
JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 6, JUNE 2015 559

Modeling of Drain Current Mismatch in Organic
Thin-Film Transistors

Deyu Tu, Kazuo Takimiya, Ute Zschieschang, Hagen Klauk, and Robert Forchheimer

Abstract—In this paper, we present a consistent model to ana-
lyze the drain current mismatch of organic thin-film transistors.
The model takes charge fluctuations and edge effects into account,
to predict the fluctuations of drain currents. A Poisson distribu-
tion for the number of charge carriers is assumed to represent the
random distribution of charge carriers in the channel. The edge ef-
fects due to geometric variations in fabrication processes are inter-
preted in terms of the fluctuations of channel length andwidth. The
simulation results are corroborated by experimental results taken
from over 80 organic transistors on a flexible plastic substrate.
Index Terms—Current fluctuation, mismatch, modeling, organic

thin-film transistors (OTFTs).

I. INTRODUCTION

O RGANIC thin-film transistors (OTFTs) are well rec-
ognized as a very promising solution to implement

integrated circuits on flexible plastic substrates, especially
for flexible displays [1], [2]. A few advanced examples have
already been demonstrated, such as radio-frequency identifica-
tion (RFID) tags [3], [4], digital–analog converters (DAC) [5],
[6], and analog–digital converters (ADC) [7]. The complexity
of integrated circuits at large-scale requires accurate models to
describe transistor behaviors. A lot of effort has been devoted
to develop various models for OTFTs [8]–[13]. However, most
of those works are focused on dc current modeling, to our
knowledge none of them deals with the current mismatch in
OTFTs.
Mismatch is the time-independent variation of the drain

current between two or more nominally identical devices in
a circuit. The performance of most analog and even digital
circuits can be affected by the device mismatch. There are a few
works discussing the current mismatch in conventional silicon
metal-oxide-semiconductor field effect transistors (MOSFETs)
[11]–[13]. However, the differences between MOSFETs and
OTFTs are so significant that we cannot simply inherit those
models for OTFTs. For example, OTFTs only work in the
accumulation regime, while MOSFETs work in the inversion
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regime. As known, the diversity of OTFTs is extremely large,
such as different substrates, semiconductors, dielectrics, con-
ductors, device structures, fabrication processes, and so on.
Unlike with MOSFETs, there is no “standard” OTFT device.
In addition, a lot of factors (oxygen, moisture, etc.) cause
scattering of individual characteristics even for the same type
of OTFT. The deviation of the OTFT characteristics makes it
challenging to model the current mismatch. Recently, a new or-
ganic semiconductor, DNTT, has been developed that exhibits
excellent air stability and parameter uniformity [14]–[16],
which reduces the difficulties for mismatch modeling.
Here, we report a consistent model to describe the drain

current mismatch of nominally identical OTFTs. The model is
based on charge fluctuations and edge effects, including two
main features of OTFTs: bias-dependent mobility and charge
accumulation. A Poisson distribution is proposed to repre-
sent the distribution of accumulated charge in the transistor
channel. The charge fluctuation leads to a deviation in the
drain current. The variation of many factors in OTFTs, such
as layer thickness, contact resistance, etc., can be explained
through the charge fluctuation. The variation of individual
device geometries is considered as the edge effects, represented
by the fluctuations in channel length and width. OTFTs with
DNTT as the semiconductor have been characterized and the
statistical experimental results are shown to be consistent with
our simulation.

II. MODEL DERIVATION

In this model, we use local current fluctuations in the tran-
sistor channel to derive the deviation of drain currents, which is
given by the charge fluctuations. In addition, the random fluc-
tuations caused by the edge effects are included as well. Taking
these two factors into account, the total current mismatch is then
derived from the dc model [8], [9] for OTFTs.

A. Local Current Fluctuations
As shown in Fig. 1(a), considering the nonlinear charge distri-

bution, the transistor channel is split into a number of series ele-
ments in longitude, to calculate the local fluctuations. At the po-
sition along the channel, a small channel element of length
contributes a local current fluctuation , which is a zero-mean
stationary random process on . An equivalent circuit of the
split transistor channel, composed of resistors connected in se-
ries, is presented in Fig. 1(b). The current fluctuation causes
a resistance variation . The resistance of the element be-
comes , while the resistance of the entire channel is

. The drain current of the entire channel, including the
current fluctuation, is .
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Fig. 1. (a) Schematics of split transistor channel, a local current fluctuation
is contributed by the element . (b) The equivalent circuit of the split channel.
“ ” and “ ” denote drain and source, respectively.

Small-signal approximation gives us the relationship between
and as

(1)

As well, the relationship between and is written as

(2)

Then, we have the drain current fluctuation from (1) and (2),
as

(3)

Considering the stochastic local current fluctuations, the
mean square of the drain current fluctuation is [8]

(4)

The local current fluctuation can be expressed with the
fluctuation of the accumulated local charge as

(5)

where is the local charge accumulated at position in the
channel.
The local charge fluctuation is proportional to threshold

voltage fluctuations as follows:

(6)

where is the dielectric capacitance per unit area, is the
local fluctuation of the threshold voltage . From the standard
deviation [6], the mean square of is expressed as

(7)

where is the channel width and is a constant reflecting
the uncertainty in the number of charge carriers in the accumu-
lation layer. We assume a Poisson distribution [13], [17]for the
fluctuation of charge carriers, then

(8)

Fig. 2. Exaggerated illustration of the variation of the channel width, inversely
proportional to the channel length. “ ” and “ ” denote drain and source, re-
spectively.

where is the electron charge and is the density of traps
where charge carriers may be accumulated.

B. Edge Effects
The random fluctuations due to the edge effects are another

very important factor for current mismatch, which is necessarily
included in this mismatchmodel. The edge effects are geometric
variations introduced during fabrication, reflecting the fluctua-
tion of the device active area. Both the variations of the effective
channel length and width are considered as edge effects.
Generally, the variations of and decrease as the channel
size increases, since the parameters “average” over a greater dis-
tance [12], schematically shown in Fig. 2. The deviation of is
proportional to and likewise for proportional to .
Here, we use a mismatch factor to represent the edge effects in
this model, as

(9)

C. Static Drain Current Model
As reported in the previous work [8], a charge drift model is

used to describe the static drain current for OTFTs. The channel
current per unit width at point is [8]

(10)

where is the voltage-
dependent charge mobility, is the charge mobility at low
field, is the longitude potential along the channel and
is the mobility enhancement factor, reflecting the density of
states mobility model which includes temperature-dependence
and is widely accepted in OTFTs [9]. Then, the partial along the
channel is written as

(11)

In terms of terminal bias, the static drain current in linear
region is in this form [4], [5]

(12)

In order to make the model compact, we only keep the most
important part in [8]but neglect the bias-dependent capacitance,
the contact effect, and the threshold voltage shift [8]. However,
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Fig. 3. (a) Flexible PEN substrate with OTFTs. (b) Schematic cross-section
of the DNTT OTFTs. (c) The array of DNTT OTFTs with nominally iden-
tical channel length (30 m) and channel width (100 m). Scale bar=1 mm.
Zoom-in: a typical channel edge profile. (d) The transistor test configuration,
where the drain current is measured by applying bias to the gate and the drain
and grounding the source.

this equation is upgradable for these features. For the current in
saturation region, we have in (12).

D. Drain Current Mismatch
Substituting (5)–(8) and (11) into (4), the deviation of drain

currents is calculated as

(13)

Completing the integral in (13) and including the edge ef-
fects in (9), the drain current mismatch including edge effects is
finally expressed as

(linear region)

(saturation region) (14)

III. RESULTS AND DISCUSSION

We measured over 80 organic TFTs to evaluate their
drain current fluctuations. All the devices with identical de-
sign were fabricated on a flexible polyethylene naphthalate
(PEN) substrate [Fig. 3(a)], by vacuum-evaporation through
50- m-thick polyimide shadow masks [15]. The transistors,
with bottom-gate, top-contact configuration, have Al gate
electrodes, a 5.3-nm-thick thin AlO SAM gate dielectric,
25-nm-thick DNTT as the semiconductor, and Au drain/source
contacts, shown in Fig. 3(b). A part of a 10 10 transistor array
is presented in Fig. 3(c), while the designed channel length and
width are 30 and 100 m, respectively. The measurements were
conducted on a Micromanipulator 6200 probe station with an
Agilent 4156C Semiconductor Parameter Analyzer in ambient
air at room temperature, after the TFTs had been exposed to the
air for six months. With a test configuration shown in Fig. 3(d),

Fig. 4. (a) Typical output and (b) transfer characteristics of DNTT OTFTs.

the output and transfer characteristics (Fig. 4) were recorded
via a homemade LabView program. The drain current standard
deviations obtained from those characteristics indicate the
current variation of the identical OTFTs on the same substrate.

A. Current Mismatch Versus Drain Voltage
Using the drain current model [8], some model parameters

are extracted, such as cm V s, F/cm ,
and . With these basic parameters, the mismatch power
normalized to the dc power for drain–source voltages
from 0 to 3 V is presented in Fig. 5. The scatters represent ex-
perimental data and the curves are simulation results determined
by (14). The density of traps is estimated as 6.8 10 cm ,
corresponding to V m. In the saturation region,
the mismatch reaches a constant similar to the drain current, as
expected from (14). As the gate voltage is increased, the mis-
match approaches a minimum, becomes smaller and less depen-
dent on the drain voltage. This is due to the smaller deviation of
the drain currents over larger currents and the edge effects be-
come predominated. Then, we can extract from
the experimental data in the inset of Fig. 5. The results of cur-
rent mismatch show some similarities to the noise analysis of
transistors, however, the former is due to spatial fluctuations in
fixed charges, while the latter is related to temporal fluctuations
in localized states along the channel [13].

B. Current Mismatch Versus Gate Voltage
Fig. 6 presents the normalized current mismatch versus

above the threshold voltage. At smaller , the mismatch is
dominated by accumulated charge fluctuations and it is very
large in this region. But the mismatch converges to a smaller
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Fig. 5. Normalized drain current mismatch versus drain-source voltage at dif-
ferent gate-source voltages. The symbolic scatters are experimental data, while
the curves are simulation results. Inset: the experimental data at V,
while , 1.5, 1.8, 2.1 V, respectively.

Fig. 6. Normalized drain current mismatch versus gate voltage at different
drain voltages. The symbolic scatters are experimental data, while the curves
are simulation results.

level at larger . The simulated curves match the experimental
data better in the linear and saturation regions, where OTFTs
are mostly operated, than the subthreshold region, due to that
(14) originates from the dc drain current expression for linear
regions. The simulated curves follow an inverse proportional
power law, which shows a trend similar to that in conventional
silicon transistors. However, the mismatch of these organic tran-
sistors is still two orders of magnitude larger than in silicon tran-
sistors. This implies that there is plenty of room to improve the
mismatch in organic transistors, by developing new materials
(less fluctuation in charge carriers) and more precise manufac-
turing (smaller edge effects [7]).

IV. CONCLUSION

In summary, we have analyzed the drain current mismatch in
organic thin-film transistors with a consistent model. The model
is based on the fluctuations of trapped charge and the edge ef-
fects. The local current fluctuations are used to derive the drain
current deviation. The variations of the channel length andwidth
due to fabrication errors are taken into account as the edge ef-
fects. Experimental data obtained from organic transistors with
DNTT as the semiconductor are consistent with our simulation.

This work may assist the design of analog circuits or even dig-
ital circuits with organic thin-film transistors.
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