|/RT** between
steps in the Coulomb staircase characteristics derived in Fig.1.10 and Fig.1.11
for strong asymmetric tunnel barriers of a metal single-electron transistor.



5.8 Dynamics of Single-Electron Transport Through Quantum Dots 165

the N-electron system, i.e., the life time 7 in the N electron charge state
remains unaffected. But with 7n41 the sum 7 = 7ny41 + 7w is reduced, and
therefore the current Icg = e/7 increased (see Fig. 5.14c).

We can conclude: With instantanous relaxation, the current is increased
with each additional channel becoming available because the rate for entering
(leaving) the quantum dot is increased towards the one reservoir whereas the
rate of leaving (entering) to the other reservoir remains unaffected: The life
time of one charge state is shorten whereas the life time of the other remains
unchanged. The situation allows to do spectroscopy of the N- and (N + 1)-
electron system independently as given in Fig.5.9.

Since in the data of Fig. 5.5 negative differential conductance occurs, we
have to conclude that this is not completely true for the quantum dot system
here.

Without Relaxation. Without fast and complete relaxation, i.e.,

1 (E)

TiNoyeovn < TNy,

1 (©)

IiN+1,0ev+1h) <INy v > (5.58)
the change in the dynamics with opening a channel to an additional excited
state is complex. But by a simple example, we can show that besides the
usual increase also a decrease in the current might occur with increasing
|[Vbs|: Let us assume that L excited states of the N-electron system and K of

the (IV + 1)-electron system are accessible. For simplicity, only the tunneling
process sequences

|N,0) - |N+1,k) — |N,0) for k>0,
IN +1,0) - |N, 1) = |N+1,00 for 1>0,
are allowed, i.e.,
(©)

(E) _ : . .
F(N,l)—)(N+1,k) =0,ifl>0, F(N,l)<—(N+1,k) =0,ifk>0.

The master equations become under stationary conditions
for the groundstate of the (IV + 1)-electron system (1 < k < K):

0=dP(N +1,0)/dt

L

_ p® (©

= Iivoysving - POG0) = 3 T (via,0) - PN 1,00,
=0

for the K excited states of the (IV + 1)-electron system:

0=dP(N +1,k)/dt

— r® ©
o F(N,O)—>(N+1,k) ~P(N,0) - F(N,0)<—(N+1,k) -P(N +1,k),
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for the groundstate of the N-electron system:

0 = dP(N,0)/dt
K

(©)
_F(N0)<—(N+1 0)’ N+1 0 Z (No —(N+1,k) P(N70)7
k=0

for the L excited states of the N-electron system (1 <1 < L):
0 = dP(N,1)/dt
r'o .P(N +1,0)— ¥ - P(N,1),

(N, )« (N+1,0) (N, )= (N+1,0)

with the constraint

K L
=> P(N+1L,k)+ ) P(N,I).
k=0 =0

Solving the master equations by expressing P(IV,0), the stationary current
is given by

Ice(K,L) =e- Z (NO)—>(N+1 r - PV, 0)

k=0
K
€ Z F((J}E'T?O)—)(N-i-l,k)
- () = (E)
1+Z ((zg)o)a (N+1E) 1+Z (Nl)(—(N+1 0| L(N,O)—»(N+1,0)
Ty (Nl)_)(NH K ;F ((J(\?,)l)<—(N+1,0)

Solving the master equations by expressing P(N+1, 0), the stationary current
is written as

L
C
Ion(K,L) =e- > TQ L vir0 - PN +1,0)
=0
L

()
€ Z LNy (41,0
=0

N N. KF(J];:T) N41,k F(fvj) N+41,0
1+Z ( l)<—( +10)+ 1+Z ((Eso)—>( +1,k) | | (N,0)+(N+1,0)

(Nl)—>(N+1 0) k=1 £ (N,0)(N+1,k) Z (NO) o
N

By adding the excited state |N + 1, K + 1), the current Icg(K + 1,L) is
reduced if
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Icr(K, L)
€

(©)
LN oy (vt1,k41) <

is fulfilled. In the opposite case, the current is increased. Therefore, if the life

time [F((E?O)%(N_H’K_H)]_l of state [N +1, K +1;{V;}) exceeds the mean time
T for electrons passing the quantum dot in case of K channels, then the single-
electron transport is depressed (see Fig. 5.14d), leading to negative differential
conductance with opening the transition to the excited state [N + 1, K +
1;{V;}). The same might happen by reaching the excited state |N, L+1; {V;}).

The current Iog(K,L + 1) is less (see Fig. 5.14e), if

(E) Icg (K, L)
LN L+1)—(N+1,0) < o .

Let us generalize: We assume that an additional channel (I, k)E opens
on the emitter side (see Fig.5.15). Without relaxation, an electron has to
leave starting with the initial state |N + 1,k). If the rate for doing so is
low, then the quantum dot remains in the (N + 1)-electron state |N + 1, k)
and the life time 7x41 becomes long and may even exceed 7 valid without
this additional channel. In such a case, the single-electron transport through
the quantum dot is blocked leading to negative differential conductance with
opening (I, k)E. But to obtain this effect, it is not necessary that the quantum
dot remains in the state |N + 1, k) itself: By relaxation the (N + 1)-electron
system might end in an energetically lower state [N + 1,k') (see Fig.5.15b)

(@ (b) (©

E(n,K)
— ‘ N+1,k>

- z IN+1,k) —_—

(k) E (k) E Lk E
—
N

Fig. 5.15. Opening the transition (I, k)E, the single-electron transport might be
blocked because (a) the quantum dot remains for a long time in |V + 1, k), (b)
the quantum dot relaxed from |N + 1,k) to a state |N + 1,k’) of long life time,
or (c) the quantum dot is transferred to the excited state |IV,1’) of the N electron
system and sticking there. All these three processes will lead to negative differential
conductance at the borderline of (I, k)E.
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from where an electron escape to collector is depressed. It is also possible that
an excited state | N, ') of the N-electron system is reached (see Fig. 5.15¢) and
from there the transition to an (N + 1)-electron system is blocked. Since the
state |V, 1) has been reached by the state [N +1, k), the blocking occurs with
opening the transition (I, k)E. Similar conclusions can be drawn for opening
additional channels on the collector side.

5.9 Tunneling-Matrix Elements Weigh the Transition
Rates

Within the Constant Interaction Model, single-electron tunneling is described
by transitions of single electrons from a single-particle state in the emitter
to an unoccupied single-particle state in the quantum dot and then to an
unoccupied single-particle state in the collector. If the spatial overlap between
single-particle states in the quantum dot and those in the leads is different for
the different states of the quantum dot, then the tunneling matrix element
varies. It might lead to negative differential conductance if the spatial overlap
of an excited single-particle state is low (A.T.Johnson and coworkers [150]
in 1992).

Degeneracy in the energy spectrum of the N-electron systems — by spin
degeneracy or orbital degeneracy due to a rotational symmetry — allows for
more possible transitions at same energy. Several channels are opened in
parallel, leading to an enhanced step-like change of the current.

D. Weinmann et al.[154] pointed out that the spin orientation is usually
conserved for a tunneling process. Therefore not all transitions between states
of the N and the (N + 1)-electron system are possible. By adding an electron
to the quantum dot or taking off an electron from the quantum dot, the
electron number changes by one, the total spin of the electron system in the
quantum dot by j:% and the spin projection by j:%:

S(N, )+ 1L S(N+1,k), and S,(N,1) £ L = S, (N +1,k) . (5.59)

Transitions between N- and (N +1)-electron states not fulfilling these spin se-
lection rules are forbidden. The respective tunneling matrix element becomes
zero and therefore the respective tunneling rate.

Rotational symmetry in the confining potential of the quantum dot en-
sures that the angular momentum is a good quantum number to describe
the n-electron states. In vertical quantum dots, electrons are tunneling along
such a symmetry axis: Like the spin, the projection of the angular momentum
onto this axis should be a quantum number being conserved, leading also to
selection rules for transitions between N- and (N + 1)-electron states.

Correlated electron systems are not described by a single Slater deter-
minant of single-particle states — an assumption of the Constant Interaction
Model. Theoretical works of J.M. Kinaret et al. [155], J.J. Palacios et al. [156],
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D. Pfannkuche and S. Ulloa [157] K. Jauregui et al. [158] describe the tunnel-
ing matrix elements being weighed by a correlation factor. This is given by the
projection of the N electron state | N, ) plus a single-particle state |s) — being
part of the base to describe the n-electron states — onto the (N + 1)-electron
state |N + 1, k):

2 2
TNDIN +LE)se)| o [N+ LEIS)IND . (560

If the n-electron states are described by a Slater determinant, the correlation
factor is unity if the N and the (N + 1)-electron system differ by the single
particle state |s) and is zero for single-particle states s’ # s. In case of a
correlated state, the factor is less than unity since it is only partially occupied
to describe the correlated state. This correlation factor leads — besides the
spin-selection rule — to quasi-selection rules for transitions between the N-
and the (N + 1)-electron system.

Transport spectra of correlated electron systems based on above (quasi-)
selection rules have been presented in several theoretical works [9, 134].

5.10 Complications in Interpreting Single Ins(Vps)
Characteristics

Measuring the current Ipg versus the applied drain-source voltage Vpg for a
fixed gate voltage value, steps in the Ins(Vps) characteristics of the quantum
dot are usually observable. Such staircase-like characteristics were already de-
scribed for metal islands with two asymmetric tunnel junctions to drain and
source. A single Ins(Vps) curve of a quantum dot system lacks the informa-
tion on which side — source or drain — an additional channel is opened leading
to the step-like increase in the characteristic. Such information is obtained
by following the direction of how the step positions are shifted along the Vpg
axis with changing a gate voltage Vgg. Full information is obtained by doing
transport spectroscopy in the (Vgs,Vps) plane as presented in Fig. 5.5.

In Fig. 5.16 for a fictitious transport spectrum, single Ing(Vpg) character-
istics are shown for two different Vg values. Obviously it is not clear for a
single Ins(Vpsg) curve, how to relate the step length AVpg to an energy differ-
ence in the quantum dot spectrum: If the energies between two transitions,
for instance (I, k) = (0,0) and (I, k') = (1,1), differ by AE,

AE = BE(N +1,k') — E(N,I') — [E(N +1,k) — E(N, l)] ,
the step length AVpg between the two channels opening on source side (in
Fig. 5.16¢ for Vpg > 0) is given by

AE
A‘-/'DS = e-ap )
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Fig. 5.16. Staircase-like charcteristic Ips(Vps) of a quantum dot: (a) Fictitious
transport spectrum: At each borderline in the (Vas,Vps) plane, a step-like increase
in the Ins(Vps) characteristic is observed. (b),(c) Guess for a single Ins(Vps) trace
taken along the dotted lines in (a). The step length between opening two chan-
nels cannot be interpreted simple if channels are opened alternately on source and
drain side with increasing drain-source voltage. A careful analysis requires the full
transport spectrum obtained in the (Vas,Vps) plane.
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which can be derived by substracting the two resonance conditions
E(N +1,k; Vs, Vps) — E(N,1; Vs, Vbs) = gl
E(N +1,k'; Vs, Vbs + AVps) — E(N,1I'; Viss, Vbs + AVps) = 'uglch ‘

If both channels are opened on drain side (in Fig. 5.16¢ for Vpg < 0), the step
length changes to

AE
AVpg = ——— .61
which can be derived by substracting the two resonance conditions
E(N +1,k; Vss, Vbs) — E(N,; Vss, Vbs) = up"

E(N +1,K'; Vis, Vbs + AVps) — E(N,1'; Vas, Vbs + AVbs) = pd™ + eAVps .

The energy AE scales differently for both cases along the Vpg axis! Such a
result was already presented in Fig. 1.10 and Fig. 1.11 for metal single-electron
transistors. If the opening of channels occurs alternately — for instance in
Fig.5.16b for Vps < 0 in the order (0,0)S, (0,2)D, (2,1)S —, the step length
between (0,0)S and (0,2)D, and (0,2)D and (2, 1)S depends even on the gate
voltage value where the Ins(Vps) trace is taken.

Therefore further information or assumptions are required for the inter-
pretation of the step lengths in Ing(Vpg) curves of quantum dot systems. If
the tunnel barriers are very asymmetric, i.e., the tunneling matrix elements
to one lead are much smaller than to the other one, then the current through
the quantum dot is limited by the tunneling to the weakly tunnel-coupled
lead. Any additional channel on this side would enhance single-electron trans-
port through the quantum dot system whereas an additional channel to the
other lead increases the current not significantly — except if by this channel
additional transitions on the weak tunnel barrier side become possible. Ex-
amples are shown in Fig. 5.17, derived from the fictitious transport spectrum
in Fig.5.16a: For instance in Fig.5.17a for Vps > 0, the transition (1,1)S
opening on source side is visible since it provides the initial state |N,1) for
opening (2,1)D which helps to reduce the weak link to drain.

Asymmetric barriers and the assumption of a complete relaxation process
between the tunnel events allow to relate the step length to energy differences
of the quantum dot by a single proportionality factor — either ap or 1 —
ap. Under such conditions, spectroscopy on quantum dots in a two-terminal
arrangements have been done. Starting with an empty quantum dot, the
quantitative spectroscopy of the single-particle states (N = 1) in such a
quantum dot could be performed (see [106] with references in there).

5.11 Summary and Conclusions

Starting from thermodynamical considerations, the regions are derived within
this Chapter, where certain electron numbers become possible for the quan-
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(@ VBs

Fig. 5.17. Same as in Fig. 5.16, except that strongly asymmetric tunnel coupling
is assumed: In (a) weak tunnel coupling to source, in (b) to drain.

tum dot as a function of drain-source voltage Vps and a (back-)gate voltage
VBs. The regime of Coulomb blockade and single-electron tunneling are iden-
tified. During single-electron transport at vanishingly small Vpg, the quantum
dot changes between the groundstates of two different electron systems, e.g.,
between a N- and a (N + 1)-electron system. Increasing the bias voltage Vpg,
excited states for both electron systems become accessible, providing new
transport channels through the quantum dot. These additional channels can
be classified as being opened in resonance to the Fermi level of the emitter or
of the collector. In the first case, an excited state of the (N + 1)-electron sys-
tem is reached, whereas in the second case an excited state of the N-electron
system is reached.

For fictitious energy spectra for the N- and the (N + 1)-electron system,
the borderlines for opening these additional channels in the (Vas,Vbs) plane
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are derived from energy considerations. It demonstrates the complexity in
interpreting experimental data without further assumptions about the dy-
namics. Separate spectroscopy of the N- and the (N + 1)-electron system is
possible if the respective groundstates are the initial states for the tunneling
processes. That requires an instantaneous and complete relaxation process
before each tunneling event.

Applying a magnetic field affects the electronic spectrum of the quantum
dot. Transport spectroscopy at finite drain-source voltage allows to follow the
dispersions of transition energies between the groundstates but also excited
states of the N- and (N + 1)-electron system. The character of the respec-
tive groundstate — described by its set of quantum numbers — might change
with magnetic field. However, when performing transport spectroscopy in a
magnetic field, one might have to take into account changes in the contact
voltages of the leads and gate electrodes: As already pointed out in Chapter
3, the electrochemical potential differences and not the electrostatic poten-
tial differences are fixed by the electrical circuit: The electron system in the
quantum dot is sensitive to the electric field and therefore to the electrostatic
potential variations.

Within a master equation approach it has been discussed that with open-
ing a channel of an excited state, the current is not necessarily increased but
might also decrease. This is also observed as negative differential conduc-
tance in the experimental data, indicating that (1) different tunnel matrix
elements exist wheighing the tunneling rates for the different channels, (2)
instantaneous relaxation is absent and (3) excited states of long life time exist
exceeding the mean time of single electron transport through the quantum
dot when not reaching this excited state.

A simple Ips(Vps) characteristic of a quantum dot system does not allow
to relate unambiguously step-like changes in Ipg to certain transitions in the
quantum dot. The complexity is partially resolved by measuring the current
or differential conductance in the full (Vgs,Vps) plane. It allows to extract
whether an excited state of the N- or the (N + 1)-electron system becomes
accessible. Further the transition energy differences are extracted correctly by
distinguishing between channels being opened in resonance to source or drain.
The two voltages Vas and Vpg allow to tune to any position of u(n) relatively
to pgh or pHt and to define the difference pg'" to pf® independently.
Therefore, for certain combinations of (Visg,Vbg), the situation is exceptional:
The difference p(n+1) — p(n) is obtained from the maximum Vpg value found
for the Coulomb blockade region with n electrons. No proportionality factor
besides e is required for converting the voltage scale to the energy scale of
the quantum dot.

The leads to the quantum dot have been treated as electron reservoirs
without specific assumption about the density of states in these. Actually,
transport experiments on quantum dots can be used to resolve these density-



174 5. Transport Spectroscopy on a Quantum Dot

of-state of the leads superposed to the transport spectra just described (for
instance, [159]).

Describing the dynamics by a master equation approach (’Orthodox The-
ory’ [2]) allows to include thermal effects. The current steps smear out by
thermal activations. But the approach treats each single-electron tunneling
process crossing a tunnel barrier as a single and independent event in the
sense that there is no quantum mechanical phase correlation between two
or more tunneling events. It is denoted as sequential tunneling. It seems to
be plausible if, for instance, the quantum dot indeed relaxes to its ground-
state between tunneling events since by transfering energy to a bath, the
quantum mechanical phase correlation is destroyed. But the experimental
data indicate that relaxation is not present — at least — in some cases. Dual
path arrangements allow to test the phase coherence of electrical transport
through quantum dot systems. Such kind of experiments were pioneered by
A.Yacoby and coworkers [160].



6. Kondo Effect in a Single Quantum-Dot
System

Electrical transport through a quantum-dot system has been discussed in the
previous Sections in terms of Coulomb blockade and single-electron tunnel-
ing. We remember: These effects are caused by the electron-electron inter-
action of the electrons confined on the SET island, only partially screened
by the surrounding electrodes. For small drain-source voltage the electron
transport between drain and source is usually blocked and only for certain
values of the electrostatic potentials of the surrounding electrodes a single
electron can enter the island and leave before the next electron can follow.
The quantum dot has been denoted as being weakly coupled to drain and
source so that the tunneling events through the tunnel barriers are considered
as being independent: Energy conservation arguments for rearranging single
electrons combined with a master equation approach captures basic features
of the dynamics of electron transport through the quantum-dot system. This
sequential tunneling description is denoted as orthodoxz theory [2, 10].
However, this sequential tunneling description is incomplete since it does
not take into consideration that energy requirements can be raised for short
time events according to Heisenberg uncertainty relation for energy and time:
By correlating tunneling events of two or more electrons entering and leav-
ing the island at almost the same time, the number of electrons on the island
fluctuates only on short time scale. A charging or discharging of the quantum
dot by an elementary charge occurs only as an intermediate state of short
life time or — as better denoted — virtually by quantum fluctuations. Such
correlated tunneling events involving two or more electrons cause electron
transport between source and drain even in the regimes where single-electron
tunneling — i.e., a recharging of the island by a single electron — is ener-
getically suppressed [147]. As excepted, these correlated tunneling processes
are usually strongly diminished with decreasing the tunnel coupling between
quantum dot and leads. However, this is not true under all circumstances:

e Under certain conditions the quantum-dot system becomes conductive
again over the whole Coulomb-blockade regime with lowering the temper-
ature.

e The conductance reaches the order of 2 e%/h which is equal to the conduc-
tance of a spin-degenerate one-dimensional channel [56, 57].
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Here, the description of Coulomb blockade and single-electron tunneling by
master equations breaks down even in the case of weak tunnel coupling.
The effect can be discussed by using a most simple model — the Anderson
impurity model [161] which has also been used to describe the Kondo effect
[162]. Experimental indications to the Kondo effect in a single quantum-dot
systems is topic of this Chapter.

6.1 Zero-Bias Anomaly in the Differential Conductance
in the Coulomb-Blockade Regime at Vpg = 0

In Fig.6.1a the experimental setup of a split-gate quantum-dot system is
shown. The structure is very similar to the one already described and used in
the Chapters 4 and 5. Different is that the size of the quantum dot area has
been reduced. This has been achieved by the smaller geometric size of the
split-gate electrodes — now 180 nm as the open diameter between the gate
fingers —, and by getting the two-dimensional electron system closer to the
heterostructure surface — the depth of the AlGaAs/GaAs heterojunction is
now 50 nm. }

In Fig.6.1b the measured Ins(Vps, Vas) characteristics are plotted. They
are taken at a temperature of about 30 mK. Clearly three Coulomb blockade
regions are visible and adjacent to these the single-electron tunneling regimes
where step-like changes in the current Ing with increasing |Vpg| are noticeable
indicating transport channels through excited states. These are better to see
in Fig. 6.2a where the differential conductance dIps/dVps measured around a
chosen Coulomb-blockade region is plotted in the (Vig, Vbg) plane. Step-like
changes in Ing(Vps) appear in dIps/dVps(Vps) as peaks with positive, but
also negative amplitude (see Section 5.8).

By tuning the outer split-gate electrodes, the tunnel coupling to source
and drain is increased. As seen in Fig. 6.2 the borderlines between Coulomb
blockade and single-electron transport regions smear out: Due to the reduced
life time of single electrons on the quantum dot, occupation is possible within
Heisenberg uncertainty relation of energy and time. The borderlines — derived
by strict energy considerations — are no longer well defined. The stronger the
tunnel coupling, the less visible is the Coulomb blockade region. However,
striking in Fig. 6.2 is the occurrence of a peak in the differential conductance
dIps/dVps at Vbg = 0 which is not shifting with the gate voltage Vg as it is
usually the case due to opening channels for single-electron tunneling. This

! Like for the MOSFET discussed in Chapter 7, all spatial dimensions have to be
scaled by the same factor to reduce the size but still keeping the functionality
of the quantum-dot system. Only shrinking the split-gate structure without re-
ducing the distance to the 2DES would finally lead to a depletion of the 2DES
without the possibility of forming a quantum dot between the gate electrode
fingers.
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Fig. 6.1. (a) Setup of a quantum-dot system using split-gates to partially deplete a
two-dimensional electron system: (Left) Scanning-electron-microscope image of the
metal split-gate fingers. The voltages applied to the structures are indicated. (Right)
GaAs-Al,Gai—,As heterostructure containing the 2DES at the heterojunction 50
nm below the surface (2DES with electron concentration 3.2-10*® m~2 and electron
mobility 30 m?/Vs at the temperature of 4.2 K). (b) Current Ins measured as a
function of the drain-source voltage Vps and the backgate-source voltage Vas. The
voltages applied to the split-gate electrodes are kept fixed. The measurement were
performed at about 30 mK in our laboratory. (adopted from J. Schmid [92])

zero-bias anomaly does not fit into the picture of single-electron transport
and does not occur in all Coulomb blockade regions.

As described in Chapter 4, without tunnel coupling to the leads, N elec-
trons confined in the quantum dot own a total energy spectrum E(N, k; {V;})
which can be labeled by the parameter k where k& = 0 denotes the ground-
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Increasing Tunnel Coupling to Leads

VBs

0 0.5 )
dipg/dVpg [€2]

Fig. 6.2. Coulomb blockade region with a fixed number IV of electrons confined
in the quantum dot at about 30 mk: The differential conductance is plotted in
greyscale versus Vps and Vas. From (a) to (c) the tunnel coupling to the leads
is increased by reducing the voltages applied to the outer pairs of the splitgate
structure depicted in Fig.6.1a. The backgate voltage VBs has been adjusted to
keep the same Coulomb blockade region. Striking is the occurrence of a peak in
the differential conductance around Vps = 0 in (c) which does not shift with Vas.
This zero-bias anomaly is identified with the Kondo effect in quantum-dot systems.
(adopted from J. Schmid et al. [163])

state of the N-electron system. The total energy depends besides other pa-
rameters on the electrostatic potentials {V;} of the electrodes (split-gates,
backgate, source and drain) surrounding the quantum dot. To describe elec-
tron transport through the quantum dot in the regime of weak tunnel cou-
pling to the leads, the energies required for adding the (N + 1)th electron
into the N-electron system (’electron-like’ process) and for taking off the
Nth electron from the quantum dot (hole-like’ process) have to be con-
sidered. This was described in Chapter 5, leading to the energy scheme
shown in Fig. 5.3, where the groundstate energy differences pu(N +1;{V;}) =
E(N +1,0;{V;}) — E(N,0;{V;}) between the (N + 1)- and the N-electron
system are plotted for different N but fixed {V;} relatively to the Fermi lev-
els, i.e., the electrochemical potentials pg" and pf® of the source and drain
leads.

As a reminder, by changing one of the applied voltages, these energy levels
uw(n; {V;}) withne {---,N—1,N,N+1,---} are — in first approximation —
linearly shifted relatively to the Fermi levels while the distance u(n+1; {V;})—
u(n; {V;}) between the levels remains constant. In the case of u(N+1;{V;}) >

{pgleh; peiht > 1 (N; {V;}), energy barriers exist for an electron entering or
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leaving. Therefore at low temperature single-electron transport is blocked
and we are in the regime of Coulomb blockade (CB) where the number of
electrons on the quantum dot is fixed to N. Whenever u(N + 1;{V;}) lies
between the Fermi levels of source and drain leads, the number of electrons
on the quantum dot is fluctuating between N and N + 1, and single-electron
tunneling through the quantum dot between source and drain can occur.

As shown in Fig.5.6, Coulomb blockade and single-electron transport
regimes are found as a function of drain-source voltage Vps and gate-
source voltage Vgs. The boundaries between Coulomb blockade and trans-
port regimes are given by the condition that the respective p(n; {V;}) is either
aligned with pg® or p&, giving two different slopes for the borderlines in
the (Vas, Vbs) plane. Within the single-electron transport regimes at finite
drain-source voltage eVps = pa® — pg't additional channels in the trans-
port through the quantum dot become available which have been related to
excited states of the confined n- and (n + 1)-electron system (see Section
5.4). The borderlines for opening these additional single-electron transport
channels are described by E(n + 1,k;{Vi}) — E(n,l; {Vi}) = {ug", pgch},
i.e., they are in the (Vgs, Vbs) plane parallel to the borderlines of the respec-
tive Coulomb blockade and single-electron transport regime (see Fig.5.11).
At these borderlines, peaks in the differential conductance dIpg/dVps can
be expected. The peak line in Fig.6.2¢c at Vpg = 0 is not parallel to one of
these borderlines and can therefore not be related to single-electron transport
through the quantum dot.

The question arises whether the peak line in Fig.6.2 at V'pg = 0 can be
explained by tunneling of two electrons at nearly the same time. Such corre-
lated two-electron tunneling is denoted as cotunneling. We have to distinguish
especially between two kinds of cotunneling with only virtual charge change:

e Hole-like cotunneling: an electron leaves the quantum dot and immediately
thereafter an electron enters.

o FElectron-like cotunneling: an electron enters the quantum dot and imme-
diately thereafter an electron leaves.

In both cases we have to distinguish whether the whole transfer occurs elas-
tically (i.e., the initial and final energies of the quantum dot is the same) or
inelastically (i.e., they are different). Furthermore, the intermediate state of
the electron system in the quantum dot can be a groundstate or an excited
state. Examples of these cases are depicted in Fig.6.3 and Fig. 6.4.

6.2 Correlated Two-Electron Tunneling: Electron
Transport without the Need of Charging Energy

¢ Hole-like cotunneling:
Let us assume that the quantum dot is in the Coulomb blockade regime,



180 6. Kondo Effect in a Single Quantum-Dot System

\ Hole-Like Elastic Cotunneling \

‘Hole-Like Inelastic Cotunneling

(a) | via Groundstate:
E(nK)

Final State

Initial State

E(N,0) —\

E(N-1,0)
Intermediate
State

T €
UeICh elch

E ﬁ%
Emitter 2; 1) Collector

N A
AEg, N AE, ¢

(b) | via Excited State: |

ENK)  hitial State

Final State

E(N,0) —\

E(nu%:;é

Intermediate
State

T €
elch elch

He » Hc
Emitteﬁr(ég Q/C.ollector
o e

/— E(N,0)

/— E(N,0)

E(K)  Initial State Final State

— E(N,I)
E(N,O)—\ e E(N,0)

E(N-1,0)
Intermediate
State

(c)| at Threshold:

€
eV,
uelch i bs
F A - elch
Emitter 22\ /pc
AE. Collector

(d) ‘ beyond Threshold: ‘

elch

Me 777777%{
Emitter

% z eVDS
\*\‘ elch

N Collector

SO




Correlated Two-Electron Tunneling: Cotunneling 181

Fig. 6.3. (Left page) Hole-like cotunneling: An electron leaves the quantum dot,
immediately followed by an electron entering the quantum dot. A change in the
charge state of the quantum dot appears only virtually. These cotunneling pro-
cesses are visualized by indicating the respective transitions in the total energy
spectrum E(n, k; {V;}) of the quantum dot, and below in the energy scheme where
the transition energies E(n, k; {Vi}) — E(n — 1,1; {V;}) for single-electron charging
are plotted relatively to the electrochemical potentials of the leads. If initial and
final state of the N-electron system in the quantum dot have same energy, the
cotunneling process is denoted as ’elastic’ (see (a) and (b)), otherwise as ’inelas-
tic’ (see (c) and (d)). In (a) elastic cotunneling occurs via the groundstate of the
(N — 1)-electron system, in (b) via an excited state of the (N — 1)-electron sys-
tem. Note, (b) requires a higher energy cost AE1_,¢ for creating the intermediate
state than (a). (c) Inelastic cotunneling transfers the N-electron system to an ex-
cited state which requires a bias between the electrochemical potentials of the leads
fulfilling E(N,1;{Vi}) — E(N,0;{V;}) < e|Vps|- Beyond this threshold, more and
more cotunneling processes become available as indicated by two examples in (d),
for which AE1—c 4+ AEr—1 =0, ec > p&™® and er < p§<h.

in the groundstate |N,0;{V;}) of the N-electron system. ? An electron
leaving towards an empty collector state of energy ec > & transfers the
quantum dot into the groundstate |N — 1,0; {V;}) shown in Fig.6.3a or —
more general — into the state |[N — 1, m; {V;}) of Fig.6.3b.

Such a hole-like process requires the energy

ABisc = [eo+ BN = Lmi{Vih)| = EQV,0;{Vi) 20,  (6.1)

and can only work if the life time 7 of the state |N — 1,m;{V;}) is short,
estimated by Heisenberg uncertainty relation of energy and time,

AE _c-T< h. (62)

Under condition (6.2), the state |N — 1,m;{V;}) can be considered as
a virtual intermediate state, almost immediately decaying by an electron
entering the quantum dot from an emitter state with energy eg < pgh.
With entering, the electron-system in the quantum dot changes its state
to the previous initial state (Fig.6.3a and b), or — more general — to the
state |N,1; {V;}) (Fig.6.3c). By such a transition the system gains energy,

A 1 = [E(N,L{VY) = BN — L,m; {Vi})] —ew <0. (6.3)

The overall process is working without violating energy conservation if the
energy gain (6.3) just compensates for the energy cost (6.1), i.e.,

AF) ¢ +AFg_,1=0. (64)

N

Note that for the sake of brevity the constants {V;} are omitted in the state kets
and total energies in all diagrams.
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Since for eg and e the restrictions eg < p8" and ec > pd exist at low

temperature, such a cotunneling process is energetically allowed under the
condition

E(N,I;{V;}) — E(N,0;{V;}) = er — ec
< pgh — pEt =e|Vps|.  (6.5)

Relation (6.5) expresses that the energy difference eg — ec of the elec-
tron entering and the electron leaving has to reflect the energy difference
between initial and final state of the N-electron system in the quantum
dot. Moreover, the possible energy difference between excited state and
groundstate is limited by the applied bias e|Vpg| between the electrochem-
ical potentials of the leads.

With the cotunneling process just described, an excited state of the quan-
tum dot is obtained under condition (6.5) although the quantum dot is
in the Coulomb blockade regime. This excited state |N,; {V;}) can now
act as the initial state for cotunneling processes leading to other excited
states. In general, if a state |N,[; {V;}) is accessible, a state |N,I'; {V;}) is
energetically reached by cotunneling if

E(N,I';{Vi}) — E(N,; {Vi})‘ = ‘EE — o
B —uE" =eVps| . (6.6)

<

Since eg — e¢ can be either positive or negative, the quantum dot can
be excited or can loose energy by correlated electron exchange between
quantum dot and leads if |Vpg| > 0.
Note, the probability for a cotunneling process is higher, the lower the
energy cost (6.1) is for the intermediate state. For given {V;}, the posi-
tion of the energy ladder E(n, k; {V;}) — E(n — 1,1;{V;}) relatively to the
electrochemical potential of the leads is fixed: Starting from the ground-
state |N,0;{V;}), an electron leaving to the Fermi level of the collec-
tor (ec = pd) and transfering the quantum dot to the groundstate
[N —1,0;{V;}) as the intermediate state requires the least energy (compare
Fig.6.3a and b), and has therefore the highest probability for a hole-like
cotunneling process if not other selection rules weigh the cotunneling tran-
sitions.

e Electron-like cotunneling:
Instead of starting such a correlated two-electron process by an electron
leaving the quantum dot (hole-like process), an electron can enter the quan-
tum dot (electron-like process), leading to an intermediate state with N+1
electrons on the quantum dot (see Fig. 6.4): The quantum dot is transfered
from |N,0; {V;}) to |N,l;{V;}) via the intermediate state |N + 1, k; {V;}).
Entering of an electron costs the energy

ABg_1 = E(N + 1,k {V;}) — [EE + E(N,0; {V;-})] >0.  (6.7)
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The life time 7 of this state has to be short,
AFg -7 <h. (6.8)

The energy cost is compensated by the energy gain with an electron leav-
ing,

ABc = [eo+ B(N,L{ViD] - BN + 1,k {Vi) <0 (6.9)
Comparing (6.7) and (6.9), such a cotunneling process can be expected if
AEp 1 + AFic =0 (6.10)

is fulfilled. With eg < pfiM and ec > pd®, it leads to the restriction

E(N,;{Vi}) — E(N,0;{V;}) = e —ec
elch

< pgt — g™ =elVbs|,  (6.11)

which is the same as found with (6.5) for the hole-like cotunneling pro-
cess. If the state |N,I;{V;}) is accessible, further states |N,I';{V;}) are
energetically allowed if (6.6) is fulfilled.

Therefore, starting with | N, ; {V;}) and ending with | N, l'; {V;}), the electron-
and hole-like cotunneling process are energetically allowed at the same time.
Note, since however different intermediate states are used, in general the
probability between hole-like and electron-like cotunneling process might be
different, especially if the energy costs for the intermediate state are different,
or the tunneling couplings differ.

We can conclude for low temperature:

For correlated tunneling of two electrons in the Coulomb blockade regime
confining N electrons in the quantum dot, the energy difference between
the inital and the final state of the N-electron system in the quantum dot
has to be less than the energy window opened by the drain-source voltage
between the electrochemical potential of source and drain.

Since relation (6.5) and (6.11) are independent of the electrostatic poten-
tials {V;}, the borderlines for opening such cotunneling processes lie in the
(Vas, Vbs) plane at Vps = £|E(N,1;{V;}) — E(N,0;{V;})|/e parallel to
the Vgs axis. As indicated in Fig. 6.5, they are linked to borderlines in the
single-electron transport regime using the respective state |N,; {V;}) for
single-electron transport.

For Vpg = 0, the initial and final state of the cotunneling process have the
same energy. It is denoted as elastic cotunneling. Since the quantum dot is
usually found in the groundstate, the initial and final state of a cotunneling
process lie at the groundstate energy, i.e., excited states are not reached.
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Fig. 6.4. (Left page) Electron-like cotunneling: An electron enters the quantum
dot, immediately followed by an electron leaving the quantum dot. A change in the
charge state of the quantum dot appears only virtually. Visualized are the processes
corresponding to the hole-like cotunneling processes shown in Fig. 6.3. In (a) elastic
cotunneling occurs via the groundstate of the (IV + 1)-electron system, in (b) via an
excited state of the (IV 4 1)-electron system. Note, (b) requires a higher energy cost
AFEg_, for creating the intermediate state than (a). (c) Inelastic cotunneling trans-
fers the N-electron system to an excited state which requires a bias between the elec-
trochemical potentials of the leads fulfilling E(N,l;{Vi}) — E(N,0;{V;}) <e|Vbs|.
Beyond this threshold, more and more cotunneling processes become available as

indicated by two examples in (d), for which AEg_1 + AE1c = 0, er < pi™ and

ec > pgh.
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Fig. 6.5. Sketch of the transport regions of a quantum-dot system in the (Vas, Vbs)
plane. In the Coulomb blockade region confining N electrons in the quantum dot,
borderlines are drawn at which inelastic cotunneling ending in an excited state
of the N-electron system becomes possible. These borderlines end at respective
borderlines of the single-electron transport channels using the same excited state.
Right: Energy scheme demonstrating that electron- and hole-like cotunneling can
both occur at the marked (Vas, Vbs) operation point, although differently weighed
by the energy costs for the intermediate state. In this case the hole-like cotunneling
might dominate.

e For |Vps| > 0, the initial and final state of the N-electron system in the
quantum dot can differ in energy, but they need not. Therefore, the quan-
tum dot can be excited, and can loose again its excitation. If such an
energy transfer between quantum dot and leads occurs, such a correlated
two-electron tunneling process is denoted as inelastic cotunneling.
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Since in a small quantum dot only few excited states are found in a certain
energy window close to the groundstate, basically only elastical cotunneling
occurs. This is different for a metal-like quantum-dot system where inelastic
cotunneling is also found at small drain-source voltage.

With increasing |Vps| beyond a borderline described by the general re-
lation (6.6), more and more occupied states of the emitter and unoccupied
states of the collector can be used for such electron-like and hole-like cotun-
neling processes involving the same initial and final states |N,l;{V;}) and
|N,U'; {Vi}) (see Fig.6.3d and Fig. 6.4d). Therefore, not a peak but more a
step-like change in the differential conductance dIps/dVps can be expected
at the vertical borderline in the (Vgs, Vbs) plane described by (6.6).

As it turns out, cotunneling can hardly explain the zero-bias anomaly
observed at Vps = 0 in Fig.6.2. Correlated tunneling processes involving
more electrons have to be taken into account. In general, different cases for
the quantum dot have to be distinguished leading to different behaviour:

e The energy ladder E(n,k;{V;}) — E(n — 1,1;{V;}) with n € {---,N —
1,N,N +1,---} and its position relatively to the electrochemical poten-
tials of the leads determines the number of energy levels which are of
importance.

e These levels can be either degenerate or non-degenerate.

e The tunnel coupling strength and the temperature are of importance, defin-
ing different behaviour of the quantum dot under same conditions given by
{Vi}. The quantum mechanical phase coherence is destroyed with increas-
ing temperature.

Even at parameter values where single-electron transport occurs, such corre-
lated electron tunneling events modify the result compared to the orthodox
theory. There, the energy costs for the intermediate state are the lowest.
It leads for instance to resonant tunneling if p(n;{V;}) is aligned with the
electrochemical potentials pg" and p§i": The quantum mechanical phase
is preserved for electrons passing the island. For a small quantum dot with
a well pronounced discrete excitation spectrum the line-shape of Coulomb
blockade oscillations resembles at low temperature a Lorentzian [115].

In the following, we will restrict ourselves to small quantum dots for

understanding the zero-bias anomaly observable in Fig.6.2.

6.3 A Simple Model with Strong Impact: The Anderson
Impurity Model

Before starting — a brief historic review:

Usually the resistivity of metal decreases with reducing the temperature due
to the reduced electron scattering at thermal phonons and becomes constant
at low temperature limited by the static disorder in the host crystal lattice
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Fig. 6.6. (a) Kondo effect: Cu with diluted Fe impurities shows an increase in
the resistivity at low temperature. (b) The Anderson impurity model describes an
electronic level 9 bound to an impurity below the Fermi level er of the conduction
band which can be occupied either by a spin-up or spin-down electron due to
tunneling between impurity site and conduction band. Occupation by two electrons
at the same time is suppressed at low temperatures due to the interaction energy
U.

felt by the conduction band electrons. In the 1930’s it was observed [164]
that in contrary to this expectation the resistivity increases again at low
temperature for metals like Cu which include so-called magnetic impurities
like Co or Fe in a concentration of less than 1% (see sketch in Fig.6.6a).
It took almost 30 years when in 1964 Jun Kondo demonstrated [165] that
spin-scattering of conduction band electrons at these magnetic impurities
explains this phenomenon. That is why this resistivity increase in metals
with magnetic impurities is called Kondo effect. Another model introduced
by P.W. Anderson in 1961 [161] — the so-called Anderson impurity model — can
also be used to describe the essential physics. The Anderson Hamiltonian and
the Kondo Hamiltonian map under certain conditions [166]. Techniques have
been developed in the following years — denoted as numerical renormalization
group techniques pioneered by K.G. Wilson [167]- allowing to solve these and
extended models which predict the formation of non-trivial many-body states
with approaching low temperature.

The basic ingrediences for the Anderson impurity model are sketched in
Fig.6.6b: A localized electronic site — caused for instance by a bound elec-
tronic state to an impurity ion — is embedded in a Fermi sea of conduction
band electrons. Electrons of the conduction band can hop by quantum me-
chanical tunneling onto this impurity site and vice versa. Since the energy g
for a single electron at the impurity site is below the Fermi level e of the
conduction band electrons, the energy level g at the impurity site is always
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occupied by an electron. Important is the assumption that the energy level
can be occupied by either an electron with the quantum number spin-up or
spin-down — the energy level is degenerate. The occupation by two electrons
at the same time is suppressed since this requires to overcome the Coulomb
repulsion on this site described by the parameter U, and the energy level for
the second electron lies therefore above the Fermi level, g + U > ep.

Solving the Anderson impurity model, it turns out that it cannot be
treated in perturbation at low temperature: Only considering the lowest-
order tunneling processes, starting with elastic cotunneling between impu-
rity and Fermi sea described in the previous Section, is not enough. At low
temperature, all higher-order correlated tunneling events have to be included
— a many-body state is formed, denoted as the Kondo state. Therefore, the
internal degree of freedom in occupying the impurity site by a spin-up or
spin-down electron acts as an effective scattering mechanism for conduction
band electrons. The Kondo state is well developed below the so-called Kondo
temperature Tk given by [168]

v - exp I (EF — 60) : (U+60 — EF) . (6.12)

ke Tic = U

The Kondo temperature depends on the tunnel coupling described by I' =
h/T, on the energetic distance ep — €9, and on the on-site interaction energy
U.

In 1988, two publications (L.I. Glazman and M.E.Raikh [169]; T.K. Ng
and P.A.Lee [170]) pointed out that a single quantum-dot system resem-
bles an extended Anderson impurity model. By this analogy, a link from
quantum-dot systems to Kondo physics is given. About ten years later, in
1998 D. Goldhaber-Gordon and coworkers [171] could demonstrate the Kondo
effect experimentally in quantum-dot systems, confirmed by Cronenwett et
al. [172] and J.Schmid et al. [173]. The data of J.Schmid et al., obtained in
our laboratory, are used here. Earlier experiments by D. Ralph and cowork-
ers [174] on a small charge trap embedded in a thin silicon nitride membrane
between metal electrodes have also been interpreted as the Kondo effect.

The mapping of the quantum-dot system onto the (extended) Anderson
impurity model could work under the following conditions (see Fig.6.7):

1. The energy levels €9 and g9 + U of the Anderson model are identified
with the levels u(N;{V;}) and p(N + 1;{V;}), respectively.

2. Although in most quantum dots N is not equal to 1, the fluctuation in
the electron number are almost restricted to N and N + 1 if the level
spacings (N +2; {Vi}) — p(N + 1;{V;}) and p(N;{Vi}) — p(N - 1;{V;})
are large compared to the thermal energy kg7 and the tunnel coupling
I'=n/T.

3. Levels due to excited states of the V or N 4 1 electron system should be
energetically well separated from the groundstate or not accessible due to
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too small tunnel coupling to the leads and/or selection rules (see Section
5.9).

4. To observe (the later discussed) Kondo resonance in the region of N
electrons confined to the dot, the groundstate of the N -electron system
on the dot has to be degenerate, i.e., two orthogonal N-electron states
should exist at the groundstate energy: E(N, 1;{V;})—E(N,0;{V;}) = 0.
Usually, a spin degeneracy is assumed.

Due to the degeneracy, cotunneling through the quantum dot can occur
in either state. Actually the quantum-dot system prefers both states, i.e.,
the systems gains energy by doing correlated electron tunneling permanently
flipping the spin orientation leading to no preferred spin-polarization on the
quantum dot site. The Kondo state is described as a spin-singlet state. Since
for correlated tunneling, electrons have to come from occupied states in the
leads and have to end in unoccupied states in the leads, the electronic states
at the Fermi level are of importance. Evaluating the simple Anderson im-
purity model, correlated many-electron tunneling processes between dot and
reservoir(s) lead to a sharp peak in the effective density of state (denoted
as spectral function A(g)) at the impurity site pinned to the Fermi level ep
of the reservoir(s) (see Fig. 6.8a). This sharp peak disappears if the temper-
ature T' of the system is increased above the Kondo temperature Tk (see
Fig.6.8b). Although ¢ < e and g9 +U > ep, due to this effective density of
state at the Fermi level on the impurity site (respectively, quantum dot site),
there is a peak in the differential conductance through this impurity (respec-
tively, quantum dot) around Vpg = 0. This pinning to e is independent of
the position of g9 below ep. It affects only the Kondo temperature Tk, i.e.,
the temperature below which the Kondo resonance saturates. As described

Quantum Dot System (Extended) Anderson

S V Impurity Model
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Fig. 6.7. Mapping of a quantum-dot system onto the (extended) Anderson impurity
model. A degeneracy in the groundstate of the N-electron system is required. The
degeneracy is indicated by the double-line. Here, the degeneracy in the Anderson
impurity model is explicitely shown in the same way.
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by (6.12), Tk is lowest for ep — g = g9 + U — ¢, i.e., in the middle of the
Coulomb blockade regime, where ep —gq = U/2. At this position, (6.12) reads

ks T™ = % - exp [—%] . (6.13)
For a certain ratio between U and I, i.e., I' = 8- U, the Kondo temperature
increases linearly with U. For I' = 0.2 - U and values U =1 meV to U = 2
meV, which are typical for the presented quantum-dot systems, we obtain
Tpin = 50 mK to 100 mK. Below T{2i", the quantum-dot system described
by the Anderson impurity model becomes conductive over the whole Coulomb
blockade regime reaching even the conductance 2 e2/h, which is equal to the
conductance of a spin-degenerate one-dimensional channel where no tunnel
barriers are present. This behaviour is sketched in Fig. 6.8c.

From the dependence (6.12) of the Kondo temperature Tk on the tunnel
coupling it is clear, that with enhancing the coupling Tk is increased. This is
consistent with the experimental data presented in Fig. 6.2: At fixed temper-
ature, a peak develops at Vps = 0 with increasing the tunnel coupling. The
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(©) Conductive due to Kondo Effect Coulomb-Blockade
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Fig. 6.8. The spectral function A(e) on the quantum dot site: It reflects in the
limit of vanishing tunnel coupling the energy scheme used before. (a) below Kondo
temperature, (b) above Kondo temperature (from J. Schmid, parameters are (ex —
€0)/U = 0.2, I'/U = 0.075, ksT /U = 0.01 for (a) and 10 for (b)). For increasing the
drain-source voltage, the whole spectral function changes. Two peaks are expected,
pinned to both Fermi levels of the leads. [175, 176]. (c) If the prerequistes for the
formation of a Kondo state are fulfilled, the quantum dot is highly conductive over
the whole Coulomb blockade region. At higher temperature, the Kondo state is
destroyed and the usual Coulomb blockade oscillations are recovered.
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peak is first to be seen close to the single-electron-tunneling peaks, and with
further increasing the tunnel coupling in the middle of the Coulomb blockade
regime. Further experiments are presented in the following supporting the
link to Kondo physics.

6.4 Test of Further Experimental Properties Predicted
by the Anderson Impurity Model

First is tested the temperature dependence of the zero-bias anomalies, then —
by applying a magnetic field — the degeneracy of the electron system confined
in the quantum dot. Both results confirm what is expected from a Kondo
resonance.

6.4.1 Temperature Dependence

In Fig. 6.9a, a zero-bias anomaly is presented, measured on a similar quantum-
dot system but under better experimental conditions than the one presented
in Fig.6.2. The peak in the differential conductance dIps/dVps at Vps = 0
is strongly expressed at 7' = 25 mK. With increasing the temperature to 800
mK (see Fig.6.9b), this peak disappears, whereas the other features in the
differential conductance in the (Vgs, Vbg) regime remain almost unaffected.
In Fig. 6.9¢ the temperature dependence of the differential conductance along
the trace marked in Fig.6.9a is plotted: At low temperature the peak at
Vbs = 0 exceeds €?/h, at T = 800 mK the peak is completely disappeared
whereas the background is not changing with temperature. The observation
of a peak in the differential conductance disappearing with increasing the
temperature is in qualitative agreement with the predictions of a Kondo
resonance, and fits to the estimate given with (6.13).

At each gate-source voltage value Vs, the Kondo temperature is a differ-
ent one. The peak height should just depend on the ratio T'/Txk, i.e., the tem-
perature dependence at the respective gate voltage position can be rescaled.
Systematic measurements have been undertaken [177, 178, 92], demonstrat-
ing that indeed an universal behaviour exists, confirming the interpretation.

6.4.2 Lifting the Degeneracy with Magnetic Field

To investigate whether a degeneracy exists for the groundstate of the elec-
tron system confined in the quantum dot, a magnetic field is applied in the
plane of the two-dimensional electron system (see Fig.6.10a). The differen-
tial conductance dIpg/dVpg is measured in the (Vgs, Vbs) plane for various
magnetic field values B. In Fig.6.10b, the data are show for B=0T, B = 2
T, and B = 4 T. A splitting of the Kondo resonance is observed, with a
suppression of the differential conductance at Vpg = 0.
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Fig. 6.9. Temperature dependence of the zero-bias anomaly: (a) Differential con-
ductance dIps/dVps in greyscale in the (Vas, Vbs) plane, measured at T = 25 mK.
A well pronounced zero-bias anomaly is observed in the Coulomb blockade regime.
(b) At T = 800 mK, the zero-bias anomaly is not visible. (c) Differential conduc-
tance traces dIps/dVbs vs. Vps in the middle of the Coulomb blockade region along
the line indicated in (a) for different temperature values given on the right side.
The axis on the left is valid for the trace taken at highest temperature. The other
traces are offset. (adopted from measurements of J. Schmid [92] in our laboratory)
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Fig. 6.10. (a) A magnetic field B is applied in the plane of the quantum dot sys-
tem. (b) Differential conductance dIps/dVps in the (Vas, Vbs) plane in greyscale
for three different magnetic field values. The data are taken under same condi-
tion as those of Fig.6.2. (c) Traces dIps/dVps vs. Vbg taken in the middle of the
Coulomb blockade regime for different B. Obviously, the zero-bias anomaly splits
with magnetic field. The splitting AVpg(B) fits to twice the Zeeman splitting.
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This is expected: With applying the magnetic field B the spin-degeneracy
is lifted by the Zeeman energy Ez = gun B where g denotes the Landé factor
and pp the Bohr magneton. Since at Vpgs = 0 only elastic processes are pos-
sible, spin-flip processes by correlated tunneling are suppressed. The internal
degree of freedom can no longer be used. The Kondo state cannot develop.
This becomes different at finite bias voltage Vpg fitting to the Zeeman en-
ergy, e¢|Vps| = Ez. Spin-flip fluctuations become possible again by inelastic
correlated tunneling, similar to what was described in Section 6.2 for the
lowest-order correlated tunneling process — the cotunneling. Indeed, calcula-
tion [175, 179, 176] confirm that peaks in the differential conductance should
be observable at the respective bias, although with reduced amplitude.

The splitting, i.e., the voltage difference AVpg between the Vpg values at
which the peak appears on either sides of Vps = 0 should reflect twice the
Zeeman energy Fz. The respective values AVpg are plotted versus the applied
magnetic field B in Fig.6.10c. Deducing the slope dAVpg/dB from the data
and using

1 dEZ 1le dAVDS
_1dEz _1e 14
9= s dB ~ 2us 4B (6.14)

we extracted |g| = 0.46 & 0.02 which is close to the g-factor of bulk GaAs,
indicating that a spin-degenerate groundstate is present at B = 0 for this
Coulomb blockade regime.

6.5 Absence of Odd-Even Parity Behaviour for Kondo
Resonances in Quantum Dots

In several papers [171, 172], an odd-even parity behaviour with the num-
ber of electrons in the quantum dot has been expected and reported for
the occurrence of the Kondo resonance. Often this was not the case for our
quantum-dot systems where we observe [180] the zero-bias anomaly in two
adjacent Coulomb blockade regimes (see Fig.6.11), i.e., for N and N + 1.
Where does the expectation for an odd-even parity behaviour comes from?
It is based on the Constant Interaction Model described in Section 4.3 where
the electron-electron interaction on the dot is taken to be constant — decribed
by a capacitance — and where a single-particle energy spectrum is assumed
which does not depend on the electron number. By filling up single-particle
levels which are spin-degenerate, at each odd number of electrons on the dot,
the highest electron level is half-filled, i.e., degenerate and occupied only by
one electron. This is one supposition of the Anderson model predicting a
Kondo resonance. With even number of electrons the highest single-particle
level is filled with two electrons — a Kondo resonance should not occur.

Is this Constant Interaction Model a realistic model?
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Fig. 6.11. Differential conductance dIps/dVps in the (Vgs, Vbs) plane enclos-
ing two Coulomb blockade regions. Obviously zero-bias anomalies are observed in
both Coulomb blockade regions. The zero-bias anomalies disapear with increasing
the temperature as shown in (a) and (b) for traces marked in the greyscale plot.
(adopted from J. Schmid et al. [180])

1. Transport experiments on quantum dots defined in III-V semiconductor
heterostructure pillars have shown that Hund’s rule is working in such
dots [107]: Instead of filling up the levels with spin-up and spin-down
electrons consecutively, parallel spin configurations are favourable due to
exchange interaction. The odd-even behaviour in IV for the occurrence of
Kondo resonances should be broken in such a case.

2. In quantum dots of few electrons where the electron-electron interac-
tion is dominating over the confinement energy, correlation effects due
to electron-electron interaction have to be taken into account [8]: The
degeneracy of the groundstate energy of the N-electron system is not
expected to change obviously in an odd-even manner with N.



196 6. Kondo Effect in a Single Quantum-Dot System

Degeneracy of the level besides spin degeneracy — for instance, orbital
degeneracy due to the symmetry of the confining potential — is not treated
by the Anderson impurity model. Kondo effect at a transition point between
a singlet and triplet state of the quantum dot has been reported by Sasaki et
al. [181].

6.6 Conclusions

In conclusion, the picture of single-electron tunneling breaks down under
certain conditions. Correlated electron tunneling becomes important with
lowering the temperature. In certain Coulomb blockade regions, the conduc-
tance reaches values up to 2e?/h as was demonstrated by van der Wiel and
coworkers [178]. Evaluating a simple model — the Anderson impurity model
— predicts basic features observed in experiments. Meanwhile, the Kondo ef-
fect has also been reported for quantum dot systems embedding a carbon
nanotube [182].

A quantitative comparison has to be done with caution: All experimen-
tally investigated quantum-dot systems have still excited states close to the
groundstate. These have to be taken into account. Additional peaks in the
differential conductance present in the experimental data of Fig.6.11a indi-
cate this. Correlating experimentally the energy spectrum of the quantum dot
with the observation of zero-bias anomalies is still a challenge. This would
allow a quantitative comparison with theoretical predictions done in the last
years for Vpg = 0, but also for |Vpg| > 0.

Especially the more complex spin configurations due to electron correla-
tions in the quantum dot are here of interest. However, not only the total
spin of the confined electron system in the quantum dot seems to be impor-
tant, but also the tunnel coupling to the leads. This could be concluded from
recent experiments of our group [183, 184].



7. Fundamental Physical Contraints on
Single-Electron Transistors for Highly
Integrated Digital Circuits

At first glance, single-electron transistors can be considered as the ultimate
transistors: The current is carried by single electrons passing the island one-
by-one, switched on and off by single electron charges in the island’s sur-
rounding. Dealing with the smallest amount of charge, K.K. Likharev [25]
suggested in 1987 that integrated circuits based on single-electron transis-
tors would lead to lowest power consumption. In the same article it was also
pointed out that the sensivity to single electron charges is a weakness if a large
number of such transistors have to work reliable in a circuit. Fluctuations
and rearrangements of background charges can hardly be controlled: They
are strongly affecting the characteristics of these ultimate transistors. Later,
simulations were presented by A.N.Korotkov, R.H. Chen and K.K. Likharev
emphasizing this weakness [185].

The metal-oxide-semiconductor field-effect-transistor (MOSFET) is the
common device of today’s integrated digital circuits. SETs and MOSFETs
belong to the class of electronic devices where an energy barrier is electrostat-
ically controlled to turn on and off the current through the device. Belonging
to the same class of switches, SETs and MOSFETs obey the same electro-
statical constraints and limitations. Can the single-electron transistor be a
candidate for replacement of MOSFETsS as it still seems to be the belief (for
instance, [186, 187, 188]), although pessimistic views are given [189, 185, 2]?

To address this question, the fundamental physics constraints on the de-
vices for application in highly-integrated digital circuits have to be discussed.
These are given by

the integration density,

the overall power dissipation,

the energy dissipation per operation,
the reliability of the circuit,

speed consideration, and
manufacturability.

These constraints defines the most suitable device for the respective circuit
concept, and its limitations. Here we will analyse by fundamental physical
considerations what single-electron transitors have to fulfill and how they
behave in comparison to MOSFETSs. The final result in this Chapter is that
SETs are not capable in replacing MOSFETSs in highly integrated digital
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circuits. An analysis based on numerical simulations of SET circuits has been
done by A.N.Korotkov and coworkers [185, 190] exploring the parameters
space for getting these circuits into operation. Also their results demonstrate
the limits in using these transistors in digital circuits. *

7.1 On the Evolution, Nature, and Limitations of
Highly Integrated Digital Circuits

N. Negroponte [191] described in his book 'Being Digital’ the advantages of
digital representation of information for storage and transfer in comparison
to an analogeous representation. Working with digital representation allows
manipulation of the data for data compression, data packaging, encryption
and error corrections. The limited bandwidth of transmission channels or the
limited capacity of storage media can be better used by doing compression
and packaging of data. Shortly, using digital representation of information
enables 'Multimedia’. However, taking advantages of digital information rep-
resentation requires computation power at information source and drain: The
more ’knowledge’ and ’computational power’ is usable, the less information
has to be transmitted and stored. Typical examples are the compression and
decompression of audio and video data. Tasks like speech recognition and
video animation require complex computation limited in time. This is done
in integrated digital circuits where high complexity — a measure might be the
number of point-to-point connections [192] — is realized cheaply in parallel
by lithography.

Integrated circuits (ICs) were invented independently by J.S. Kilby [193,
194] and by R. Noyce [195] in 1959, honoured by the Nobel prize in the year
2000. 2 They described and demonstrated how transistors and other compo-
nents can be integrated on a single piece of semiconductor material, connected
by small metal lines to an electrically functional circuit. In 1975 G. Moore
[196] presented his observation of the ezponential increase in functionality
of integrated circuits on a chip over the past years. This had been achieved
by improvements in photolithography, by increasing the die (chip) size and
cleverness in layout and circuit design. Such an exponential improvement —
denoted as the "learning curve’ 3 — is also known for other products. But the
semiconductor industry has succeeded in extending the progress described
by Moore’s plot by several orders of magnitude over the last decades: Every
three years a new IC generation has been introduced to the market. The
number of bit memory cells on a memory chip has been four times higher

! A.N. Korotkov and coworkers emphasize from the beginning differences between
SETs and MOSFETSs whereas here first the common properties are discussed
before pointing out the differences.

2 For J.S. Kilby. R. Noyce died in 1990.

3 Decay in price per transistor (respectively, bit cell) versus cumulative number of
produced transitors (respectively, bit cells).
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than on a memory chip three years before, the number of logic gates has
been two to three times higher than in the previous generation. The speed of
microprocessors, measured in millions of instructions per second (MIPS), has
improve by 40% to 50% every year. By learning how to implement, design and
manufacture integrated circuits denser and more efficient — for instance also
by using wafers of larger diameter —, the cost per function has reduced 30%
per year and the processing cost of silicon ICs has remained almost constant
at 4 US$/cm? to 10 US$/cm? over the years. In 2002 memory chips can be
made offering 1 Gigabits of storage capacity, and the number of transistors in
a microprocessor-like logic circuit has grown to about 2 - 107 /cm?. To reach
such densities, the ICs nowadays are realized with up to six metal wiring
layers connecting the transistors. The on-chip clock frequency has reached
2 GHz. * As a drawback, the power dissipation has rised to several tens of
Watt.

Due to their improved performance versus price relation, integrated cir-
cuits have become more and more attractive for diverse applications and have
enabled other technologies which creates new customers’ 'needs’. Digital ICs
are a mainstream technology which justifies huge investments in developing
this technology. But huge investments forces the industry to converge in their
processing technology using the same equipment pushing non-mainstream
technology into niche applications.

The overall power dissipation in highly-integrated electronic circuits is a
big concern due to several reasons: It limits the integration density of logic
gates on chip, but also the integration of many chips into large systems. High-
performance processor chips are going to dissipate about 100 W which re-
quires an effective heat removal technique making their application expensive
or even unpractical. High temperature affects the characteristics of the elec-
trical devices and causes reliability and degradation problems. Large power
dissipation increases packaging costs and limits the use of portable devices
due to the limited battery capacity. High energy consumption are costs and
an environmental concern. Therefore, concepts of reducing the energy dis-
sipation in highly-integrated circuits are required which still fulfill complex
computation tasks in an appropriate time. °

Concepts have to tackle on different, but not necessarily separated levels:
software algorithm, algorithm implementation, circuit design, and — of course
— hardware technology.

The key device in today’s highly-integrated digital circuits is the metal-
oxide-semiconductor field-effect transistor (MOSFET), demonstrated by D.
Kahng and M.M. Atalla [198] in 1960, patent filed by M.M. Atalla [199] in
1960 and described in detail by S.R. Hofstein and F.P. Heimann [200] in 1963.

4 Pentium 4 with 4 - 107 transistors.

5 High-performance chips are limited to 30 to 100 W/cm?, battery powered sys-
tems to 1 W/cm? and low-power chips to 1 mW/cm? when doing computation
[197].
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Early proposals of solid state field effect triodes were done by J.E. Lilienfeld
[201] in 1926 and O.Heil [202] in 1935, and conductance modulation in thin
semiconductor films by field effect was demonstrated by W.Shockley and
G.L. Pearson [203] in 1948. A schematic cross-section of a MOSFET is shown
in Fig.7.1. Due to different type of doped areas in the semiconductor, free
majority carriers (electrons in case of nMOSFET, holes in case of pMOS-
FET) are hindered in crossing the channel region between source and drain
contact: In case of a nMOSFET, there is an energy barrier for the electrons
in the conduction band entering the channel region, in case of pMOSFETsS,
there exists an energy barrier for electrons in the valence band leaving the
channel region, and therefore creating holes in the filled valence band. Ther-
mal activation allows charge carriers to overcome this energy barrier but the
probability becomes exponentially small with lowering the temperature or
with increasing the height of the energy barrier. By changing the electro-
static potential of the gate electrode, this energy barrier is changed near the
surface of the semiconductor below the gate leading to an exponential de-
pendence of the current Ing between drain and source as a function of the
gate-voltage change AVgg,

eAVGS] . (7.1)

I +
DS ocexp[ nkBT

The positive sign is valid for electrons as carriers in the channel, negative
sign for holes. The factor 7 is limited to 0 < 1/n < 1. This ideality factor 1/n
will become very important in the later discussion.

Depending on the type of free charge carriers — electrons or holes — a pos-
itive change in the gate-source voltage increases or decreases the current. A
nMOSFET behaves therefore complementary to a pMOSFET on a gate volt-
age change of same polarity (see Fig.7.1). Changing the gate-source voltage
for nMOSFET above a certain threshold value V(gtshr’n), the energy barrier is
overcome. Further increasing the gate-source voltage leads to accumulation

Fig. 7.1. (Right page) (a) Schematic cross sections through Metal-Oxide-
Semiconductor Field Effect Transistors of n- and p-type. A doped silicon substrate is
partially highly counter-doped. These regions act as source and drain with electrons
or holes as free charge carriers. A gate electrode, made of highly doped poly-silicon
and isolated by an oxide from the substrate, covers the channel region between
source and drain. By applying a gate voltage, the carrier concentration in the chan-
nel is controlled. (b) Conduction and valence band profile between source and drain
along the channel of the nMOSFET (left) and pMOSFET (right) at ’off’-state, at
threshold and at ’on’-state. In case of the nMOSFET, electrons of the conduc-
tion band are acting as free charge carriers in the channel, whereas in case of the
PMOSFET holes in the valence band are used. (¢) With increasing the gate-source
voltage Vs, the current Ips is turned on for the nMOSFET, and turned off for the
pMOSFET. The turn-off is done in both cases exponentially with the applied gate
voltage.
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of electrons under the gate enhancing the conductivity. Similar behaviour is
observed for the pMOSFET with holes, but for negative going gate voltage
below Vétshr’p). Therefore, beyond turn-on threshold, MOSFETs offer

Ips |AVGS| - (72)

The industry has succeeded in keeping the ’on’ current per channel width w
in the range of Ij$*/w = 0.5 mA /um over the years.

Integrated digital circuits, based on complementary MOSFETsS, are called
CMOS circuits. The circuit concept based on complementary working transis-
tors was introduced 1964 by W.K. Reymond [204]. Examples for basic circuits
acting as logic gates are given later.

Mainly by lithography improvements, the transistors and the circuit can
be shrinked down in its spatial dimensions. In 1974, R.H.Dennard and
coworkers described a constant-electric-field scaling concept [205]. The in-
dustry has not followed all the years these scaling rules [206, 197], but they
reflect the basic trend:

All lateral and vertical spatial dimensions are shrinked down by a
scaling factor k < 1 (see Fig.7.2). To scale the depletion lengths like
the spatial dimensions, the dopant concentration must be increased
by 1/k. The applied voltages have to be reduced by a factor . As the
result the gate and junction capacitances decrease with k. Therefore
the delay (due to the RC time constant) in switching a logic gate is
reduced by &, and the energy dissipation per switching is reduced by

K3,

Therefore, only due to shrinking the circuit’s functional density increases,
the circuit becomes faster and consumes less energy which leads to improved
performance. 6

CMOS circuits cover most of today’s integrated circuit market. The reason
is given by the US Semiconductor Industry Association (SIA) stating in 1994
[207]:

CMOS transistors enable the only known circuit configuration that
draws ’zero power’ when not switching; it is the only known technol-
ogy that is capable of achieving the required computational complezity
and still satisfy the power dissipation limitations of low-cost packag-
ing technology.

This statement has to be challenged by any new proposal intended to replace
this circuit concept in their task. The advantages of CMOS base on three
transistor characteristics, mainly responsible for these esteemed properties:

e Transistors with exponential switch-off characteristic.

5 The metal wiring has not been shrink in the same way: To keep the resistance
low, the number of wiring layers has increased. Nowadays up to six Cu wiring
layers are used in high performance microprocessors.
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e Two types of transistors behaving complementary in gate-source voltage.
e Charge accumulation in the turned-on region increasing the conductivity.

To emphasize, the CMOS technology was not used from the beginning for
integrated circuits, but has become the dominating technology in the 1990’s
due to an evolutionary process.

Several papers have described in the past the possible showstoppers for
shrinking the transistors: Dopant distribution or oxide thickness variations
might limit the manufacturability of highly-integrated circuits [208, 209, 210],
since too large variations in the electrical parameters of single transistors
lead to malfunction of the whole electronic circuit. It is the nature of today’s
digital integrated circuits, that millions of transistors on a single chip and
billions of transistors on a wafer have to work for matching the designed cir-
cuit performances and for giving a reasonable manufacturing yield keeping

CMOS-FETS

PMOSFET | | nMOSFET

Silicon Substrate

'Constant-Electric-
Field Scaling’

pPMOSFET NnMOSFET

Fig. 7.2. Constant-Electrical-Field Scaling of CMOS: All spatial dimensions —
horizontally and vertically — are shrinked by the scaling factor x < 1, the dopant
concentrations Na and Np must be increased by 1/x to scale the depletion lengths,
and the applied voltages have to be reduced by the factor x. Such scaling increases
the density by 1/k%, the speed by 1/ and decreases the energy dissipation by x*
for the same task. As the result, shrinking leads to a high gain in performance of
the circuitry.
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the manufacturing costs low. Replacement of non-working circuit parts by
a substitutional circuit, co-integrated on the chip for this purpose, does not
overcome this constraint. Unreliable logic gate would require additional over-
head circuitry, and therefore costs silicon real estate and energy. Redundant
integration is a practicable concept to increase the manufacturing yield where
many identical circuit part exists (like in a memory array).

In 2002, for commercially available high-end ICs, the minimum feature
size — typically the gate length between source and drain — has decreased to
0.13 pm. But more severe, the gate oxide thickness has decreased to about
4 nm which is less than eight times the lattice constant (0.54 nm) in [100]
direction of the silicon crystal. A further decrease leads to the regime where
the gate oxide becomes leaky due to quantum mechanical tunneling — a fun-
damental limit for the device. Silicon MOS transistors with about 50 nm gate
length have been presented on electron device conferences in the 1990s with
reasonable dc characteristics [211, 212, 213]. Even smaller transistors have
been investigated in the last years down to 20 nm gate length [214], where
the gate oxide becomes leaky and where from 30 nm to 20 nm a degradation
of the ’on’ to ’off’ current ratio due to ’short channel effects’ is significant.
The perspect, challenges and limitations of CMOS in view of the year 2001
is given in a special issue of the Proceeding of the IEEE [215].

On the same conferences and in journals, realizations for single-electron
transistors made from Silicon [83, 216, 217, 218] or metal [219, 220, 221,
222, 187] were presented goaling 77 K or even room-temperature operation.
Circuit proposals for the use of single-electron transistors remind on circuit
concepts used for conventional transistors [25, 223, 224, 225].

7.2 Basic Concept of Digital Circuits

A.W.Lo described the basic concept of digital circuits in the early 60’s
[226, 227]. It was repeated, emphasized and applied several times over the
decades by researchers from IBM, like R. Keyes [228, 229, 230, 231, 232] and
R.Landauer [233, 234, 235]. The whole digital circuit consists of elementary
networks which fulfill Boolean logic functions and network elements which
allow to store the bit information if required. The elementary networks has
to deliver a complete set of logic gates like {NOT; AND} or {NOT; OR}.
The output of a logic gate has to act as an input to the next logic gate.
A.W.Lo characterized the basic requirements for the elementary net-
work by the keywords ’Quantization’, 'Fan-out and Fan-in’, "Directively and
Isolation’, sketched in Fig.7.3.

e ’Quantization’ means in his words the ability to preserve the standard
physical representation of the bit representation ’0’° and ’1’.

e ’Fan-out’ describes the requirement that the output of an elementary net-
work serves as inputs to more than one elementary network.
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Fig. 7.3. Basic requirement due to A.W. Lo (1961) for the physical realization of
logic gates: (a) ’Quantization’, i.e., the ability to preserve the physical representa-
tion of logic ’0’ and ’1’. (b) ’Fan-out’ and 'Fan-in’. (c) Directivity and Input/output
Isolation.

e ’Fan-in’ describes the requirement that the output of more than one ele-
mentary network can jointly serve as the input to another network.

e ’Directively and Isolation’ — denoted by R.Keyes as 'Input-Output
separation’— means a clear designation of cause and effect to insure that
the controlling networks dictate the behaviour of the controlled networks.

Nowaday’s digital ICs rely on these concepts. They insure that the behaviour
of the circuit is well predicable, and therefore easy to design and extend by
additional circuits without interfering.

The physical bit representation is done in today’s digital electronic
circuits by working between two electron reservoirs of different elec-
trochemical potentials allowing locally bit signal restoration. These
two electrochemical potential levels ("voltage levels’) which are present
on the input and output nodes connecting the logic gates. During
computation, charges are moved around to change the electrochem-
ical potentials and — linked to that — the electrostatic potentials of
the nodes.

The amount of charge required to change the bit status depends on the node
capacitance inherently given by the electronic devices used in the logic gates
and their interconnects. Drawback of working between reservoirs of different
electrochemical potentials is a permanent stand-by current which has to be
minimized. The concept of complementary working switches helps here.
Note, computational concepts which rely only on guiding energy or charge
quantities — representing the bit status — through a network doing compu-
tation do not fulfill Lo’s requirements, because imperfection or distortion of
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the circuit causes a degradation of the physical bit representation. Therefore
errors in the computation result are unavoidable if these concepts do not
incorporate a mechanism which allows bit signal restoration.

7.3 Power Dissipation in Logic Gates with
Complementary Working Switches

In Fig. 7.4, two elementary logic gates — a 'NOT’ and a ’AND-NOT’ gate —
are shown realized by using complementary working switches — denoted as
n- and p-switch. 7 Between the supply terminals, the voltage Vpp is applied.
The logic state 0’ is represented by a voltage level close to the 0 V level of
the negative supply terminal, the logic state ’1’ by a voltage level close to
the voltage level Vpp of the positive supply terminal. With an input signal
representing the logic status '0’, the n-switch is ’off” whereas the p-switch is
‘on’. With a logic ’1’ at the input, the n-switch is ’on’ and the p-switch is
‘off’. Therefore, with either 0’ or "1’ at the inputs, the elementary circuits of
Fig. 7.4 connect the output node Y either to the positive or the negative sup-
ply terminal. At the same time, the node Y is almost disconnected from the
respective other terminal. This is the strength of these circuit configurations:

Circuits using complementary working switches in series ensure under
static conditions that no high conductive connection exists between
the positive and the negative supply terminal.

Current flow between both terminals is limited to a leakage current I,g
through a switch in the ’off’ state driven by almost the full voltage Vpp
dropping over the switch. It leads to a permanent dissipation for each ele-
mentary logic gate of the order

Pieax = Iog - VoD - (7.3)

Small standby power P would allow the integration of a large number of
logic gates.

For switching the output node Y from ’0’ to '1’ and back to ’0’, positive
charge is transferred from the positive terminal onto the node and then to the
negative terminal (see Fig.7.4d). The node Y performs a voltage swing AVy
which is limited by the voltage Vpp applied between both terminals.? For the
whole switching cycle the charge AQy = Cy AVxy is transferred between both
terminals, where Cy denotes the total capacitance of the node Y. Therefore
the switching energy

" To a certain amount so-called pass-switches (= transistors) can be used to reduce
the number of switches (= transitors) needed in more complex logic gates [236].

& AVy is less than Vpp if the leakage current I g is large enough to cause a signif-
icant voltage drop over the switch being ’on’.
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2
Eactive = Cy AVy - Vpp > Cy - (AVy) (7.4)

is dissipated by this ’0’-’1’-’0’ process of an active logic gate. To emphasize,

the energy (7.4) is not dissipated because the switches are resistive,
but because charge is finally transferred between two terminals of
different electrochemical potentials.

Dissipation can be reduced by using an adiabatic switching technique [237],
but it slows down the switching and requires additional overhead circuitry.
The industry has not taken this path up to now, however the concept is still
under investigation.

In today’s microprocessors typically less than a percent of the logic gates
are switching in the same clock interval. Therefore, the overall power con-
sumption of an integrated circuit can be described by

Piota1 = NumberLogicGates
-(P]eak 4 Eqctive - ClockFrequency - PercentageActive) ,

(@ 'NoT (b) 'NOT AND’ =’NAND’

ov AlY
0|1
1]0

Static Conditions Charging and Discharging

Fig. 7.4. Two elementary circuits based on complementary working switches, de-
noted as n- and p-switch: (a) 'NOT’ gate or inverter, (b) ’AND-NOT’ gate, which
is usually named 'NAND’ gate. (c) Under static conditions, permanent dissipation
is limited to a leakage current Iog through a switch in ’off” state. (d) Charging the
total node capacitance Cy with I, and then discharging C'y cause dissipation due
to charge transfer between both supply terminals.
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Note, most of the logic gates are in a standby mode, enforcing to keep Pieax
low.

Therefore, to integrate a large number of logic gates, the ’off’ current I g
(respectively conductance oor) of the switch has to be small. On the other
hand, a certain ’on’ current I, (respectively conductance o,y ) is required to
recharge the ouput node capacitance in a short time via a switch. Therefore
a high ratio of drive current I,, to leakage current I,g is required to keep
leakage low but the switching delay short. Here the characteristics of the
switch is of importance transducing the voltage swing AVy at its input, driven
by the output node of the preceding logic gate, to a high ratio in the ’on’
to ’off’ current (respectively conductance). Using a high voltage swing AVy
helps here, however it counteracts the requirement of low energy dissipation
by switching, since Eactive o (AVy)2.

7.4 Availability of a Variety of Complementary Working
Electrostatic Switches

The ideal switch controlled by an input voltage swing AVy changes the current

step-like between I ¢ = 0 to I,, = co. Such a device does not exist in practice.
The second best choice of what is known is an ezponential characteristic

containing a Boltzmann factor including also the temperature influence,

Ion eAVy ]
— —ex . 7.5
Ig O [n knT (7.5)

Such switches showing the exponential generic characteristic (7.5) are ob-
tained if a classical energy barrier exists between source and drain for free
charge carriers and if the barrier can be removed electrostatically by the volt-
age swing on a close-by gate electrode, being part of the input node of the
logic gate. Best performance as a switch is obtained if the ratio Io, /Log is as
large as possible for a given voltage swing AVy at the input node, i.e., for an
ideality factor 1/n =1 since 1/7 is limited to 0 < 1/9 < 1.

e Field-effect transistors and especially MOSFETSs can be appointed to the
generic switches obeying relation (7.5). They come close to such an expo-
nential characteristic with n — 1.

e For a single-electron transistor, the classical energy barrier is given by
the charging energy for adding an electron to the island or discharging
energy for taking off an electron. The relation (7.5) holds if the island or
the quantum dot is weakly coupled to the leads, i.e., the master equation
approach of Section 5.8 is a reasonable description.

In case of stronger coupling, quantum mechanical aspects have to be taken
into account. The exponential dependence has to be replaced by a less effec-
tive Lorentzian dependence on AVy, as we will derive later in Section 7.8.
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Are there other electronic devices which may show similar complementary
switching characteristics? For these devices we require essentially only

e an electrostatically removable barrier for adding an electron from source
to the ’channel’, as we denote henceforth the region between source and
drain, and

e an electrostatically removable barrier for taking off an electron from the
channel to drain, i.e., creating a hole in the channel.

In the following, the energy threshold for charging the channel by an elec-
tron is denoted as 'n-level’, for electron discharging as 'p-level’ (see Fig.7.5).
Obviously, a variety of physical arrangements exists for creating a 'np-gap’,
i.e., an energy gap between the n-level for electron charging and the p-level
for electron discharging. Such a np-gap becomes possible

e by the bandstructure, — for instance, by using the gap between the con-
duction and valence band of a semiconductor,

e by the gap between the lowest unoccupied molecule orbital (LUMO) and
highest occupied molecule orbital (HOMO) of a large molecule,

e by using a small island where electron-electron interaction leads to Coulomb
blockade and single-electron tunneling,

e by using a small quantum dot or small molecule where the quantum me-
chanical confinement effect causes a well-pronounced discrete energy spec-
trum.

Such a structure can act as an electronic switch if a switchable gate-source
voltage is applied. Whether such a switch acts as a n- or as a p-switch depends
on how this np-gap is energetically positioned at small Vg relatively to the
electrochemical potentials of source and drain, as shown in Fig. 7.5:

With positive going gate-source voltage, the energy barrier in the
channel should diminish for a n-switch, and arise for a p-switch.

The np-gap is always shifted down with positive going gate-source voltage.
Therefore, for a n-switch, at small gate-source voltage the electrochemical
potentials of source and drain have to fall into the np-gap region. With posi-
tive going gate-source voltage the electron charging level (n-level) is reached
falling between the electrochemical potentials of source and drain. For a p-
switch, at small gate-source voltage, the energy barrier is not present because
the electron discharging level (p-level) falls between the electrochemical po-
tentials of source and drain. With positive going gate-source voltage, the
p-level shifted below both electrochemical potentials, i.e., both electrochem-
ical potentials fall into the np-gap region. Therefore, transport through a p-
switch is enabled by hole-like transport processes, whereas transport through
the n-switch is enabled by electron-like transport processes.

Since the position of the np-gap relatively to the electrochemical poten-
tials of source and drain is affected electrostatically, several options are avail-
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Fig. 7.5. The concept of complementary working electrostatic switches require
a np-gap in the energy spectrum for adding electrons (threshold denoted as n-
level) and taking off electrons (threhold denoted as p-level) from the channel region
between source and drain. The position of the np-gap relatively the electrochemical
potentials of source and drain at small gate-source voltage defines the type of the
switch: (a) The n-level close to ug'" defines a n-switch, (b) the p-level between
pd® and pH™ defines a p-switch. The n-switch is turned on with positive going
gate-source voltage Vgs shifting down the np-gap: electrons are allowed to enter
the channel region from source and leave to drain (’electron-like’ transport process).
The p-switch is turned on by negative going gate-source voltage shifting up the np-
gap: electrons can leave to drain creating a hole which is filled again from source
(’hole-like’ transport process).

‘on’-State: Vs increased Vs decreased

| |
lJelch : : : T :
77777777 i e \Gan| !
| L1777 Ho | oap I
! elch | 1

: Gap us / / / / ! R : elch

| : 777777 7/ U-D

| |

able to define the same device as a n- or a p-switch, i.e., intrinsically shifting
the np-gap to either direction. It can be achieved

e by combining different materials and therefore using intrinsic contact volt-
ages due to workfunction differences,

e by adding fixed charge close to the region between source and drain,

e by using a second gate electrode close-by which is positively or negatively
biased.
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In conclusion, electrostatic switches are not restricted to the concept of
MOSFETSs. Besides semiconductor material or organic materials, small is-
lands weakly coupled to source and drain offer an additional way creating
gaps in the energy spectrum for adding and taking off electrons in the channel
region of the switch. Recent examples for logic gates based on unconventional
field-effect transistors are

e a’NOT’-gate realized by carbon nanotubes acting as n- and p-switch [238],
or carbon nanotubes operating as p-switches [239], and

e a 'NOT’ gate obtained from FETs with a self-assembled layer of organic
molecules acting as the channel [240],

e a’NOT’ gate and a half-adder ? realized by using single-electron transistors
running a low temperature [188, 241].

Step by step, we will discuss in the following the constraints for a generic
switch obeying (7.5) for fulfilling the requirements for highly integrated dig-
ital circuits.

7.5 Constraints for the Generic Electrostatic Switch
Requested by Minimizing the Switching Energy

As described before in Section 7.3, the energy dissipation by changing the
output state of a logic gate is proportional to the charge AQy = CyAVy
by which the node capacitance Cy is recharged for the ’0’ to ’1’ transition
and is proportional to the supply voltage Vpp which is at least the voltage
swing AVy. To mimimize this energy dissipation, the node capacitance Cy
and/or the voltages Vpp and AVy should be reduced. Following the ’constant-
electric-field-scaling’ concept, the switching energy reduces by 3. As we will
discuss in the following in more detail, there exists restrictions of doing this:

1. A fundamental limit is given by the thermal fluctuations occuring in
the system. A low bit error probability requires a certain minimum of
electrostatical energy stored on the node capacitor to distinguish reliable
between the bit representations ’0’ and ’1’.

2. The functionality of the logic gate having bit level restoration and noise
margins limits the minimum in the supply voltage.

3. A stronger constraint than (2) is the low standby power requirement
allowing still a reasonable short delay time for switching a logic gate.

4. Lowering the voltage swing too much leads to performance degradation
in the delay time in switching a logic gate.

As we will see, especially the constraints (2), (3) and (4) affect the physics
of the electrostatic switch: The minimum in the voltage swing requires the

® The half-adder was realized in a pass-switch logic technique, i.e. without bit-
signal restoration.



212 Fundamental Physical Contraints on SET for VLSI

optimum in the electrostatics of the switch. The switch device should allow
charge accumulation above threshold to prevent degradation in the speed
performance.

7.5.1 Limit due to Thermal Fluctuations on Bit Representation
by Voltage Swing

Computational tasks require typically 10! bit operations without an error,
communication tasks require less since error correcting information is in-
cluded. The number of 10'° bit operation is reached by a periodically sensing
of 10° logic gates in a large system with a frequency of 108 Hz within one
day. Nowadays high-performance microprocessors reach 1 GFlops, i.e., about
10! bit operations per second.

Thermal noise is usually considered as being a negligible concern in elec-
tronic digital circuits. This is not true for circuits with small node capaci-
tances where only few electrons might be used to represent the bit informa-
tion. K.U. Stein [242] pointed out that thermal fluctuations give a fundamen-
tal minimum limit AEY™" on the electrostatic energy AEy = $Cy (AVy)? by
which the node capacitor has to be recharged to distinguish reliable between
the bit representation 0’ and ’1’. This switching energy AE®® is determined
by the bit error probability P¢™ which could be tolerated in the application.
K.U.Stein considered a computational bit operation as sensing the voltage
level over the node capacitor at a certain time. In the case of dynamically
working logic circuits, the switching operation freezes the electron number
N — present on the node at that time — by disconnecting the node from
the supply terminals. Both computational bit results ’0’ and ’1’ depend on
the electron number present at a certain time on the node electrode which
is affected by fluctuations due to thermal noise. An estimate for the error
probability sensing the bit information at a certain time will be given in
the following by using thermal equilibrium statistics. A more sophisticated
analysis has to take into acccount quantum mechanical fluctuations and the
coupling to the second electron reservoir which we expect to aggravate the
requirement,.

In complementary switch circuits, the node electrode is connected to one
supply terminal and is almost disconnected from the other supply terminal.
This is true for the 0’ and the ’1’ state (see Fig. 7.6). From the physical point
of view, both stationary states reflect almost the thermal equilibrium situa-
tion of an electron island — the node electrode with the total capacitance Cy
— connected to a large electron reservoir with a certain electrochemical poten-
tial, i.e., to one of the supply terminals. Switching between the low-level state
’0” and the high-level state "1’ state is done by changing the connection from
one supply terminal to the other, i.e., by changing to the electron reservoir
with the other electrochemical potential. This changes the thermodynamical
probability distribution of the number Ny of electrons on the node electrode.
The electron number with highest probability changes between N} for "1’ and
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Fig. 7.6. Thermal fluctuations in the number IV of electrons present on the node
capacitor with capacitance Cy causes fluctuations in the voltage Vv o over the
capacitor and therefore bit errors: (a) Connecting the node to the positive supply
terminal, thermodynamic electron fluctuations occur (as indicated) around N3, (b)
connecting the node to the negative suEply terminal, fluctuations occur around
NE, where the difference is given by Ng — N} = Cy - AVy/e. If the state '1’ is
intended, but the threshold N is exceeded by the fluctuating electron number N
while sensing the voltage level on the node, a bit error occurs.

NE > N} for ’0°. 19 Fig. 7.6 shows the thermal fluctuations in the number
N of electrons on the node around N@, respectively N}. These normalized
probability distributions P'(N) and P"(V) cross in their tails at the critical
value N¢ which represents the logic threshold between the bit representation
’0” and ’1’. An even stronger criterion uses different critical electron numbers
N} and N§ as shown in Fig.7.6. Such a fluctuation event causes errors in
the computational process sensing the electrostatic potential which is given
by the electron number N at that time: Errors occur for the logic ’1’ state
with N > N}, (marked in Fig. 7.6) or for the logic 0’ level with N > N§.

10 Note that we count all free electrons including those which are compensated in
their charge by ions.
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In thermal equilibrium with any of the two electron reservoirs, the ratio
between the probability P(Ng &+ n) of having Ny £ n electrons on the node
and the highest probability P(Ng) of having Ny electrons on the node de-
pends exponentially on the energy AE(+n, Ng) which is required to add the
n electrons from the reservoir to the Ny electrons on the node, respectively
to take off the n electrons from the node back into the reservoir:

P(No+n)  const-exp(—E(No£n)/ksT) _ AE(+n, No)
P(No) ~ const-exp (— E(No)/ksT) - <_ kT ) '

(7.6)
The probability P(NN) is normalized by Y>> x_, P(NN) = 1, fixing the value of
const. The ’activation’ energy AE(+n, Ny) in (7.6) is the electrostatic energy
required to add n electrons when Ny electrons are already present,

AE(:ETL,N()) = E(NO + ’I’L) — E(No)
(~(No£n)e+Q5)" (= Noe+Q3)’

2Cy B 2Cy
(n® £ 2fq:n) - €

2Cy

(7.7)

Here, the quantity @) denotes the ’offset charge’ already introduced in previ-
ous Chapters. It accounts for shifts in the electrostatic potential of the node
due to background charges, workfunction differences and/or voltage offsets.
The introduced abbreviation

fqz = No — Qg/e (7.8)

is limited due to Section 2.3.2 to the range —3 < fq: < 3. This factor fq:
is negligible for large n but is important when considering changes by few
electrons since this affects AE(£n, Ny) and therefore P(No £ n). For for =0,
the number of electrons is fixed to No at lowest temperature. For fq: = i%,
the charge fluctuates because the activation energy (7.7) forn =1orn = -1
is zero, respectively.

We now apply the results (7.6) to (7.8) to the cases of an expected ’0’ or
’1” on the node and add the corresponding superscripts 'h’ and ’I’: In case of
an expected ’0’ the result of a computational operation is considered as being
'wrong’ if the number of electrons has been equal or even below the chosen
critical value N& = N — ANE. The probability of such an error is

Ng
Pr(0) = Y PG —n, f8s), (7.9)

_ h
anNC

where fag is added in the argument of P(N) to indicate that fq: = f‘gé in
(7.6).
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In the case of a ’1’ on the node, the result of a computational operation
is considered as being ’wrong’ if the number of electrons has been equal or
even exceeded a certain value N&, = N} + AN}, The probability for this error
is given by the sum of the probabilities of having N > N,

o

Py = Y PNy +n, fg:) - (7.10)
n:ANé

The assumption for the previous considerations was that the state ’0’ is
correctly obtained if the number of electrons is above the critical value
N& = N — AN§ and the state ’1’ is correctly obtained if the number of
electrons is below the critical value N, = N} + AN/,. As the representations
of the ’0” and the ’1’ state could not have an overlap, a certain electron num-
ber N between N} and N has to belong unambiguously to one binary state
or to none of both if N is between N& and NJ,. Therefore, the choices for
a small change AN = N} — N} in the electron number between the binary
states are

AN{ = AN = IAN  if AN is even, and (7.11)
ANL =ANE = 1(AN +1)  if AN is odd. (7.12)

As the numbers of electrons N}, N§' are large, the sum in (7.9) can be
extended to n = oco. Using (7.6) and (7.7), Eqn. (7.9) and Eqn. (7.10) result

in
i (n* £2 fq;n) e
P 2Cy ksT
i (n® +2 fqzn)e? ’
P 2Cy kT
where the "+’ sign is for calculating P ('0") with fq: = ffgé’ and the '—’
sign is for calculating P ('1") with for = f(lQa . The error probability becomes
equal for '0’ and "1” if foy = f&, = f§, = 0.
In Fig. 7.7, the error probability calculated by using (7.13) is plotted ver-

sus the change of the electrostatic energy AEy on the node capacitor Cy
between ’1’ and 0’ state

(7.13)

_ Cv-(BW)* _ (BNey

AE —
Y 2 20y

(7.14)

which is normalized in Fig.7.7 by the thermal energy kgT. The different
curves belong to different change AN in the number of electrons on the node
between the states 0’ and ’1’. The parameter along each curve of given AN
is the node capacitance C'y. The limiting cases of large and small AN are
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Bit Errors Due to Thermal Fluctuations of the Electron Number
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Fig. 7.7. (Left page) Thermally induced bit errors P, calculated from relation
(7.13) for three prominent values of fQE’ versus the electrostatic energy difference
AEy = %CyAV\? on the output node capacitor Y between ’1’ and ’0’ state, nor-
malized by kg7T. Curve parameter is the change AN = Cy AVy /e in mean electron
number to distinguish between ’0’ and ’1’ on the node. The thick solid curve is valid
for large AN and shows the limit kg7 > ¢?>/2Cy. (a) fqz = 0: For odd AN, the
error probability is below, for even AN above the thick solid curve. (b) To simulate
background charge, worst cases for fq; are chosen: fqr = —3 for P*('07), fap = 3
for P*"("1"). For AN = 1 and AN = 2, no AEv/kgsT helps to suppress bit errors.

discussed in the following:

Large AN:

The solid curve in Fig. 7.7 for large AN shows the limit kgT > e? /2Cy where
the required energy AFy has become almost independent of the electron
number and the offset charges, i.e., of fq;. For this limit, the sum in (7.13)
can be approximated by an integral and with using the error function !, the
error probability P = Per('0') = P ('1’) is expressed in this limit by

7 n2e?
/ exp (—720Y kBT> -dn
perr :Af\c;/)2 y = % <1 —erf (ﬂ i %) ) . (7.15)
/ exp (—72CY kBT> -dn

— 00

This represents the result which was already given in 1977 by K.U. Stein
[242] who treated only this special case. The error probability P in (7.15)
depends on the ratio of stored electrostatic energy AEy to thermal energy
ksT. In the limit P*™ « 1, the first term of the asymptotic representation '2
for (7.15) leads to

P = S S exp ( APy ) (7.16)

/7 DBy JksT " 4ksT

and we obtain as an estimate of the change of electrostatic energy the mini-
mum value AEy = AEG™,

AEY™ ~ —4kgT -1n (P7) . (7.17)

"erf(z) = 2/v/7 - [ exp(—t®)dt, and li_)m erf(z) = 1.
(=1)k- (2k — 1)!!

12 See (8.254) in [243]: 1 — erf(v/X) = £ - exp(—x) - [\/E+ 3 e
X

k=1
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Therefore, it requires AEy > AEW™ in order to fulfill the demand that the
desired error probability P¢™ is not surpassed.

Small AN:

For small AN, there is a strong dependence for AE™ on fq; and on AN
being odd or even. This becomes obvious by the following consideration: For
(ANge)?/2Cy > kgT, the first term in the sum of (7.13) dominates the error
probability, 3

(AN +2 fo; ANG)
2Cy ks T

P = exp (7.18)

Therefore the minimum AEY™ in energy AEy = (AN e)?/2CY fulfilling (7.18)
is given by

ABY™ ~ —4 B kT -In (P°) (7.19)
where, due to the critical value ANc = $AN,
1 2 fqr
5= 1+ Af;" if ANc is even , (7.20)

and, due to the critical value ANc = (AN + 1),

1 1 1 . .
B = (].+ m) . (1+ m . (].:l:Qst)) lfANC is odd . (721)

The required energies AET® to achieve certain P¢*('0’) and P ('1") are
listed in Table 7.1 for some values of AN and fqq:

e The factor 8, given by Eqn. (7.20) and Eqn. (7.21), converge with increasing
AN to unity. Thus, (7.17) is obtained again.

e The lowest energy AE®™ for being below a certain error probability occurs
— see also Fig. 7.7 — for AN = 1 and fq; = 0 which yields to 8 = 1/4 in
(7.19), and hence to

AEY™ ~ kgT - In (P). (7.22)

Thus, this lowest energy is required in the case of representing the differ-
ence between '0’ and ’1’ state by the absence or presence of one additional
electron on the node capacitor. However this requires very small capaci-
tance values Cy due to the relation AEF™ = e2/2CYy.

13 The sum of the nominator in (7.13) is dominated in this case by the contributions
ofn =0,andn = 1if for — —Llorn=-1if for = 1. This leads to a nominator
value of about 1 to 2.
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fQS =0 fQo = —% fQo = % required ﬂ if
Qg fluctuates
AN =1, 0’ B=1 o0 1/2 00
bk 1 1/2 () 00
AN =2, 0’ 4 o0 2 00
1’ 4 2 00 00
AN =3, 0’ 9/4 9/2 3/2 9/2
1’ 9/4 3/2 9/2 9/2
AN =4, 0 4 8 8/3 8
bk 4 8/3 8 8
AN =5, 0’ 25/9 25/6 25/12 25/6
e 25/9 25/12 25/6 25/6
AN =9, 0’ 81/25 81/20 81/30 81/20
Bk 81/25 81/30 81/20 81/20
AN =10, 0 4 5 10/3 5
BE 4 10/3 5 5

Table 7.1. Values of 8 derived from (7.20) and (7.21) which determines as factor
the minimum electrostatic energy change AEY'™ = —f3 - 4kgT In P*" (see (7.19),
required to represent the bit status ’0’ and ’1’ below a certain error probability
P due to thermal fluctuations. The factor 8 depends on AN, the bit status and
fQS‘ Fluctuations in the background charge cause a change in fQS' To ensure the

reliability in such a case, the worst value for 8 (from fq; = {0, —1,3}) is listed in

the right column. Note that for AN = 1 and AN = 2, no reliable bit representaion
is possible in case of background charge fluctuations.

e Moreover, the bit representation by one electron is very sensitive to back-
ground charges which are fluctuating around. By setting fq: = :l:%, the
requirement on AE®™ diverges in case AN = 1 but also for AN = 2 (see
Table 7.1). Finite values are obtained for AN > 3 for any fqz- For large
AN, the requirement for AEW™ becomes independent of faz-

e For larger C'y, more electrons AN have to be stored on the node capaci-
tor maintaining the same low error probability. Advantage is that a large
charge mount is less sensitive to a single electron charge fluctuating in the
vicinity of the node or onto the node.

In conclusion, to suppress thermal induced bit errors, a minimum elec-
trostatic energy AE™™ has to be stored on the node capacitor to distin-
guish reliable between the binary ’0’ and the binary 1’ state. Fig. 7.8a shows
AE%™ [kgT versus Cy for a given P°T = 1071%, obtained from Fig. 7.7. This
diagram reveals that for P° = 10719, an switching energy AEy > 165 kgT
has to be stored. This means AEy > 4.3 eV for T = 300 K. 4

4 Note, by a computational operation which allows to average over the ther-
mal fluctuations over long time periods, this energy can be reduced limited by
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Fig. 7.8. (a) Evaluated mininum electrostatic energy AE®™ versus Cy required
to avoid bit errors due to thermal fluctuations to P = 1071°. For the ’0’ state,
foz = —1 is assumed, for the ’1’ state far = 1. At top of the diagrams, an effective
length is given, calculated by leg = Cy/eo which estimates the possible length L of
a metal wire via its self-capacitance C' = 2mepe L/ In(L/Ro) (see (C.11)): L < leg/e
for a length-to-radius ratio of about 500. (b) Change AN in electron number on
node versus Cy required to suppress thermal errors. (¢) Required voltage swing
AVy versus Cy. (d) Example of a metal-SiO2-metal plate capacitor of 50 nm by 50

nm area with 3 nm plate distance leading to Cy ~ 31077 F.
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In Fig. 7.8¢c the required minimum voltage swing AVy = \/2AE®n /Cy is
plotted versus the node capacitance Cy. Illustrating is the following example:
The value of a metal-SiO»2-metal plate capacitor (see Fig.7.8d) of 50 nm by
50 nm area, 3 nm plate distance and esio, = 4 has the capacitance C' =
3-10717"F= 30aF. Such a small capacitance requires already a voltage swing
AVxy larger than 0.2 V for P°™ = 1019 at T = 300K. About 38 electrons
have to be stored under these conditions (see Fig. 7.8b). Of course, the bit
representation with even less electrons is also possible choosing smaller node
capacitances Cy and higher voltage swings AVy, but the reliability of the
bit representation is then sensitive to single background charges fluctuating
around.

It is worth to emphasize again that it does not require the bit represen-
tation by few electrons to reach minimum in the electrostatic energy change
AEy demanded by a low thermal-induced error probability requirement. A
large number of electrons on a large capacitor leads to almost the same min-
imum in energy, accompanied by a small voltage swing AVy (see Fig.7.8¢).
However for large node capacitance values other contraints become impor-
tant not allowing to minimize the voltage swing AVy to the lower limit given
by a low thermal-induced error probability requirement.

7.5.2 Limit due to Requirement of Bit Level Restoration

The concept of digital circuits (see Section 7.2) demands bit signal restora-
tion. The degradation of bit signal levels leads to information loss and com-
putational errors. As shown in Fig. 7.9 and explained in the Figure Caption,
differential voltage gain |dVout/dVin| < 1 of the logic gate everywhere pro-
duces degradation. Differential voltage gain greater than unity has to be
suppressed at the bit signal levels to avoid amplification of noise through
the network which would cause computational errors after passing several
logic gates. Noise suppression is important since 'noise’ sources are inher-
ently in digital circuits, for instance, due to capacitive cross talk, due to
voltage drops on series resistances in the power lines, or due to induced volt-
ages at the inductance of bond wires. A transfer function of the logic gate
with discriminative amplification (sigmoid-like response of the output voltage
on the input voltage, see Fig.7.9d) allows to fulfill the requirements of bit
signal restoration and noise suppression at same time [226, 227, 229].

The difference between the nominal bit signal input level and the input
voltage where the differential voltage gain become equal to one gives the
noise margin Vo, of the transfer characteristics. An input voltage can vary
within this range without bit signal level degradation or noise accumulation.
For the sigmoid transfer function, the differential voltage gain dVqyt/dVin at

AEZ™ > kpTIn 2, which gives the thermodynamic limit allowing to attribute a
probability slightly higher than i for one state in a two-state system (see also

relation (7.22) for P** ~ 1).
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The noise margin Vam becomes larger with steeper slope |dVoyt/dVin| around logic

threshold.

Sigmoid

-like
transfer function
alowsfor

noise margins:

Degradation:

Fundamental Physical Contraints on SET for VLSI
-1
0

out in
Vout Vy <aVy

. dVout
<1
[T dVin
7,
t— logic threshold
7
7
4 Vin
in
AVY —

(d) Noise Suppression:

VOUt/ suppressed noise
dVout
Vout
’ dVin 1
/7
4 — noise
7/
Ve
. Vin

Vnm

AVY - 2Vnm
Vnm

N

—

J

dVout _
dVin 1

noise margin

N, Vi



Constraints for the Generic Electrostatic Switch 223

logic threshold is a measure for the possible noise margins. The steeper the
sigmoid transfer function of the logic gate, the larger are the noise margins.
By using Fig. 7.9d, the slope at logic threshold is estimated to

NS 1
T AVy —2Vam 1 —2Vom/AVy

%ut

dVin

gain = ‘ (7.23)

We call this the wvoltage-gain requirement at threshold since giving the ratio
between noise margin Vi, and voltage swing AVy leads to the constraint
(7.23) for the required differential gain |dV,yt /dViy| at logic threshold. Taking
for example a noise margin of V,;;, = 0.3 AVy for both bit levels, a differential
gain at threshold of at least 2.5 is required, taking a noise margin of 0.45 AV
at least a differential gain of 10.

How does the requirement (7.23) affect the device used as the switch? The
voltage gain requirement at logic threshold gives a constraint on the device
geometry due to the electrostatics by which the energy barrier of the device is
controlled. To prove this statement and in order to obtain quantitative design
rules, we consider the realization of a 'NOT’ gate (or inverter) in Fig. 7.10:
First we consider an electron in the channel between the electrodes — i.e., the
input node A (the gate G of the switches), the output node Y (the drain D
of the switches) and the supply terminals T (the source S of the respective
switch). Putting an electron at position r induces image charges on each of
these electrodes, i.e., on electrode i the charge fraction «;(r) < 1. Further,
the energy of the electron at r is changed by —e d®(r) when changing the
electrostatic potential of one of the electrodes by dV;. Due to the electrostatic
reciprocity, this energy shift —e d®(r) depends on the fraction «;(r) induced
by this electron on the respective electrode i. However, by changing the input
voltage Vi, on the gate electrodes (input node A) of the inverter shown in
Fig.7.10, also the output voltage Vyyy, i.€., the output-node potential of the
logic gate is changed. Therefore the energy barrier height at position  in the
channel between the electrodes of the n-switch is shifted for an electron with
respect to the supply terminal T by

—ed®(r) = —eaa(r) - dVin —eay(r) - dVous , (7.24)

with the condition aa (r) + ay (r) +ar(r) < 1. The same relation is obtained
for an electron in the channel of the p-switch (see Fig.7.10a).

We expect that dVyyuy o< —dV;,. The more accurate dependence is obtained
as follows: The output signal V,,,; depends on the ’resistance divider’ formed
by the n- and the p-switch in series,

R

V:)u = - % s 2
‘" Rot+R, " (7.25)

where the ’resistances’ R, and R, depend on the actual values of Vin, Vout
and Vpp. At logic threshold, i.e., Vo = %VDD, we have R, = R, = R



224 Fundamental Physical Contraints on SET for VLSI

(@) 'NoT’ (b) n-Switch in ’off’-State:
VDD
[ without bias:
Input A * Output Y
Channel €
AlY 1 1
ov 01 : : T eVps®*0
1 0 u;ICh /I : \l/ p’elch
| o (TR
Supply Terminal (+) | 1
] I
Source : : Drain
=Supply ' =NodeY
Terminal (-)
o lowering of
with bias: energy barrier

Output
Node

elch

Hs

Supply Terminal (-)

Fig. 7.10. (a) Abritary electrode arrangement modelling a "NOT’ gate or inverter
formed by a n-switch and a p-switch in series. The electrostatic potential at position
7 in the respective channel depend on the potential of all surrounding electrodes,
i.e., the input node A (gate electrode G), the output node Y (drain electrode D),
the supply terminals T (source electrode S) and possible other electrodes in the
surrounding which are not shown. (b) Energy scheme for the n-switch demonstrat-
ing the lowering of the energy barrier with changing the drain-source voltage, i.e.,
in this case the output node voltage Vv, 1.

Changing slightly the input voltage around threshold, the energy barrier for
electrons is lowered which decreases the resistance for the n-switch by 15

ARy = Rue - ((exp (= ed®/ksT) — 1)  Rupe - ( — €d®/kpT) ,

5 The dependence on the position r can be omitted since we assume that the posi-
tion in the channel with maximum energy barrier does not change and determines
the switch current.



Constraints for the Generic Electrostatic Switch 225

whereas the energy barrier for holes rises which increases the resistance of
the p-switch by 16

ARy = Rune - ((exp (¢ d8/knT) — 1) ~ Rine - (¢ d8/knT) = ~dRa .

Taking the differential change of (7.25) by dVi,, the output voltage change
dVout at the logic threshold becomes due to (7.24) implicitly

dR, _ __eozA-dVin+eay-dVout
2 Rihres 2ksT

dVous = — -Vop

leading to the voltage gain around the logic threshold

dV;.)ut
dVin

QA
= . 7.26
2kpT/(eVpp) + ay (7.26)

gain = ‘
To get differential voltage gain > 1 at threshold, due to relation (7.26) it
requires

e a better electrostatic coupling to the input node A (gate electrode G of the
switch) than to the output node Y (drain electrode D of the switch),

ax > ay, (7.27)

e and a minimum V58" in the supply voltage Vpp,

ksT 2

Vpp > Voin = . .
= 'bDb e aa/gain—ay

>0. (7.28)

e For a special arrangement fulfilling at + ay + ax = 1 and ar = ay, i.e.,
symmetric electrostatic coupling to the supply terminal T (source electrode
S) and output node Y (drain electrode D), the requirement (7.28) reads

_ ksT 4
e aa-(l+2/gain) —1"

(7.29)

Therefore the supply voltage Vpp should be several times kg7T'/e to get signal
level restoration as was pointed out in 1972 by R.M. Swanson and J.D. Meindl
[244] in case of MOSFETSs. However, result (7.26) and thus the design rules
(7.27) and (7.28) are independent of how the energy barrier is defined: by
workfunction engineering, by quantum mechanical confinement effect or by
the Coulomb-blockade effect. It needs a fundamental minimum supply volt-
age for all switches based on electrostatically controlling the conductance or
current. In the case of ap — gain-ay, the required supply voltage V2" grows
dramatically as can be seen from (7.28). For aa < ay, no gain is achievable
at all!

16 For convenience, we assume same geometry for the p- and n-switch, i.e., d® is
the same, described by (7.24).
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Fig. 7.11. A certain minimum V%" in the supply voltage Vpp is required to obtain

a certain differential gain at threshold of the logic 'NOT’ gate. Vpp" depends on the

electrostatics of the switch — characterized by the electrostatic coupling aa (= ag)
to the input node A —, and thermal fluctuations. For this plot the relation (7.29)
is taken, i.e., symmetric capacitive coupling ar = ay and at + ay + aa = 1,
respectively ap = ap and as + ap + ag = 1, is assumed. The required V55"
diverges for a4 = gain - ary.

Relations (7.27) and (7.28) define severe constraints on the electro-
statics of the switch. It is part of what defines a useful transistor.

Taking (7.29), the minimum VA" in the supply voltage Vpp required for
certain gain of the network acting as a 'NOT’ gate is plotted in Fig.7.11
versus aa. Best performance, i.e., lowest Vpp is obtained for ax — 1: Al-
most the whole image charge for an electron in the channel is induced on
the gate electrode (input node A). The required supply voltage diverges for
ap — ay, i.e., when the image charge fraction induced on the node electrode
(drain electrode) becomes equal the fraction induced on the input node (gate
electrode).

7.5.3 Limit due to the Requirement of Low Standby-Power

The intention exists, of course, to minimize the standby power of the logic
gate in order to lower the power consumption as far as possible. Which re-
striction do exist? With changing abruptly the input voltage to the logic
gate, the output node capacitor has to be loaded by AV in a certain short
delay time 7. This requires a current I,, through the switch in the ’on’-state
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delivering the charge CvAVy by which the node with capacitance C'y has to
recharged within the delay time 7,

Cy AV
—

In > (7.30)
In the best case of our generic switch, this ’on’ current I, is related expo-
nentially to the ’off” current I,

A
Lg ~ Iy - exp <_M> :

31
T (7.31)

where a is again the charge fraction induced on the input node A (gate
electrode G). However for a 'NOT’ gate as shown in Fig.7.4b, the change
AVy in the input voltage with switching causes a complementary change
—AVy in the output voltage: Either the n- or p-switch is in the ’off’ state
and therefore under drain-source voltage bias in the order of AVy < Vpp.
Therefore, also the modification of the energy barrier by the change in the
electrostatic potential of the output node Y (drain electrode of the switch)
has to be taken into account. As a consequence the relation (7.31) has to be
modified due to (7.24) to

(7.32)

_ A
Ioﬁzlon-exp<—e(aA ay) VY>‘

kT

The ’on’ to ’off” current ratio is according to (7.32) affected by the electro-
statics of the switch.

The standby power Pleax per logic gate (due to the current leakage I g
through the switch in the ’off’-state) is estimated due to (7.32) and (7.30) to

— ay) DA
Gv&W Voo (-e(O‘A ay) Y) . (7.33)

> . 7
Beax > Ing - Vop - T

By defining the efficiency factor,

EfficiencyFactor = Cv AVy Voo ~ Io—n, (7.34)
Peax - 7 Log
the performance of a single logic gate is characterized: The efficiency factor
becomes worse if the dissipated energy CyAVy Vpp due to switching the bit
status is high, and if it requires a long delay time 7 for doing this switching.
It becomes better if the dissipation under stationary condition due to the
leakage current I,z between the supply terminals is highly suppressed. 17

7 Note, the ’off’ current Iog is the leakage current under full drain-source bias since
under stationary conditions almost the whole voltage Vpp drops over the switch
in ’off’ state. Also Ion is defined at full bias over the switch since at the beginning
of recharging the output node the voltage drops over the switch although in 'on’
state.
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The efficiency factor gives a measure for the ratio between the power
dissipation due to switching for doing computation (x Cy AVy Vpp /7)
and stand-by power dissipation due to leakage (x Is - Vbp)- A high
efficiency factor is required allowing for highly integrated circuits
with millions of logic gates with a still reasonable low power con-
sumption.

Today’s MOSFETs in digital integrated circuits offer Ion/Iog > 108, i.e., an
efficiency factor of larger than 108, 18

With the efficiency factor (7.34), the constraint on the voltage swing AVy
to suppress standby power dissipation but delivering the required short delay
follows from (7.33),

; kgT
AVy > AV = B (EfﬁciencyFactor) .

[

. 7.35
. (7.35)
Or if the arrangement of electrodes allows to take ay + ar + ax = 1 and
ar = ay, relation (7.35) reads

ksT

AVIin — — -In <EfﬁciencyFactor) - (7.36)

3apr -1

In Fig.7.12, the limit for AVy given by (7.36) is shown for different effi-
ciency factors as a function of aa. If the electrostatics of the switch deviates
from ap = 1, higher voltage swings AVy are required. Especially for large
node capacitances Cy, i.e., large fan-out and long wire lines, this relation
reflects the dominant constraint on AVy if short switching delay and low
standby power are requested. The required mininum AV;’““‘ in voltage swing
AVy diverges for ap — ay.

In conclusion, limiting the voltage swing AVy and the efficiency factor,
the relation (7.35) gives another constraint on the electrostatics of a switch
operated by controlling an electrostatic energy barrier. Or vice versa:

e Bad electrostatic arrangement leads to the requirement of a large voltage
swing AVy . Optimum, i.e., lowest voltage swing keeping low standby power,
is achievable for ap — 1.

e For ap < ay, the switch cannot be turned off since the lowering of the
energy barrier by the change —AVy of the drain-source voltage just com-
pensates for the rise by the gate-source voltage AVy. Therefore, in this

'8 Other device concepts like interference devices or two-terminal resonant tunnel-

ing devices are restricted to much lower ’on’ to ’off’ current ratios. MOSFETSs
offer in ’on’ state 0.5 mA to 1 mA per ym channel width and about 10 nm chan-
nel height, — a value which has been kept constant over the years and therefore
describes the expectation on drive capability for transistors used in VLSI. On the
other hand, a leakage current of Iog = 1 pA would mean for the small number
of 10° logic gates, a permanent total current of 1 A, for 10® a current of 100
A and for 10'° a current of 10* A, just causing dissipation without doing any
computation.
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Fig. 7.12. The minimum AVZ®® in voltage swing AVy as a function of the switch
characteristic aa to obtain a certain efficiency factor, i.e., a certain ’on’ to ’off’
current ratio: (a) Voltage swing AVy"'™ normalized to ksT. (b) Voltage swing AV
for room temperature (7" = 300 K). For these plots the relation (7.36) is taken, i.e.,
symmetric capacitive coupling ar = ay and ar + ay + aa = 1, respectively
ap = as and as + ap + ag = 1, is assumed. The required voltage swing AVy ™
diverges at aa = 1/3 since there aa = ay.

case the logic 'NOT’ gate is not working and no suppression of the standby
power dissipation in a logic gate due to leakage is possible.

7.6 Generalization: All Electrostatic Switches Suffer the
Same Constraints and Therefore Limitations

Derived in the previous Section 7.5, the constraints on a generic switch, where
an energy barrier between source S and drain D is electrostatically controlled
by a gate electrode G, can be summarized by the following statements:

1. To obtain the necessities ’voltage gain’ and ’noise margins’ in the elemen-
tary logic circuit, a better electrostatic coupling ag to the gate electrode
G, which is part of the input node A and controls the energy barrier in
the switch, than to the drain electrode, which is part of output node, is
required: ag > gain - ap.

2. To avoid dissipation due to leakage between the supply voltage terminals
via the logic gate, the bias induced lowering of the energy barrier has to
be suppressed, i.e., it should be ag > ap.

3. For small voltage swing AVy on the input and output nodes, it has to be
ag close to 1, i.e., full control of the energy barrier between source and
drain by the gate electrode is required.
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These properties characterize a useful electrostatically controlled transistor.

These electrostatic requirements also demonstrate why for a MOSFET
all spatial dimensions have to be shrinked by the same factor — described by
the ’constant electric field scaling’ rule. Let us look at the consequences of
deviating from these rules::

e Keeping the insulator at same thickness while reducing the gate length
would lead to a reduction of aq, and therefore to a loss of control over the
energy barrier.

e Keeping the depth of the source and drain regions close to the channel
region constant while shrinking the channel length would increase ag and
ap, diminishing ag.

Such effects have been denoted as short channel effects [245]. To fulfill ’con-
stant electric field scaling’ requirements with shrinking, the insulator oxide
between the gate electrode and channel must be thinned and /or increased
in its dielectric constant. A superior insulator is required to get the gate
electrode as close as possible to the channel region for controlling the energy
barrier between source and drain, and allowing therefore for reaching short
channel length. Since the usual insulator of MOSFETSs, the SiO, becomes
intolerable leaky below 1.3 nm [246], large efforts are undertaken to find a
replacement — an insulator with higher dielectric constant and at least same
insulating properties. The search has not been successful up to now.

Not being able to follow any longer the scaling rule for the conventional
MOSFET, the electrostic design of MOSFETSs have to be changed [247, 248]:

e A better electrostatic behaviour is obtained for MOSFETSs fabricated in
a thin silicon layer on top of an insulator (Silicon-on-Insulator (SOI) sub-
strate) [249].

e Since the electrostatic coupling to the drain electrode (the output node in
the logic gate) has to be kept small, electrodes under the channel have been
proposed which are connected to the source electrode [248]. Therefore ag
is enhanced, diminishing ap.

e The most powerful design is a ’double-gate’ [250, 251, 252, 253] or ’gate-
all-around’ [254] arrangements where the channel is sandwiched between
gate electrodes commonly controlled by the voltage swing. The electrostatic
coupling ag is significantly improved in comparison to the usual design. By
this improved electrostatics, a channel length of few 10 nm for MOSFETSs
is possible still offering reasonable good characteristics.

What about the SET? A better electrostatic coupling of the island to a
gate electrode than to the drain electrode is achievable if the spatial dimen-
sions of the island are in the range of few hundred nanometers. For metal
single-electron transistors this is expressed by Cg > Cp, i.e., the partial
capacitance of the island to the gate has to be larger than to the drain elec-
trode [25]. SETs with gain in the respective circuitry have been demonstrated
[255, 256, 257], however only with gain < 3 and working at low temperature
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due to the rather small single-electron charging energy Ec caused by the
large island size. Operation at room temperature requires island sizes in the
range of few nanometers since the np-gap '° has to be more than 3/2 of the
applied bias e AVy given by the voltage swing AVy of the output node. The
island has to be coupled to source and drain electrodes by tunneling barriers
— unavoidable accompanied by electrostatic couplings as and ap to these
lead electrodes —, and at the same time capacitively coupled by ag to a gate
electrode controlling the electrostatic potential of the island. However, the
electrostatic requirement for a useful transistor ag > ap or even ag — 1 are
hardly achievable at that small island size. This was already pointed out by
L.I. Lutwyche and Y. Wada [189] in 1994.

In summary, fulfilling ag — 1 and keeping it even at shortest channel
lengths is the problem of any switch operated by controlling an electrostatic
energy barrier - MOSFETSs made of Silicon, GaAs, plastic or other semicon-
ductor material, single-electron transistors or transistors embedding quantum
dots, single molecules or atoms.

7.7 Requirements due to Variations in Individual
Device Characteristics

Manufacturing components of a circuit, individual samples show always de-
viations in their characteristics between each other. They are due to several
causes, for example:

e geometric manufacturing tolerances,

e variations in doping and impurties,

e aging, and

e temperature variations.

Therefore, also composed devices like logic gates show a certain spread in
their operating parameters and characteristics.

In practice, digital circuits with MOSFETSs are not running at the mini-
mum in voltage swing AVy or supply voltage Vpp as just derived from funda-
mental considerations. The reason is that relying on the exponential Ing(Vas)
characteristics of a MOSFET would require perfect control over the threshold
voltage for turning on and off the MOSFETSs: Small deviations would lead to
large deviations from the designed ’on’ and ’off’ current, which increases the
leakage current and/or slows down the switching. To ensure low leakage cur-
rent and full speed for all logic gates in the whole circuit, an enlarged voltage
swing has to be used in order to reach with certainty the required ’on’ and
"oft’ currents for all transistors in the circuit (see Fig.7.13) [228]. MOSFETs
allow to do this since their Ins(Vas) characteristics are monotonic in Vas.

19 Quantum confinement effect might help here to obtain a large np-gap since these
dominate at small island size over the single-electron charging energy.
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Fig. 7.13. Variations in the device characteristics of an ensemble of MOSFETs:

for instance, (a) due to the spread in the threshold voltage Vétsh), or (b) due to
variations in aa (for example, by variations in the oxide thickness) or by tem-
perature variations. (c) The required ’on’ to ’off’ current ratio is ensured for the
whole ensembles by a larger voltage swing AV~ than required in case of identical
MOSFETs.

What about a SET? As described in Chapter 1, the characteristics of a
single-electron transistor shows for Vg < 2 Ec/e Coulomb blockade oscilla-
tions.

Due to the non-monotonic characteristics of SETs, the voltage swing
has to fit exactly for turning on and off the transistor. There is no tol-
erance built in the Ins(Vas) characteristics of a SET, — an important
disadvantage in comparison with MOSFETs. 20

Up to now, the MOSFET characteristics is dominated by bulk properties
modified by doping. Size effects — like variations in the gate insulator thick-
ness, gate length, channel thickness — are considered as limiting factor for
the fabrication of reliable working highly integrated circuits since they lead
to strong variations in the MOSFET characteristics.

20 Tt has been proposed of using the specific SET characteristics to implement
compact logic gates. However, also this requires perfect control over the design
and background charges. Such designs even propose the use of several gates
coupling to the SET island.
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For SETs, the important parameters — single-electron charging en-
ergy and/or quantization energy determining the np-gap of this tran-
sitor — are controlled by the geometry. More severe, the tunnel cou-
pling between island and leads depends exponentially on the barrier
height and spatial length. Therefore, geometries needs to be far bet-
ter controlled in comparison with MOSFETs.

These requirements are also valid for all new kinds of transistors depending in
their characteristics on geometical sizes and proposed as candidates for VLSI.
For making uniform devices, molecular electronics based on self-assembly is
usually proposed as the solution [258, 259], although not demonstrated.

7.8 SET: Efficiency Factor and Constraint due to Speed
Performance

There is a second reason for running MOSFET transistors with higher volt-
age swing AVy: Although beyond threshold for turning on the MOSFET the
conductance, respectively current increases only linearly with the gate volt-
age before reaching saturation, it speeds up the switching. Not using this
additional increase in conductance, respectively current would mean a loss in
speed performance.

For SETs acting as a switch, the np-gap cannot be smaller than the drain-
source bias: We are restricted to the single-electron tunneling regime. The
current is carried by single electrons passing the island one by one. In conven-
tional MOSFETsSs, the Coulomb blockade effect is not present and therefore
charge carriers are passing the channel almost independently which allows to
increase the conductance by charge accumulation.

How far can we rise with a single-electron transistor the ’on’ to off’ current
ratio Ion /Is? To obtain the ’on’ current I, > CyAVy /7 required for the
switching time 7, a single electron has to pass the island in the time

eT

e
—< =
Te Inn  CyAWy

(7.37)
This requirement defines the strength of the tunnel coupling of the island
to the leads, i.e., it determines the width and height of the tunnel barrier
between island and leads. With switching off the transistor, the electrostatic
energy barrier AF arises for charging the island, not affecting the tunnel cou-
pling to the leads. Heisenberg uncertainty relation comes into play: Although
the electron from source feels the energy barrier AE = AFEg_,1, the island can
be occupied by an electron if the life time for the electron on the island, which
can be estimated by 7., is short enough: AE = hi/7.. To evaluate the ratio
Ion/Ioe, we consider first the transmisson probability ¢(AE) for an electron
passing the island if the occupation would cost the energy AE: In the strong
tunnel coupling regime the corresponding transmission probability depends
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on AE given by a Lorentzian function. 2! Therefore the current from source
to drain [115] becomes

1
Ips . (7.38)
1+ (AE27, /1)’
The ’on’ current is obtained for AE = 0, and should fulfill
Cy AV
Lon > = (7.39)

This fixes the proportionality factor in (7.38) to > Io,. The ’off’ current Iyg
is related to the ’on’ current Ion due to (7.38) with rising the energy barrier
AE by

Lg 1

- = , where AE =¢e- (apn —ay)-AVy . (7.40
Im 14 (0E27./h) (7:40)

Relation (7.40) expresses the following:

A short life time 7, of electrons on the island allows a leak current I,g
between source and drain due to tunneling which depends with AE by
a Lorentzian on Iy,. The ’off” current I ¢ is no longer exponentially
suppressed by AE as it occurs for a pure classical barrier.

With (7.40) and (7.39), the standby power Peax can be estimated to
1+ €227 (aa —ay)\' |
hCy

() () e

Obviously, an increase of AVy does not help here to suppress leakage which
is in contrary possible in the case of an exponential dependence of the 'on’ to
"off” current ratio on AVy leading to (7.33). Restricting Pleax and prescribing

Beax > Iog - AVy =

Cy (a%)*
T

7 for given Cy allows only a certain mazimum AVE® in voltage swing AVy,
e?2-2(aa — 3 3
AVy < AVPe* = M : (L> : (Plea.k)2 ) (7.42)
h Cy

21 The same result is found for a MOSFET transistor of very short channel length or
any other electronic devices with a short energy barrier: Let us consider tunneling
of an electron with incident kinetic energy ¢ = imJv® through a rectangular

barrier of height V, and length £. For a thin and low barrier (1/2miAE/h’-£ <
1 with AE = Vj — €), the transmission probability for the electron becomes
t(AE) = 1/{1 + (AE/h’ - 4£7 /v”)} as can be deduced from treatments found in
textbooks on quantum theory [260]. Setting approximately £/v = 7¢, the current
through the barrier is described by the Lorentzian given with (7.38).
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which goes down to zero for short switching time, respectively delay time 7
and large node capacitances Cy. The largest value for AV{"®* are possible for
ap — 1. For ap < ay, the logic 'NOT’ gate does not work at all.

Relation (7.40) gives directly the efficiency factor for a single-electron
transistor in the strong tunnel coupling regime,

Ion €227 - (ap — ay) 2
EfficiencyFactor 8 — < 1+ . (7.43)
Log hCy

Thus, the efficiency factor of a SET is limited by the ratio of the required
delay time 7 in switching the bit status and the node capacitance Cy. Large
node capacitances allow only a large delay time 7. Otherwise the leakage
current I, and therefore the standy-by power Peax is increased. In Fig.7.14

the efficiency factor (7.43) is plotted versus the node capacitance Cy for
different delay times 7. To reach a short delay time 7 for a certain efficiency

EffectiveLength Cy/gq [m]

4

10 10° 10 10°

lon/ loff

Efficiency Factor

Node Capacitance Cy [F]

Fig. 7.14. For a transistor based on electrostatically controlling a tunnel barrier
— like in a strong tunnel-coupled single-electron transistor —, the efficiency factor
Ion/Ios is limited by the node capacitance Cy and the required short delay time
7 for switching the bit status. For aa = 1, best performance is obtained. The
efficiency factor becomes worse with the factor aa — ay < 1 as indicated by the
respective arrow. The case aa — ay = 1/4 is shown. For aa < ay, the efficiency
factor becomes unity for any Cy value: The logic gate does not operate properly
since the output swing AVy is zero.
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factor, the node capacitance Cy has to be restricted to 22

Cy < é_ 27’-(‘(1A—ozy) ‘
h  y/EfficiencyFactor

For 7 = 0.1 ns 23, ax = 1 and an efficiency factor of 108 required for VLSI,
the node capacitance has to be limited to Cy < 4.8-107'® F. For such small
capacitances, the single-electron charging energy Ec = €?/2Cy already ex-
ceeds the thermal energy kg7 at room temperature: The bit is represented
only by few electrons making the representation fragile. Relaxing the effi-
ciency factor to 10 (which does not allow high integration), the maximum
node capacitance is limited to Cy < 4.8-10~'7 F, which corresponds to a
node limited by the effective length Cy/eo = 5 pm. This effective length
lese estimates the possible mazimum length L of a metal wire via its self-
capacitance C' = 2mepe L/ In(L/Ryg) (see (C.11)), where Ry denotes the wire
radius: L < leg /€ for a L-to-Ry ratio of about 500. Note, the effective length
lor becomes worse if apy — ay < 1. For ap — ay = 1/4, ie., ap = 1/4,
ag = 1/4, ag = 1/2 which means gain < 2 in an inverter arrangement, this
effective length is only Cy/ep = 1.3 pm, in a dielectric like SiO2 with € = 4
we have Cy/(ege) = 0.3 pm. From this estimate, it would mean that for an
efficiency factor of 106 even a wire of 0.3 um length and radius of few atoms
cannot be driven without exceeding the prescribed delay time 7 = 0.1 ns. 24

(7.44)

7.9 Conclusion: Replacing MOSFETSs in Logic Gates by
SETs Yields No Advantage at All

As we know, highly integrated digital circuits suffer the problem of over-
all power dissipation. Controlling electrostatically an energy barrier between
source and drain is the best known operation mode of a solid state device al-
lowing minimum in the voltage swing between ’on’ and ’off’ state. Moreover,
it allows for complementary working switches. The constraints to minimize
the voltage swing AVy for representing the two bit states are discussed for the
circuit of a logic 'NOT’ gate in the previous Sections. They are summarized
in Fig.7.15 for three different electrostatics aa = 1, aa — ay = 0.25, and
ap —ay = 0.1:

22 This result reminds on estimating the possible 7 by a RC constant with R > h/e?
which was given in Section 1.7 as the requirement on the tunnel barrier resistance
of a metal SET.

For comparison, sub-0.1 pgm MOSFETS allow switching times of few 10 ps demon-
strated in ring oscillator arrangements (for example, realized in 0.07um CMOS
with Ion/Iom ~ 10° [213]).

Note, statistics has to be used to estimate the error probability that the node
capacitor is not recharged at a certain time. This aggravates further the require-
ment on a short delay time 7 for a given clock period T' by which the whole
circuit should run with high certainty. For typically 7 =0.01 -T to7 =0.1-T,
the clock frequency is limited to 0.1 to 1 GHz.

23

24
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e At small node capacitance values Cy, the bit representation is affected
by thermal fluctuations. To suppress errors, a certain minimum AEP" =
%CyAV@ = (AN e)?/2Cy of electrostatic energy has to be stored on the
node capacitor. The required minimum voltage swing AV+ is plotted versus
the node capacitance Cy for the error probability P = 107% at room
temperature. The required voltage swing increases with decreasing Cy.

e To allow bit signal restoration, a minimum in supply voltage is required
— strongly affected by the electrostatics of the switch. Supply voltages of
several kgT'/e = 26 mV have to be applied, independently of the output
node capacitance Cly.

e More severe, the requirement due to leak by thermal activation of elec-
trons over a pure classical barrier limits the reduction of AVy especially
for large node capacitance values Cy: To suppress this standby power dis-
sipation while allowing a high speed performance requires the optimum in
the electrostatics of the switch. Using the estimate (7.33), the minimum
in voltage swing AV is plotted in Fig.7.15 for rather moderate values
of Peax = 0.1 nW, 7 = 0.1 ns. 2> The optimum of electrostatics for the
switches is ap = 1, respectively ag = 1.

e Single-electron transistors — or in general transistors with thin and low
barriers — are limited in their efficiency factor & Ion/Iog because — due to
quantum mechanical tunneling — a relatively large current I,g is related to
it in the ’off” state. A large voltage swing increases Ion /Iog but requires an
increase in I,y for a given 7. This actually limits the possible voltage swing
for large C'y, which is not the case for an exponential dependence assumed
for our generic switch. In Fig. 7.15 the maximum value for the voltage swing
is indicated as a function of the node capacitance Cy, obtained from (7.42)
for a standy power of Peax = 0.1 nW and a delay time 7 of 0.1 ns. 26

We can summarize: The minimum voltage swing AV{" required due to fun-
damental constraints depicted in Fig.7.15 are for sufficient high ax in the
range of several hundreds of milliVolts at room temperature. The np-gap
in the channel region of the transistor has to be at least 3/2 of the value
eAVIRin To get, a large np-gap for a single-electron transistor, the island has
to be small which is of course possible: In the ultimate limit, such an island
might be represented by an impurity state in a dielectric. However, it makes
it almost impossible in a simple arrangement of a single-electron-transistor
to fulfill the electrostatic requirements and keeping the tunnel coupling of
the island to the leads. To come around the electrostatic constraint, several
islands can be arranged in series forming the channel between source and
drain [189]. To obtain a higher drive current Ion, several of such islands can
be arranged in parallel. Such an array of islands would not lead to an improve
in performance when comparing with a conventional FET, — in contrary, it

25 See footnote 24.
26 See footnote 24.
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Fig. 7.15. (Left page) Constraints in the voltage swing AVy of a logic 'NOT gate
built from complementary working switches versus the output node capacitance
Cy: Lower limit due to thermal fluctuations in the electron number for small Cy
(P = 107", T = 300 K), lower limit due to leakage over the classical barrier for
large Cy and short delay time (Peak = 0.1 nW, 7 = 0.1 ns) and a upper limit due
leakage by tunneling (Peak = 0.1 n'W, 7 = 0.1 ns). The limits are strongly affected
by the electrostatics of the switch: (a) for aa = 1, (b) for aa — ay = 0.25, (c¢) for
aa —ay = 0.1. (adopted from [261])

might show hysteretic behaviour in the current Ing with changing the voltage
on the gate electrode. 27

As pointed out, a monotonic Ing(Vgs) characteristics of a conventional
FET allows to compensate for variations in the characteristics of FETs by
simply enlarging the voltage swing. This is not possible for transistors with
non-monotonic switching behaviour — as the single-electron transistor. The
lack of a monotonic Ing(Vas) characteristic is a severe disadvantage of single-
electron transistors. For using an ensemble of them in electrical circuits, more
severe control over the geometrical sizes and background charges is required
which is hardly to achieve with present manufacturing technology. ?® Finding
a solution here, however, does not annul the electrostatic design requirements.

Based on this analysis, we can even state that single-electron transistors
are not smaller in spatial size than ultimate FETs:

e The channel length of electrostatically controlled transistors are deter-
mined by the same electrostatic contraints. The choice of geometry and
materials’ dielectric properties decides here about the performance and
size. 29

e The properties of the channel allow a more or less high ’on’-current. How-
ever, the channel width is adjustable in the conventional concept of field-
effect transistors. It can be adopted to the drive-current requirements. 30
Therefore, if small ’on’ current are acceptable, the channel width can be
made small — if perfect control over size parameter is possible, even less
than the channel length [263]. Although the size is now comparable, elec-

tron transport is conceptionally not restricted to single-electron transport.
*7 Such devices have been demonstrated as memory devices [262].
8 Koroktov [190] gives limits for the variations in the SET parameters possible
under certain conditions.
A built-in energy profile along the channel might be an addition design option
for determing the position of the maximum height of the barrier. This might
be acheived by varying the material composition along the channel, by inducing
strain etc..
30 Dye to the lower hole mobility in pMOSFETSs than the electron mobility in
nMOSFETS, the width w of pMOSFETS is usually three times larger than the
width of nMOSFETs.

29



240 Fundamental Physical Contraints on SET for VLSI

Therefore, conceptionally the single-electron transistor does not offer any
advantage in digital circuits in comparison to a conventional field-effect tran-
sistor. 3!

7.10 Perspective

Using silicon technology as the base, the concept of a conventional FET will
be pushed to its limits, which is definitely given when quantum mechanical
tunneling causes significant leakage in the device. 32 Since the ’on’ to ’off’
current ratio will suffer with shrinking, the device design will finally diverge
in detail driven by the trade-off between ultimate speed and low power con-
sumption. The different designs might even be realized on the same chip
to optimize the overall performance. As in the past additional materials and
deposition techniques will be introduced pushing the physical concept of elec-
trostatically controlling a classical barrier further. Conventional doping will
be replaced by work function engineering. Devices based on molecules which
mimick properties known from solid-state devices like pn-junctions or electric
field effect are competing with their counterparts made in solid state semi-
conductors. They broaden the options, however they are not removing the
fundamental design constraints derived above.

To improve in the performance of digital circuits using complementary
working switches, all relations derived in the previous Sections as limitations
on the switch suggest to search for a switch with ay > 1. Is such a switch
unphysical? An ensemble of ion channels in the membrane of neurons (nerve
cells) show an exponential current dependence on the voltage drop AV over
the cell membrane described by

(7.45)

(aeAV)
I x exp ,

ksT

where a is in the range between six and eight. This is possible due to a
conformation change of the ion channel opening or closing the pore for K* or
Na' ions with AV. In such a channel molecule several elementary charges
are linked together by the molecule backbone which feel the voltage AV
change as a unit. Therefore such a conformation change is stable against

3! The Coulomb blockade effect has been observed in MOSFETSs of small size due
to disorder potentials caused by the dopants in the channel (for example [264]).
However, doping of the MOSFET channel is conceptionally not necessary, i.e.,
ultimate FETs do not necessarily show Coulomb blockade effects.

32 Tunneling finally occurs through the gate insulator or directly between source
and drain even in the 'off’-state of the device. The latter is dominated by band-
to-band tunneling: In a nMOSFET in the ’off’ state under drain-source bias,
electrons can tunnel from the valence band in the channel to the conduction
band of drain. In terms of the generic switch, the np-gap has to be increased
suppressing this effect.
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thermal fluctuations even at small membrane voltages. The current path is
'mechanically’ opened and closed.

Can the concept of digital circuits based on complementary working
switches be pushed further by using ’electromechanical’ switches based on
conformation changes of molecules? At first glance, certain conceptional op-
tions are attractive:

e Such a device concept might allow to operate the circuitry with a low
voltage swing if the switch state is stabilized by electrical charges feeling
as a unit the voltage swing in the input node.

e The electrostatic constraint described above for a pure electrostatic switch
might be removed, i.e., the gate electrode need not to be that close to the
device channel: The conformation change is induced by an electric field
change on one site, and as a consequenece the channel is closed or opened
at a different site of the molecule.

e Although the transport in ’on’ state of such a device might occur by single-
electron transport, a better ’on’ to 'off’ current ratio is achievable than in
conventional SETs with fixed island and tunnel barrier parameters: The
barrier for electrons between source and drain in the ’off’ state can be
made long by opening physically a spatial gap between source and drain,
leading to a barrier in the ’off’ state which is therefore less transparent for
tunneling.

Whether such device concepts are feasible requires a further analysis, al-
though I do not except here a breakthrough for digital circuits: The com-
plexity of integrated cicruit is obtained not only by the number of transistors
on a chip but by the degree of freedom in wiring these to a functional net-
work. Actually, this wiring could not be shrinked in its spatial dimensions
in the same way as the transistors. More and more wiring layers have been
added. This gives further pressure on having a high ’on’ to 'off’ current ra-
tio, since the node capacitance connecting the logic gates are not shrinking
appropriately.

For many decades now the search has been going on for other concepts
of doing computation solving certain tasks. The result can be summarized
in the statement that the time evolution of any physical system can be in-
terpreted as a system doing a sort of computation. Setting the boundary
conditions and/or the initial state of the system defines the input, the final
state after the time evolution the output. The problem is, how to make it
useful, adoptable to purpose, robust and reliable. Such proposals abandon
the idea of metal wiring logic gates, replacing the logic gates by elementary
cells which physically interact in a certain way with its neighbour cells and
sometimes even only for a definite period of time. Such arrangements can
behave still as a classical system or even as a quantum mechanical system.
Certain proposals use elements based on single-electron charging effects:
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e An example for an elementary cell is an arrangement of islands which are
tunnel coupled. Such cells can be charge polarized due to single-electron re-
arrangements between the islands. The cells are electrostatically interacting
with neigbouring cells. This concept is known under the name ’quantum-
dot cellular automata’ (see review [265]). Several of such cells are arranged
to mimick logical gates.

e Another proposal uses two tunnel-coupled quantum dots for defining a two-
level system which represent a qubits — the elementary unit for a quantum
computer (see [266] and references in there).

e Combining single-electron charging effects with superconductor properties
allowing for a macroscopic phase coherence is another direction of realising
a qubit [267, 268].

Presenting and evaluating these proposals is beyond the focus of this work
which concentrates on the electrical transport through a quantum dot em-
bedded between electrodes.

Besides this, single-electron charging effects are also discussed for the
use in memory devices, combined with conventional MOSFETs [2]. These
proposals are in the line of conventional floating-gate devices and devices
where electrons are trapped by implanted ions in the gate dielectrics affecting
the conductance of the underlying MOSFET channel.



8. Outlook

In this treatise the electrical transport through quantum dot systems is dis-
cussed. The theoretical description is supported by experimental results at
each stage. Step-by-step the complexity is rised. In a retrospective glance
at the treated topic, we can state: By simple energy considerations for re-
arranging single electrons between the quantum dot and its leads, the basic
characteristics of such an arrangement are derived. The picture of sequential
tunneling using rate equations covers most of the features observed in exper-
iment. However, especially at low temperature the picture of single-electron
transport breaks down. Correlated tunneling has to be taken into account
leading under certain conditions even to the conductance which is equal to
a spin-degenerate one-dimensional channel. Here we are at the front of the
actual basic reasearch.

At present, the following aspects require further clarification and are
therefore under experimental investigations in our and other laboratories:

e What kind of excitations are visible in the regions of single-electron trans-
port? Especially small quantum dots in a lateral arrangement show energet-
ically low-lying excitations which are below those expected from the single-
particle spectrum. Quasi-selection rules — predicted by theory — have to be
experimentally verified. Photoexcitation by microwave radiation might be
a tool to demonstrate that excitations in the center-of-mass motion are
those seen in certain transport experiments [269].

e To describe transport through molecules, additional feature have to be
included, — for instance, conformation changes of the molecule. It is still an
experimental challenge electrically contacting a molecule and offering the
parameters which can be in-situ tuned to explore the system. What about
model systems mimicking the respective properties?

e Correlated electron transport has to be further investigated. Testing the
quantum mechanical phase coherence by dual-path interference experi-
ments are recently presented for the Kondo state [178, 270], although not
understood.

e By using a third reservoir tunnel-coupled to the quantum dot, the spectral
function of the quantum dot system may directly be investigated with in-
situ tuning the parameters. Up to now, only quantum dot systems with
asymmetric tunnel bariers have been investigated demonstrating that a
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Kondo resonance is pinned to the Fermi level of the stronger tunnel-coupled
lead [271].

e Recently we found [184] a very regular pattern of enhanced and suppressed
conductance in the Coulomb blockade regions of large quantum dots (en-
closing about 40 electrons) with a magnetic field applied perpendicular to
the plane of the 2D quantum dot system. The regions of enhanced conduc-
tance show the basic features of Kondo physics. A well-established model
[125] has been used indeed explaining the behaviour. Nevertheless, the va-
lidity of the model has still to be confirmed. Theoretical investigations
by C.Tejedor and coworkers hint that correlations between the electrons
in the quantum dot seem to play an important role weighing the tunnel
coupling.

e Recently, we predicted [272] that two electrostatically coupled quantum
dots with separate leads map under certain conditions onto the Anderson
impurity model. Such a system represents a spinless realization of the An-
derson impurity model: Due to the electrostatic interaction the quantum
dot systems become conductive. Recent experimental results [94] seems
to confirm the occurrence of a Kondo state. This new realization of the
Anderson impurity model would offer more tunable parameters to check
theoretical predictions. Especially in a lateral arrangement, in addition the
Ahonov-Bohm phase can be used as a tuning parameter. The breakdown
of the Kondo state can be investigated by introducting a tunnel coupling
between reservoirs.

e An open question is still how to describe the quantum dot in the transition
from weakly to strongly tunnel coupled to the leads. The energy level
defined for the isolated quantum dot renormalize. Experimentally, strange
features have been observed in the regime where the conductance exceeds
€?/h. Their origin has still to be clarified. Some of the features remind on
Coulomb blockade regions inversed in their conductance. This has been
related to Fano-like resonances [273].

There is a rapid progress in understanding and in experimental use of
these quantum dot systems. Especially the controlling of their properties will
allow to narrow further the gap between what can be calculated and what can
be realized experimentally. Quantitative comparisons will become accessible.



A. Notation and List of Used Symbols

Since the reference for applying voltages is very important for certain charac-
teristics, the reference electrode is always explicitely indicated by the respec-
tive index. Indices in italic style are variables, indices in roman style denote
named electrodes or are used to name the variable itself. Physical units are
printed in roman style.

2DES Two-Dimensional Electron System.

A Index (in roman style) denoting a specific electrode;
input node of a logic gate.

aRr Bohr radius.

ah Effective Bohr radius.

a;(r) Dimensionless electrostatic potential profile of elec-

as, ap, aGg, ay, QA

trode 1.
Fraction of image charge induced on the respective
electrode indicated by the index.

B Magnetic field.

C Index (in roman style) denoting the collector.

CB Coulomb Blockade.

CBO Coulomb-Blockade Oscillations.

CIM Constant-Interaction Model.

const A constant factor/additive.

Cy Junction capacitance.

Ci; Capacitance coefficient between conductor ¢ and j.
C; Total capacitance of conductor .

CZ-(’OEO) Self-capacitance of conductor 3.

Cg, Cp, Cs, Partial capacitances of a metal island with the res-
Cg1, Cao pective electrode denoted by the index.

Cx Total capacitance (sum of all partial capacitances).
Cy Capacitance of the output node Y of a logic gate.
d Distance.

D Index (in roman style) denoting the drain electrode.
D Diameter.

D Dielectric field.

Delta function.
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Epot(N)
AELS),
Etot

AEtot

E¢

AEp_1, AEs 1,
AE(D,S)—>I; AEA 1
AE; p AFrs,
AEI—>(D,S); AE; A
AFg QD

AEGDp 0
AEq, AEg

AE,q4q
AFexc
AV

AEmin

Eactive

€i, Ef

EF

o, &, e

EC, €E
£§
Ae
n

F

fFD

FIB

FQHE

fo, fa, faq

Elementary charge, charge quantum.

Electron charge.

Electric field.

Index (in roman style) denoting the emitter.

Energy.

Difference in energy.

Electrostatic energy stored in a conductor arrangement.
Potential Energy of NV electrons.

Potential Energy of electron s.

Total energy.

Difference in total energy.

Single-electron charging energy e?/2Cs.
Electrostatic energy barrier for charging a metal island
by a single electron from source/drain/electrode A.
Electrostatic energy barrier for discharging a metal
island by a single electron to source/drain/electrode A.
Energy barrier for charging a single electron from
emitter to the quantum dot.

Energy barrier for discharging a single electron from
the quantum dot to the collector.

Shift of electrostatic energy due to charge/gate
potentials.

Addition spectrum.

Excitation spectrum.

Electrostatic energy change on node capacitor Y.
Lower limit for AFEvy .

Electrostatic energy dissipation with switching the
output Y of a logic gate.

Dielectric constant of vacuum.

Relative dielectric constant.

Dielectric tensor depending on r.

Single-electron energy.

Initial /final single-electron energy.

Fermi level.

Fermi levels of source, drain and island.
Single-electron energy at collector/emitter.
Conduction band minimum.

Single-electron excitation energy.

Ideality factor of an electrostatic switch.

Force.

Fermi-Dirac function.

Focused Ion Beam.

Fractional Quantum Hall Effect.

"Remaining fraction’ describing the charging and
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discharging energy barriers.

"Remaining fraction’ to source/drain/electrode A.
’Remaining fraction’ accounting for ’offset charges’.
Electrostatic potential at r.

Electrostatic potential at  due to pion(T).
Electrostatic potential at r due to pe (7).

Total electrostatic potential at r in presence of N
electrons.

Electrostatic potential at r due to the gate electrode
with electrostatic potentials V;.

External confining potential.

Effective Land factor.

Index (in roman style) denoting a gate electrode.
Green’s function for a certain electrostatic arrange-
ment.

Gain factor.

Life-time broadening on an energy level.

r® r© r6) r®) Tunneling rates.

Iv(rel), [ (exc)
h

h

th

A

?

I

Ips

Icg
Alps
Iorn IOH
int(z)

MBE

Relaxation and excitation rates.

Planck constant.

h=h/2n.

Quantization energy of a harmonic oscillator.
Hamilton operator.

Index.

Index.

Index (in roman style) denoting a (metal) island.
Drain-source current.

Collector-emitter current.

Step in drain-source current.

On’/’off’ current through switch.

Integer value of variable z.

Integer Quantum Hall Effect.

Index.

Boltzmann constant.

Absolute value of wavevector, or index.

Length.

Oscillator length.

Screening length.

deBroglie wavelength.

deBroglie wavelength at Fermi energy, Fermi wave-
length.

Quantum number index

Number of electrodes in a conductor arrangement.
Molecular Beam Epitaxy.
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Me Free electron mass.

m; Effective mass of a conduction band electron.

mod(z) mod(z) = z—int(z).

UB Bohr magneton.

He Electron mobility in a 2DES.

puh Chemical potential.

peteh Electrochemical potential

uf-h Chemical potential of conductor 3.

elch Electrochemical potential of conductor i.

pgleh pglch Electrochemical potential of respective electrode de-
noted by the index.

pgich = max{ug®, ufich}  electrochemical potential of
emitter.

pgeh = min{pg", ufih} electrochemical potential of
collector.

w(N) difference in the groundstate energies between the N-
and the (N — 1)-electron system in the quantum dot.

n Electron number n € {---N —1,N,N +1---}.

N Total number of electrons on an island/ quantum dot.

Ny Total number of electrons on an electrical uncharged
island.

AN Number of additional electrons on an island/ quan-
tum dot.

g Electron concentration in bulk.

Ng Sheet electron concentration of a 2DES.

Ang Change in sheet electron concentration of a 2DES.

v Landau level filling factor.

AN Additional number of electrons on an previously
electrically uncharged island:

ANg due to changes in the electrostatic potentials {V;}.

ANg due to charge in the surrounding of the island,

ANgq due to both,

AN due to contact voltages,

ANéS), ANéD), ANéA) "Offset number’ of electrons on island by electron
exchange with source/drain/electrode A.

N§, N Total number of electrons on node electrode Y for
logic ’1’ and logic *0’.

Ng, N&, N§, Critical electron number on node Y for bit error
in respective logic state.

ANE — N} — N

AN} = N{ - N.

P Probability for a certain state.

Piotal Total power dissipation of a digital circuit.

Pieax Power dissipation of logic gate due to leakage.
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Bit error probability.

Kinetic momentum of electron s.

Kinetic momentum operator.

Kinetic momentum operator acting on electron s.
Electric charge of metal island, or point charge.
Image charge induced on electrode ¢ by gq.

Image charge induced on respective electrode denoted
by the index.

Quantum Dot.

Total charge on conductor i.

Total ’offset charge’ of island.

Change of charge on a capacitor.

Change of charge on output node Y of a logic gate.
Position vector.

Position vector for electron s, s'.

Position operator.

Position operator acting on electron s, s'.
Volume element at position 7.

Radius.

Junction tunnel resistance.

Tunnel resistance.

Rmax = max{RY R

Fixed charge distribution due to ions or trapped
electrons.

Discrete charge distribution of electrons.

Index numbering electrons.

Scaling factor.

Index (in roman) denoting the source electrode.
Surface of all conductors of an arrangement,.
Surface of conductor 4.

Directed surface element at position r at conductor 3.
Single-Electron Transistor.

’On’/’off’ conductance of a switch.

Time.

Temperature.

Kondo temperature.

Time period. Delay time.

Life time in Heisenberg uncertainty relation.
Mean time for an electron passing the SET.

Life time of the charge state with IV electrons.
Volume.

Confining Potential.

Electrostatic potential of electrode 3.
Electrostatic potential of source/drain/electrode A.
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Ve Intrinsic contact voltage (Volta voltage).

VE Instrinsic contact voltage between metal j and 3.

VS Intrinsic contact voltage between metal island and
electrode i.

Vgs, V((fs, VGCI, Intrinsic contact voltage between respective metals

Vi, VS denoted by the indices.

Vbs Drain-source voltage.

V]gtsh) Threshold in drain-source voltage.

AVps Step width/ difference in drain-source voltage.

Vas Gate-source voltage.

Vétsh) Threshold in gate-source voltage.

AVas Difference in gate-source voltage Vgas.

AV Difference in electrostatic potential.

VapEs,s Voltage applied between 2DES and SET source.

Vside,s Voltage applied between sidegate and SET source.

VBs Backgate-source voltage.

AVgg Change in backgate-source voltage.

Vég) (Vps), Vélsj) (Vbs) Borderline in (Vgs, Vbg) plane for opening a single-
electron transport channel on source/drain side.

AVy Voltage swing on output node Y of logic gate.

AVmin - Ay max Lower /upper limit in AVx.

Vbp Supply voltage of a logic gate.

Vain Lower limit for Vpp.

T Spatial coordinate.

Z; Cartesian coordinate (i € {1,2,3}).

T, Y, 2 Cartesian coordinates.

Y Index (in roman style) denoting the output node of

a logic gate.

Z(w) Electric impedance.

Zs(w), Zp(w), Zg(w) Electric impedance of terminal denoted by the index.
s Vi Nabla operator acting on r, r'.

\Z
A, Laplace operator acting on 7.



B. Total Capacitance of the Metal Island:
Increase or Decrease due to Shape
Modifications of Island or Electrodes

Let us consider a metal island of a certain shape surrounded by electrodes as
sketched in Fig. B.1a. The total capacitance Cox is due to (2.17)

C()Z] = {606(7‘) . Vl,- OL()(’I")} dSO . (B].)

Thus, Cyy is determined by ag(r) which describes the electrostatic potential
profile of this arrangement under the boundary conditions ag(r) = 1 on the
island and ap(r) = 0 on the metal parts. With modifying the surrounding
electrodes so that they come closer to the metal island in certain regions (see
Fig. B.1b), the electrostatic profile is changed to a((]b) (r). We assume €(r) =
€ (1), i.e., the local properties of the dielectric between the conductors is
not affected.

From «g(r) and aéb) (r) fulfilling (2.7), and from a generalization of
Green’s theorem [274] we derive

0 = /V(b){a(()b) (1) - Vr(€0€(r) Vrao(r))
—ag(r) - V, (GOG(T)V-,-O{(()I)) (7‘)) } d3r
Green ﬁ L eoelr) {a0(r) Vol (1) — o) (1) Vrao(r) } dS
= jl{ €o€(T) {ao(r)Vraéb) (r) — a(()b) (T')Vrao(T)} ds
So

The last transformation is obtained by separating the integral over the is-
land’s surface Sy from the integral over the other electrodes’ surfaces. Since
ag(r) = a(()b)(r) =1ifr € Sp, ag(r) =0if r € S — Sy, and a(()b)(r) =0if
r e S® — 8y, it leads to

0= ]i coe(r) { Vel () — Voao(r) } dS

0

- /AS(b)eoe(T) Lo (r) Vol (r)dS (B.2)
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(@) Original System: (d) Reference:
Total Capacitance Cys Spherical Capacitor

(b)

Cos ~ Cos

Co > Cos

(c) Modified System:
(€) Special System:
2S°

(0 \
Cos ~ Coz

dominating regions

Fig. B.1. (a) The original metal island surrounded by metal electrodes. Chang-
ing the shape of the surrounding electrodes (b) or of the island (c) by reducing
the dielectric space V between island and surrounding electrodes, the total island
capacitance has increased. (d) The capacitance of a spherical capacitor, i.e., of a
sphere with radius Ry in the center of a hollow sphere with radius R; can be used to
give limits for the total capacitance of the metal island in the original arrangement:
A lower limit is obtained by the capacitance of a metal sphere entirely embedded in
the island and the concentric hollow sphere enclosing the entire dielectric medium.
An upper limit is obtained by the capacitance of a sphere enclosing the island and
the concentric hollow sphere just touching the surround electrodes. (e) Regions of
small distances between island and surround electrodes might dominate the total
capacitance of the island.
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where AS(®) describes the surface area of the surrounding electrodes which
was moved closer to the island, i.e., AS® ¢ S and AS® € V. Since there
ag(r) > 0 and Vra(()b) (r)dS < 0, the last integral takes a negative value.
The first integral defines the difference in the total capacitance of the metal
island between arrangement (a) and (b). Therefore, the total capacitance has
increased from arrangement (a) to arrangement (b):

C& > Cos . (B.3)

The relation (B.3) can be stated in another way: For a given island shape,
the total capacitance of this island is smallest if the surrounding metal elec-
trodes are shifted to infinite distance from the island. This self-capacitance
Céc’;) of the metal island gives a lower limit to the total capacitance of the
island of certain shape:

Cos > C) = ¢ {eoe(r) - Voal™ (1)} dSp > 0. (B.4)

Instead of changing the surrounding electrodes, the metal island shape can
be changed for a fixed surrounding electrode arrangement (compare Fig. B.1a
and Fig. B.1c): The total capacitance increases with reducing the distance
between the island electrode and the surrounding electrodes. The proof chain
follows what was previously discussed between arrangement (a) and (b). But
instead of integrating V,aq(r) at the island surface Sy which is modified, the
capacitance is determined by integrating V,aq(r) at the surface S — Sy of
all other electrodes which are not modified between (a) and (c):

Cos = § {eoelr) - Vra(r)} dSo =3 Co = 3 o

70 70

= JZ#;) — ?{Sj {eo€(r) - Ve ao(r)} dS;

- ]{ {coe(r) - Vi ao(r)} dS . (B.5)
S—So

Taking this, we obtain in comparing arrangement (a) with (c):
C > Cos. (B.6)

Hence we conclude with the rule: If the volume of the dielectric filling is re-
duced by a moderate shape modification of the island or of the electrodes
(see Fig.B.1b and c), the total capacitance increases. In contrary, if the vol-
ume is enlarged without partially decreasing the distance between island and
electrodes the total capacitance decreases.






C. Estimating Upper and Lower Limits for the
Total Capacitance of a Metal Island

To estimate the single-electron charging energy E¢ of the metal island, it is
important to know the total capacitance Cyx of an island in its surrounding.
It is shown in Appendix B that by reducing partially the distance between the
surfaces of the island electrode and the surrounding electrodes — either by re-
shaping the island (see Fig. B.1b) or by reshaping the surrounding electrodes
(see Fig.B.1c), the total capacitance of the island increases. This property
allows us to give upper and lower limits for the total capacitance of a metal
island in its surrounding.

For a certain island shape, the total capacitance of this island is smallest
if the surrounding metal electrodes are shifted to infinite distance from the
island. As derived with (B.4), this self-capacitance C(()OEO) of the metal island
gives a lower limit to the total capacitance of the island of certain shape:

Cox > L = 7{ {coe(r) - V, al™) ()} dSo > 0, (1)
So

where a(()oo) (r) is the electrostatic potential profile for the island with all elec-

trodes pushed into infinite distance. To emphasize, with the self-capacitance
of the island, the single-electron charging energy Ec is overestimated. To get
the self-capacitance value from (C.1), still a(()oo) (r) has to be known, which
depends on the island shape.

A better approach to give estimates for the total or the self-capacitance
is to compare the actual arrangement with simpler arrangements from which
the capacitances are known.

Spherical Capacitor as a Reference. For a spheric island of radius Ry
located in the center of a hollow sphere of radius R; which is filled with a
homogeneous isotropic dielectric medium, the electrostatic potential profile
is described in spheric coordinates by

1 1\7' /11
=(=—-= === C.2
)= (z-7) (-%) (©2)
fulfilling (2.7) for this arrangement. This leads to the total capacitance of the
sphere
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C@ = % {606 . V.,. CM@(’I")} dS()
So

27w 9
= / (606 e - Ea@(r)) - (=r’sinfdfd¢ - e,)
00 r=Ro
Ry - Ry
=4 . .
TEQE R - R (C.3)
For Ry — 00, the self-capacitance of the metal sphere with radius Ry em-
bedded in a homogeneous isotropic medium with the dielectric constant e is
obtained:
C’(Qoo) (Ro,€) = 4mege - Ry . (C.4)

From that, limits for the total capacitance can be estimated (see Fig. B.1d):
A lower limit is obtained by the capacitance of a metal sphere (Rg = R{"™") en-
tirely embedded in the island and the concentric hollow sphere (R; = R"®*)
enclosing the entire dielectric medium:

Cox > Co (Rg™, R"™, minle(r);r € V]) . (C.5)

An upper limit is obtained by the capacitance of a sphere (Ryg = R§'®*) en-
closing the island and the concentric hollow sphere (R; = R™") just touching
the surrounding electrodes:

Cox < Co (Ry™, R™™, max[e(r);r € V]) . (C.6)

Cylindrical Capacitor as a Reference. For an electrode arrangement
which is elongated in one direction, a better estimate might be done by using
the arrangement of a tube or wire of radius Ry and length L, surrounded
coaxially by a second tube of radius R;. It possesses the capacitance of a
cylindric capacitor,

—1
C(]Z](L, R(), Rl) = 271'606L - [In %] . (C?)
0

Ellipsoidal Capacitor as a Reference. For estimating the self-capacitance,
sometimes the shape of a metal island is better described by an ellipsoid
than by a sphere. The lower limit for the self-capacitance of the island is
obtained by completely enclosing an ellipsoid into the island, an upper limit
by completely enclosing the island into an ellipsoid (see Fig.C.1). The self-
capacitance of an ellipsoid with the half-axis a, b and ¢ is given by an elliptic
integral [275]

/°° d\
o V(@ +X)® +N)(c2+ )

(C.8)

C'((;o) (a,b,c) = 8mege - l
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(b)

Fig. C.1. The self-capacitance of a metal island of arbirary shape (here L-shaped)
is estimated by using the self-capacitance of an ellipsoid with the half axis a, b and
c. (a) The metal island is fully enclosed in an ellipsoid for an upper limit, (b) the
ellipsoid is fully incorporated in the metal island for a lower limit.

In case of two identical half-axes (a = b), the integral is analytically solved
[275, 276] leading to !

dmege/a? — ¢ ,ifa=b>c,
(0) arctany/(a/c)? — 1
59 (a,0) = (C9)

dregev/c? — a® ifa=b<ec.

artanhy/1 — (a/c)? ’

It includes in the limit of @ > ¢ = 0 the self-capacitance of a flat disk with
radius a = Ry,

C(@OO) (Ro) = 8¢p€ - Ro , (C.10)

and in the limit ¢ > a the self-capacitance of a metal wire or tube of length
2¢ = L and radius a = Ry,

—1
C) (L) = 2reqel - [m i] . (C.11)
Ry

! Area tangens hyperbolicus: artanh(z) = 1 In {(1 + z)/(1 —z)}.
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Plate Capacitor as a Reference. As already pointed out, if electrodes
are very close to the island in certain surface regions, the gradient V,ao(r)
in front of the electrodes becomes steep. These surface areas might be the
dominant contributions to the total capacitance if they are large enough
compared to the other surface regions. An example is given in Fig. B.le: The
total capacitance is dominated by the capacitance contributions from the
marked overlap regions. Under such conditions, the total capacitance might
be estimated by assuming plate capacitor arrangements with the respective
distance d*) and area A®) for these regions:

Cos ~ Cé(ge“ap) - Zeoe(’“) AR gk (C.12)
k

Metal single-electron transistors like the one presented in Fig.1.7 are domi-
nated in their total capacitance by the tunnel junction areas due to the thin
oxide of few nanometers. If such overlap regions do not dominate, sometimes
the total capacitance of such an arrangement has been expressed by

Cos = C\) + Cigyertap) (C.13)

This formula is not strictly valid as can be seen from the previous discussion,
especially if both capacitance terms are of same order.
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