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Extracting the shape of nanometric field emitters

Daniel Beinke, a Felicitas Bürger,b Helena Solodenko,a Rachana Acharya,c

Hagen Klauk c and Guido Schmitz *a

The high resolution nanoanalysis by atom probe tomography is based on needle-shaped samples that

represent nanometric field emitters with typical curvature radii of 50 nm. After field desorption and detec-

tion of a large set of atoms, the sample volume has to be numerically reconstructed. Conventionally, this

reconstruction is performed with the assumption of a hemispherical apex. This established practice can

lead to serious distortions of the tomography. In this work, we demonstrate how the real shape of the

emitter can be extracted from the event density on the 2D detector setup. Except for convexity, no other

restriction is imposed on the shape. The required mathematics is derived and the method is demonstrated

with numerically simulated and experimental data sets of complex tip shapes. The computational effort of

the method is also suitable to handle data sets of a few hundred million atoms.

Introduction

Atom probe tomography (APT) is a nanoscopic analysis
method that delivers chemical information with single atom
sensitivity and sub-nanometer spatial resolution. To this end,
the atoms of needle-shaped samples with a few tens of nano-
meters apex radius are individually field-desorbed and
detected by a 2D microchannel plate setup after a flight dis-
tance of about 10 cm. The time-of-flight (ToF), as well as the
impact position are recorded.1–3 While identification of the
desorbed species by ToF spectroscopy is still a straight-forward
task, the spatial reconstruction of the desorbed volume from
the detected events is more delicate. In principle, the trajec-
tories of the desorbed species must be accurately known to
derive the original positions on the emitter surface.4

After a short running-in period, homogeneous samples
develop a universal shape that is usually expected as an almost
hemispherical apex of which only the isotropic curvature
radius may further increase during the measurement. In this
case, a normalized field distribution and thus a normalized
shape of the trajectories can be assumed. This allows a deter-
mination of the original atom positions by a simple point pro-
jection5 of which the center is located between that of a stereo-
graphic and a gnomonic projection, rather than calculating
the explicit trajectories. However, it is well-known that in the
case of field emitters with a heterogeneous phase structure

and thus heterogeneous evaporation behaviour, the emitter
shape can severely deviate from this universal geometry.6–9

Owing to a lack of knowledge, the hemispherical apex is never-
theless assumed, which may lead to significant distortions in
the reconstruction. These are known as local magnification
artefacts to the APT community and may become so severe
that they fully mislead the interpretation.10–13

Despite the remarkable technical improvements of APT
instrumentation, the reconstruction protocols have not
changed fundamentally over the last twenty years. The point
projection approach scaled by the momentary radius of the
tip, as introduced by Bas et al.5 still forms the basis of all prac-
tical work except for minor modifications in projection angles
and volume increment to better grasp the large angle aperture
of modern instruments. A few attempts to improve the recon-
struction while pertaining a hemispherical emitter have been
made in the past.14–17 Concepts to relax the spherical sym-
metry are rare. De Geuser et al.18 demonstrated a post-treat-
ment of the reconstructions that takes into account hetero-
geneous evaporation parameters after the principle microstruc-
ture has been identified in a first rough reconstruction step.
More recently, an analytical description of the emitter curva-
ture has been suggested under the assumption of fixed mean
curvatures for the particular geometry of a bilayer19 and even
multilayers.20 This allows the development of a reconstruction
protocol for atom probe tips of axial symmetry that contain
stacked multilayer structures.21 Beinke et al.4 introduced
the concept of reversing the reconstruction order, which
enables a numerical calculation of realistic trajectories for an
arbitrary emitter shape. However, the inaccuracy introduced
by the finite detector efficiency and the extended numerical
effort have hindered the development of a code for practical
analysis yet.
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Presently, several initiatives are known for constructing
combined instruments that allow correlative electron
microscopy in situ during the field desorption and thus to
determine the shape of the field emitter. This requires
rather large investments and the development of complex
instrumentation. In this communication, we follow a funda-
mentally different concept. Instead of performing additional
microscopy, we show how to derive the unknown shape of the
field emitter from the statistical distribution of the detected
events, making use of more substantial mathematics. To this
end, a subset of the data is selected, on the one hand, small
enough that the tip shape stays practically constant during
evaporation of the respective species, but on the other hand,
large enough to evaluate the event distribution on the detector
with sufficient statistical significance. In a recent conference
report,22 Beinke et al. introduced the fundamental idea of a
statistical shape extraction and showed how it could be used to
design a complete reconstruction protocol. At that time,
however, the proposed procedure was still restricted to
samples that obey cylindrical symmetry, since a mathematical
solution for arbitrary shapes had not been found. Now, we are
in the position to relieve this restriction and present a general
solution for asymmetrically shaped field emitters. As the only
remaining requirement, we still impose the convexity of the
volume, which is a very reasonable presumption for the typical
situation of steady-state field evaporation of pore-free
materials. In general, samples with a partly concave surface
bear the risk of trajectory overlap and, therefore, the risk of an
artificial chemical mixing. They should be avoided in practical
analysis.

Fundamental equations of the curved
emitter surface in 3D space

In the following, we will describe the emitter surface as a
height profile in cylindrical coordinates:

h ¼
r cosφ
r sinφ
hðr;φÞ

0
@

1
A: ð1Þ

Provided a free choice of the function h = h(r, φ), any convex
shape of the apex can be described in this way. For later ana-
lysis, we also need to require that the shape must be smooth,
i.e. the height function must be sufficiently differentiable. The
definition of the variables is illustrated in Fig. 1. The shown
measurement geometry consists of the needle-shaped sample
(field emitter) that points towards the two-dimensional detec-
tor plane. Aside from the cylindrical coordinates r, φ, h, we
define the distance D between the ion impact position and the
detector center, as well as the azimuthal detection angle ΦD of
the detected event. Neglecting effects of atomic roughness at
the surface, the ions launch perpendicular from the meso-
scopic emitter surface. Owing to the electrostatic effect of the
sample shaft, the field lines and, to a lesser extent, the ion tra-
jectories also bend toward the detector axis. Thus, strictly the

polar detection angle, defined as tanΘD:=D/L, is usually
smaller than the polar launching angle Θ. However, as an
experimental matter of fact, the polar launching angle relates
to very good approximation linearly to the radial distance D on
the detector plane23

Θ ¼ κ � D=L; ð2Þ

if the angle is restricted to the finite aperture of present-day
instruments (about 45°). The hereby introduced imaging com-
pression factor κ and the flight distance L are instrumental
constants. As a consequence, by suitable scaling of the detec-
tor coordinates, the radial distance D on the detector plane
can be directly identified with the polar launching angle Θ

from the emitter surface. On the same level of approximation,
the azimuthal launching and the detection angle are assumed
being identical (ΦD = Φ).

To determine the local surface normal which represents the
launching direction, we first calculate two linearly indepen-
dent tangential vectors:

@rh ¼
cosφ
sinφ
hr

0
@

1
A; @φh ¼

�r sinφ
r cosφ
hφ

0
@

1
A ð3Þ

(here and in the following a sub-index r or φ denotes the
respective partial derivative) and construct the perpendicular
direction as the vector product:

n :¼ @rh� @φh

nx
ny
nz

0
B@

1
CA ¼

hφ sinφ� r � hr cosφ
�hφ cosφ� r � hr sinφ

r

0
B@

1
CA:

ð4Þ

Fig. 1 Measurement geometry of atom probe tomography with the
definition of important geometric parameters. Note that the sketch is
not drawn to realistic scale. In reality, the emitter is much smaller than
the detector width or the spacing L between tip and detector.
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This surface normal defines the initial direction of the
ions. It translates into the polar and azimuthal launching
(= detection) angles via the following equations:

tanΘ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx2 þ ny2

p
nz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hφ2 þ r2hr2

p
r

ð5Þ

tanΦ :¼ ny
nx

¼ r � hr sinφþ hφ cosφ
r � hr cosφ� hφ sinφ

: ð6Þ

By combining eqn (5) and (6) and through the application
of substantial algebra, we eventually find two convenient
expressions for the partial derivatives of the local height
profile:

hr ¼ �tan Θ � cosðΦ� φÞ; ð7Þ
hφ ¼ �r tan Θ � sinðΦ� φÞ: ð8Þ

In axial symmetric structures hφ ≡ 0 holds. Thus, for this
case, the azimuthal detection angle Φ can be identified with
the sample coordinate azimuth φ. But this identity is not valid
in general. In the following considerations, we have to dis-
tinguish the sample azimuth φ strictly from the detection
azimuth Φ.

The fundamental concept of the
shape extraction

The principle of the shape extraction from a sufficiently large
set of detected events shall first be illustrated with a quasi 2D
situation of axial symmetry illustrated in Fig. 2. During field
evaporation, the emitter necessarily shrinks due to continuous
desorption of atoms. However, for a steady-state situation in
which the spatial distribution of the different phases at the
surface remains almost constant, the surface only changes in a
self-similar manner, i.e. besides a rigid shift towards the

emitter base, the height profile may only scale by a unique
factor, usually the average tip radius, that captures the blunt-
ing of the tip. In Fig. 2a, we have even neglected this blunting,
since it subsequently does not affect the relative densities of
events on the detector plane. Obviously, the number of atoms
evaporated into a given angular direction (Θ, Θ + ΔΘ) must
correspond to the volume (grey shaded) between the two con-
secutive profiles. Furthermore, as indicated at the bottom of
the figure, this volume is most easily calculated by projecting
the surface to the emitter base. Consequently, the volume
corresponds to the projected area ap times the rigid shift |Δz|
between the two height profiles. Technically, we may discretize
the height profile into segments with constant increment ΔΘ
in between (see Fig. 2b). Atoms evaporated from a given
surface segment must hit the detector at a predefined angular
range. Each of them represent a tiny volume portion. For the
sake of simplicity, we can assume that all events have the same
(atomic) volume portion Vat. A generalization to species of
varying size can nevertheless be achieved since each event is
identified by time-of-flight mass spectrometry.

As the shift between the height profiles is constant along
the surface, a relatively higher density of events in a particular
detector direction must correspond to a relatively larger pro-
jected size of the respective segment. Fig. 2b demonstrates
how this interpretation of the data ultimately yields a varying
local curvature of the surface. A group of larger segments leads
to less curvature (larger radius R1), a group of shorter segments
to higher curvature (smaller radius R2). In a previously pre-
sented evaluation protocol,22 we hold the inclinations of the
surface segments constant, but vary the discrete vertices (ri,hi)
to adjust the segment sizes ai to the measured local density of
detected events.

It should be noted here, that the proposed data interpret-
ation only delivers relative size differences among the seg-
ments. Since the absolute scaling of the shift Δz is unknown,
the size of the emitter cannot be obtained. Similar to the
established scheme of Bas et al.,5 we still need to determine
the evolution of the average emitter radius by independent
considerations, e.g. based on the evolution of the tip voltage,
based on the assumption of constant shaft angle or by cali-
bration of known lattice plan distances.

In a previous communication,22 Beinke et al. have shown
that a straight-forward application of the outlined concept
leads to a feasible reconstruction protocol which improved the
tomographic reconstruction significantly. However, this
concept has still been restricted to sample geometries of axial
symmetry and therefore of limited practical use. A generaliz-
ation to arbitrary emitter shapes needs further considerations,
as presented below.

The mathematical formulation for a
non-axial symmetric surface shape

As a prerequisite for the next considerations, we assume that a
continuous density function ρ(Θ, Φ) on the detector plane has

Fig. 2 Principle of steady-state evaporation. (a) In the case of a cylindri-
cal shaft, a rigid surface is shifted downwards (sample shrinks). The
evaporated volume is given by the projection to the base times the
shifted length (ap × Δz). (b) The local curvature is related to the number
of atoms measured in a given direction of the detector. A higher number
of detected atoms per angular range correlates with a larger surface or
base segment (a1 instead of a2) per angular range and thus a larger
radius (R1 instead of R2).

Paper Nanoscale

2822 | Nanoscale, 2020, 12, 2820–2832 This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 0
9 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 M

ax
-P

la
nc

k-
In

st
itu

t f
ur

 F
es

tk
or

pe
rf

or
sc

hu
ng

 o
n 

2/
11

/2
02

0 
12

:4
8:

14
 P

M
. 

View Article Online

https://doi.org/10.1039/c9nr08226c


been determined from the discrete data, so that the number of
events measured in a defined region of the detector can be cal-
culated as

NðΘ;ΦÞΔΘΔΦ ¼
ðΘþΔΘ

Θ

ðΦþΔΦ

Φ
ρðΘ′;Φ′Þ � Θ′dΘ′dΦ′ ð9Þ

(circular coordinates. Here, Θ represents the radial direction
obtained after the proper scaling of the radial distance D into
units of the polar angle Θ via eqn (2)). Assume, the principal
radii of curvature be determined at a given point of the surface
(for illustration see Fig. 3a). Since the corresponding two
circles stand perpendicular to each other (or can be chosen
so), da = Rmaxdβ·Rmindγ represents a rectangular surface
segment, given by the principal radii and arbitrarily small
angle increments dβ and dγ. Atoms that launch perpendicu-
larly from this segment, obviously travel along angular direc-
tions that are comprised in the solid angle dΩ = dβ·dγ.
Provided a smooth convex shape of the surface, Ω and the
surface a are linked by an unambiguous function. This allows
calculating the differential,24

K :¼ dΩ
da

¼ 1
Rmax

� 1
Rmin

ð10Þ

also known as the Gaussian curvature, the inverse product of
the two principal radii of curvature. In steady-state evapor-
ation, we know (see previous section) that the number

dN ¼ Δz
Vat

� cosΘ da ð11Þ

of atoms need to evaporate from the surface segment da.
These are detected in the solid angle dΩ. Rearranging eqn (11)
for da and inserting into eqn (10) leads to

K ¼ Δz
Vat

� cosΘ � dΩ
dN

¼ Δz
Vat

� cosΘ
ρ

; ð12Þ

representing the fundamental relation that allows interpreting
the density ρ of detected events in terms of the curvature,
which the correct sample surface must expose in a given
angular direction.

If the surface is represented as a function graph in polar
coordinates, differential geometry shows that25

KðΘ;ΦÞ ¼ r2hr;rðhφ;φ þ rhrÞ � ðhφ � rhr;φÞ2
r2ðhr2 þ 1Þ þ hφ2
� �2 ; ð13Þ

in which Θ and Φ are implicitly linked to r and φ

through eqn (5) and (6). Thus, the numerical task is the deter-
mination of the height profile h(r, φ) so that at each surface
position, eqn (13) matches eqn (12) when evaluated at the
corresponding angles Θ(r, φ) and Φ(r, φ) of the local surface
normal.

Design of the computational algorithm

In the following, we describe the concrete algorithm to obtain
a computational approximation of the emitter surface. The
processing of a selected subset of events starts with the calcu-
lation of the event density. The detector, first scaled to the
polar angle Θ (eqn (2)), is split into rings of constant polar
angle increment ΔΘ. Each of these is further split into seg-
ments of the azimuthal increment ΔΦ. We calculate a discrete
density from the numbers of atoms NΘi

,Φj
counted on each

detector segment

ρΘi;Φj
:¼ NΘi;Φj

sinΘi � ΔΘΔΦ : ð14Þ

A continuous density function ρ(Θ, Φ) needed in the later
numerical integration is determined by bilinear interpolation
between the concentric grid points.

The height profile has to be determined at the discrete posi-
tions hi,j = h(ri, φj) (see Fig. 3b). In order to develop a finite

Fig. 3 Geometric details of the proposed algorithm: (a) fundamental relation between a selected part of the surface area and the orientation range
within a solid angle. (b) Construction of the emitter surface h(ri, φj) on a discrete grid of base points (ri, φj) regularly spaced by constant Δr and Δφ.
To calculate h(ri, φj) in the finite difference iteration, the compact stencil of the eight direct neighbours of the point (ri, φj) is used. (c) Boundary con-
dition at the transition between the apex and the cylindrical shaft (at Θ = 90°). One main curvature radius RI approaches R0, the second, RII, follows
from the respective Gaussian curvature.
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differences scheme, by which eqn (13) can be solved iteratively,
we approximate the required derivatives as

@h
@r

� hðlÞiþ1;j � hðlÞi�1;j

2Δr
;

@h
@φ

� hðlÞi;jþ1 � hðlÞi;j�1

2Δφ
; ð15a;bÞ

@2h
@r2

� hðlÞiþ1;j þ hðlÞi�1;j � 2hðlþ1Þ
i;j

Δr2
;

@2h
@φ2 �

hðlÞi;jþ1 þ hðlÞi;j�1 � 2hðlþ1Þ
i;j

Δφ2 ;

ð16a;bÞ

@2h
@r@φ

� hðlÞiþ1;jþ1 þ hðlÞi�1;j�1 � hðlÞiþ1;j�1 � hðlÞi�1;jþ1

ΔrΔφ
: ð17Þ

Here, the index (l) indicates the iteration order. Noteworthy,
the next iteration step (l + 1) only appears in the unmixed
second derivatives (eqn (16a,b)). Inserting eqn (15)–(17) into
eqn (13) and solving for hðlþ1Þ

i;j , we obtain a quadratic equation
that is solved as:

hðlþ1Þ
i;j ¼ � δ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2

4
� χ þ β þ α � KðΘi;ΦjÞ

r
: ð18Þ

In the latter expression, we made use of the following con-
venient abbreviations:

Expressions (19a–d) all depend exclusively on the height
profile determined in the previous iteration step, so that the
next hðlþ1Þ

i;j can exactly be calculated by eqn (18).
In order to apply the iteration scheme within a finite

region, suitable boundary conditions have to be set. These
may either fix the height of the surface or the direction of its
normal at the border of the calculation region. Any practical
detection system is limited by a finite aperture that ignores
events outside a limit angle Θmax that typically amounts to
about 45°. A natural proposition would be restricting the calcu-
lation to exactly this angular range. However, since the posi-
tions at the surface with launching angle Θ = Θmax are initially
unknown, we cannot set proper boundary conditions here. We
therefore decided to extend the calculation region to the cir-
cumference of the tip shaft (assumed cylindrical), since there
the radius R0 and the angle Θ0 = 90° (see Fig. 3c) are a priori
known. Due to symmetry, RI:=R0 necessarily represents one of
the main curvature radii. The other one is determined with the
help of the Gaussian curvature (RII = (R0·K)

−1).
The missing information on the Gaussian curvature outside

the angular range of the detector must be complemented by

suitable assumptions on the general shape of an atom probe
tip. A suggested solution is the postulation that the curvature
outside equals the average curvature inside the detector range:

KðΘ > ΘmaxÞ ¼
ÐΘmax

0 KdΩÐΘmax

0 dΩ
: ð20Þ

As an alternative, one may also extrapolate the curvature field
inside the detector to the outside (see the numerical examples
below). For any choice, we have to make sure that the projection
of the full surface area matches the cross-sectional area of the
cylindrical shaft. This leads to the normalization condition

ð2π
0

ðπ
2

0

cosΘ sinΘ dΘdΦ
KðΘ;ΦÞ ¼ πR0

2; ð21Þ

which has to be fulfilled by multiplying the final curvature
field by an appropriate constant.

Example calculations

In order to check the concept with field emitters of known
surface shape, we numerically simulated the field evaporation

of two sample tips with asymmetric evaporation properties, as
presented in Fig. 4a and b. For both, an amorphous structure
of about 106 atoms was generated by random sphere filling of
a cylindrical shaft of 30 nm radius. We prefer a random amor-
phous structure to avoid complications by crystalline faceting.
Subsequently, different evaporation thresholds were assigned
to the atoms. For the first case shown in Fig. 4a, a stack of six
layers with increasing steps of evaporation thresholds (from
left to right: 51, 54, 57, 60, 63, 66 V nm−1) was vertically
oriented (i.e. tip axis parallel to the interfaces). For the second
example in Fig. 4b, a 25% elevated threshold was assigned to
the atoms within an off-axis spherical precipitate of 12 nm
radius. Subsequently, the field desorption and the measure-
ment of the events were simulated by the TAPsim†

package,26,27 which is particularly capable of handling random
structures. The images in Fig. 4 represent the atomic structure
after the evaporation of 300 000 atoms, when a stable steady
state of the surface had developed. The significant deviation

α :¼ Δr2Δφ2

4ri2
� ri2 1þ hðlÞiþ1;j � hðlÞi�1;j

2Δr

 !20
@

1
Aþ hðlÞi;jþ1 � hðlÞi;j�1

2Δφ

 !22
4

3
5
2

β :¼ Δr2

4r2i
� hðlÞi;jþ1 � hðlÞi;j�1

2
� ri

hðlÞiþ1;jþ1 þ hðlÞi�1;j�1 � hðlÞiþ1;j�1 � hðlÞi�1;jþ1

Δr

" #2

χ :¼ 1
4

hðlÞiþ1;j þ hðlÞi�1;j

� �
hðlÞi;jþ1 þ hðlÞi;j�1

� �
þ Δφ2

8
ri
Δr

hðlÞiþ1;j

� �2� hðlÞi�1;j

� �2� �

δ :¼ � 1
2

hðlÞiþ1;j þ hðlÞi�1;j þ hðlÞi;jþ1 þ hðlÞi;j�1

� �
� Δφ2

4
ri
Δr

hðlÞiþ1;j � hðlÞi�1;j

� �

ð19a–dÞ

†https://www.imw.uni-stuttgart.de/mp/forschung/atom_probe_RD_center/software/.
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from a hemisphere apex and the asymmetry with respect to
the tip axis are obvious. In both structures, the curvature of
the surface has increased locally where the evaporation
threshold is high, to counterbalance reluctant evaporation by a
stronger field. The tip shape of Fig. 4a closely resembles the
reported shape of semiconductor tips with low heat conduc-
tivity after asymmetric laser irradiation,28,29 and thus, rep-
resents a typical situation of a practical measurement. Also,
the second geometry (Fig. 4b) is exemplary for common APT
work, except for the fact that precipitates are usually signifi-
cantly smaller than the tip diameter, since APT is preferentially

used for ultimate microscopy. Due to the locally increased cur-
vature, the precipitate protrudes from the surface, which
would produce artificially diluted zones in the conventional
volume reconstruction relying on a hemispherical apex.

Fig. 5 illustrates the calculation steps and result of the
shape reconstruction for the first example, the tip with layers
of stepwise increased evaporation threshold. Starting from the
structure shown in Fig. 4a, the next 200 000 atoms were evalu-
ated according to eqn (14) to determine the local event
density. For a hemispherical apex, this density is expected to
reveal a maximum at the tip axis. In contrast, the event density
here appears left-weighted. The higher density is found on the
side of lower curvature. (Additional ripples in the density
reflect the original layered structure of the model.) Next, the
local curvature is calculated from the discrete density by
means of eqn (17), as shown in Fig. 5b by the blue circled data
points. These can only be calculated within the angular range
of the detector. However, since this curvature field varies
almost linearly from left to right along the x-axis, we continue
this slope to radially extrapolate into the angular range outside
the detector (black crosses in Fig. 5b). Based on the so-calcu-
lated curvature field, the iteration of the finite difference method
is performed. For the shown model calculation, we used a grid of
18 (radial) times 32 (azimuthal) points. For the initial configur-
ation, the height profile has been set to the values of an ideal
hemisphere of 30 nm radius. The next height approximations are
calculated at all inner points from the heights of the respective
eight neighbors and the curvature linked to the momentary
surface normal at the given point. Only the points at the tip
center and at the outer boundary need special treatments. The
height in the center is calculated assuming a spherical cap of the
appropriate curvature, the heights at the outer boundary are
determined so that the discretized version of the boundary con-
dition as illustrated in Fig. 3c is fulfilled.

Applied iteratively, this process converges to a stable end
shape. The iteration loop was halted when the further modifi-
cation of the height profile was less than 0.001 nm. In Fig. 5c,
the profile of this end shape is shown at the mirror symmetry
plane of the structure (yellow spheres), in comparison with the
initial structure. The final residual between original and evalu-
ated surface is plotted at the bottom of the figure. The devi-
ation of the height profile is typically less than 2 nm, especially
when considering the inner area seen by the detector. Given
the fact that the extrapolation of the curvature to the outside
angular range can only be an approximation, the agreement
between both is well satisfactory.

The analogous procedure was applied to the second struc-
ture, of which the main steps of calculation are presented in
Fig. 6. Here, the alternative proposition, setting the outer cur-
vature constantly to the average of the inner measured points
(black crosses and blue circles in Fig. 6b) appears more appro-
priate, since a precipitate provokes only a local disturbance of
the surface. In this case the horizontal profile, shown by
yellow circles in Fig. 6c, matches the mesoscopic shape quite
well, but in detail some deviations at the precipitate still
remain.

Fig. 4 Atomic structure of two test samples (for better understanding
the tips are cut in half, view on the central mirror plane). Different colors
or grey scales mark different evaporation thresholds. The steady states
shown were obtained after evaporation of 300 000 atoms: (a) sample I,
consisting of six layers with increasing evaporation threshold (from left
to right, indicated by increasing brightness). (b) Sample II, containing an
off-axis precipitate of elevated evaporation threshold marked in blue
color. In both cases, the radius of the cylindrical shaft amounts to
30 nm, the radius of the precipitate is 12 nm.
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It appears that these remaining deviations stem from a
slightly concave surface at the boundary between matrix and
precipitate. The concave part at the boundary lets the precipi-
tate protrude slightly more than predicted by the mathematical
model. In addition, the extrapolation model may contribute to
this deviation. If the extrapolation to the outer angular range
overestimates the curvature, the curvature at the precipitate
becomes erroneously reduced as a consequence of the normal-
ization according to eqn (21).

Evaluation of experimental data

The accuracy achieved in the previously shown examples leaves
room for improvement by choosing finer grid spacing and
better suited extrapolation models. Nevertheless, an experi-

mental example should demonstrate that the proposed
method is already sufficient to obtain a decisive improvement
in the reconstructions. It shall also demonstrate that
additional experimental factors that may affect the event
density on the detector, such as redistribution at zone lines
and poles or the uncontrolled loss of atoms between pulses do
not compromise the proposed method. Since dealing with the
transition stages between different steady-state emitter profiles
needs further considerations, we chose an experimental situ-
ation in which the formation of a steady surface is warranted:
a multilayer in vertical alignment (tip axis parallel to the inter-
faces) which is an experimental situation prone to magnifi-
cation artefacts. For this demonstration, Cr/(Al-oxide/Al)n/Cr
multilayers were prepared by depositing chromium and alumi-
num layers by physical evaporation and oxidizing the surface
of the aluminum layers in an RF-generated oxygen plasma

Fig. 5 Evaluation of the surface shape of test structure I: (a) local event density on the detector. In total, 200 000 atoms were considered to deter-
mine the density. The aperture of the detector was limited to 45°. (b) Gauss curvature as a function of the local surface orientation (inclination with
respect to the tip axis and x-axis perpendicular to the layer stacking). Values derived from the measured densities (within an angle of 45°) are shown
by blue circles, those obtained by extrapolation by black crosses. (c) Comparison between original tip structure and the surface profile at the mirror
plane (yellow circles) as calculated by the proposed method. The residual between the real surface profile at the tip symmetry plane and the evalu-
ated profile is plotted at the bottom.
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(oxygen flow rate: 30 sccm; oxygen partial pressure: 10 mTorr;
RF power: 200 W; duration: 30 s) to form the aluminum oxide.
The layer thicknesses are well controlled and documented by
TEM in cross section geometry, as demonstrated in Fig. 7a.
Especially, the Al-oxide layers reveal a homogeneous thickness
of (6 ± 0.5) nm. A piece of the same lamella, containing an Al
oxide layer embedded between Cr and Al, was mounted on a
tungsten post in vertical alignment and thinned by azimuthal
milling to a suitable end shape. Laser-assisted APT analysis
was performed over several million atoms to develop a steady
state shape of the tip surface.

Of these data, a block with 1.3 × 106 events was selected.
Since the mass spectra contain various species (O, Al, Cr, AlO,
Al2O and Al2O2) significantly different in size, the realistic
partial volumes were considered (0.0232, 0.0166, 0.0120,
0.0398, 0.0564 and 0.0796 nm3, respectively).

In calculation of the tip shape, we chose a further variant of
the required curvature extrapolation into the non-measured
region: for each azimuth Φ, K is linearly interpolated between
the outermost measured curvature towards K = R0

−2 at the
shaft. The resulting tip surface is shown in Fig. 7b.

Obviously, the curvature of the tip became elevated at the
Al-oxide layer. The asymmetric deviation from the spherical
shape leads to strong shifts of the events on the detector that
are, however, neglected in the Bas et al. scheme. These shifts
can be best documented by a mesh following the iso-r and iso-
φ contours of the tip coordinates overlaid on the color-coded
events on the detector plane (Fig. 7c). The vertices of this
mesh are calculated by projection from the grid points of the
height profile along the local surface normal. Even though the
tip shaft is cylindrical, this mesh and, therefore, the measured
part of the tip cross section are not circular symmetric

Fig. 6 Evaluation of the shape of test structure II: (a) local event density on the detector. In total 200 000 atoms were considered to determine this
density. The aperture of the detector was limited to 45°. (b) Gauss curvature as a function of the local surface orientation. Values derived from the
detector densities (within an angle of 45°) are represented by blue circles, those obtained by extrapolation are indicated by black crosses. (c)
Comparison between original tip structure and the surface profile along the x-axis (yellow circles) as evaluated from the detector data. The residual
between the real surface profile at the tip symmetry plane and the evaluated profile is plotted at the bottom versus a radial coordinate.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 2820–2832 | 2827

Pu
bl

is
he

d 
on

 0
9 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 M

ax
-P

la
nc

k-
In

st
itu

t f
ur

 F
es

tk
or

pe
rf

or
sc

hu
ng

 o
n 

2/
11

/2
02

0 
12

:4
8:

14
 P

M
. 

View Article Online

https://doi.org/10.1039/c9nr08226c


anymore. Larger facets on the oxide layer demonstrate that
oxygen containing events stem from a relatively smaller
surface fraction of the tip.

Now we perform the volume reconstructions. The result of
the classical reconstruction (in wide angle modification) is
shown in Fig. 7d. Clearly, the Al-oxide layer appears strongly
oversized in thickness and in compensation, its atomic density
is far too low. This can best be seen in the composition and
density profiles (shown in Fig. 7e, top) determined in stacking
direction. In the density profile (blue dashed), we observe
peaks of strongly increased density at the interfaces just
outside the oxide. In this way, local magnification effects

become very obvious. They are due to the contrasting evapor-
ation thresholds in the order EAl < ECr < EAlxO1−x

.
In the proposed shape-corrected reconstruction, we shift

the atoms to their correct position with the help of the distor-
tion map of Fig. 7c. This computation step is performed most
efficiently by triangulation of the mesh and linear interp-
olation of the atom positions between the already determined
vertices. The so calculated reconstruction is shown in Fig. 7f
(view along the tip axis). Remarkably the measured volume is
by far not cylindrical any more. Instead, the border line indi-
cates the different evaporation thresholds, i.e. the curvature of
the border is more pronounced at the Al-oxide compared to

Fig. 7 Reconstruction of experimental data of a Cr/Al-oxide/Al tri-layer: (a) cross section TEM micrograph (a region equivalent to the investigated
atom probe tip is indicated in white dashes). (b) Tip profile as derived from the event distribution. (c) Assignment of lateral tip coordinates to the
detector positions. Measured events are presented as color-coded dots (Al red, Cr green, O light blue). The real-space tip coordinates are shown by
a mesh of iso-r and iso-ϕ contours (thick lines). (d) Reconstruction with the classical Bas et al. protocol (viewing direction along the tip axis).
Position and direction of concentration profiling are indicated by a dashed rectangle. (e) Composition and density profiles determined perpendicular
to the interfaces for the classical (top) and the shape-corrected scheme (bottom). (f ) Reconstruction obtained by the new shape-corrected method.
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the neighbor layers. The volume fraction of Cr has been sig-
nificantly elevated with respect to Al and Al-oxide. The corres-
ponding profiles through the oxide layer are shown in Fig. 7e
(bottom), in direct comparison to those of the classical protocol.
As a remarkable success, the Al-oxide now appears in its correct
thickness very close to 6 nm without any further calibration
(both reconstructions used the same partial volumes for the
detected molecules). Also the number density (see Fig. 7e,
dashed) becomes practically homogeneous within each layer
and the different density levels match reasonably to the relation
between the average atomic volumes (ΩAl-oxide > ΩAl > ΩCr).

Discussion

In a recent report22 on axial symmetric samples, we already
demonstrated that a shape extraction, based on the statistical
interpretation of the event density, can improve the quality of
APT volume reconstructions decisively. This statement is now
fully corroborated by the generalization to non-axial symmetric
geometries and the experimental example shown in the pre-
vious section. Since the proposed algorithm for non-axial sym-
metric samples reproduces the surface shapes of critical
model structures quite well, we do expect that a decisive
improvement of the reconstruction can be obtained in many
experimental situations.

The main advantage of the proposed method is that it cor-
rects the density fluctuations by redistribution i.e. correctional
shifts of the atoms. A shift of the atoms to homogenize the
density has been previously proposed, but only as an a poster-
iori processing step after the first reconstruction had been
achieved. This typically leaves arbitrariness of how to distri-
bute the necessary compression or expansion to the three
dimensions of space. The here proposed method of determin-
ing the atom positions from the realistic shape of the tip
surface during evaporation clarifies this issue unambiguously,
based on a proper consideration of the measurement process.

Noteworthy, the proposed statistical interpretation is practi-
cally not affected by the finite detector efficiency. Nevertheless,
a high quality of measurement is required that avoids uncon-
trolled loss of events and still, poles or zone lines should be
avoided or the resolution of the density evaluation must be
sufficiently coarse that the respective redistribution of the
events is averaged out.

With the three presented alternatives for the extrapolation
of the curvature into the non-measured part of the tip, which
all lead to a reasonable description of the tip geometry, we
have shown that the required extrapolation is feasible.
However, it introduces at least a certain arbitrariness into the
evaluation. The investigation of further model structures may
lead to refined extrapolation models of the curvature and, con-
sequently, to a more accurate description than presented in
Fig. 5c and 6c.

To our present knowledge, we cannot show mathematical
proof that the described numerical procedure always has an
unambiguous convex solution. Since the curvature is not

directly known at given positions, but only indirectly via their
respective surface inclinations that change during the iter-
ation, the situation is mathematically less transparent. We
cannot exclude that for some pathologic distribution of events,
multiple solutions would satisfy all equations. For the model
cases studied, we checked that different starting conditions
(e.g. starting from a hemisphere or a circular disk) lead to the
same result. We indeed found that, the end shape was inde-
pendent of the choice of the starting conditions. Therefore, we
presume that a unique end shape will be discovered for any
physically reasonable distribution of events.

Other mathematically technical issues concern the stability
and convergence of the iteration scheme. Not in the shown
examples, but in some other tested tip geometries, it
was required to superpose the height profiles of the lth and the
(l + 1)th iteration to assure convergence. To illustrate the
typical convergence behavior, Fig. 8 shows a plot of the
maximum variation of the height profile between two iteration
steps versus the number of steps for the model calculation
shown in Fig. 5. Within about 3000 iterations the variation
approaches a minimum residual value. This residual depends
on the chosen discretization and boundary conditions. Thus,
it can be used as a measure for the quality of approximation.
In our experience, its value can be obtained smaller than
±0.001 nm. Presumably, it would also be possible to construct
higher order schemes that rely on a larger number of neighbor
grid points to stabilize the convergence and to achieve even
more accurate solutions.

When it comes to the realization of practical reconstruction
protocols, numerical effort is a critical issue. Since the pro-
posed shape extraction is based on the evaluation of a large
number of atoms, it is neither required nor recommended to
recalculate the shape in each reconstruction step for a single
atom. Instead, in the practical situation with data sets of 108

events, it seems reasonable to apply the shape extraction to
subsets of 100 000 to 500 000 atoms. (At least a few monolayers

Fig. 8 Convergence behaviour of the iterations in the finite difference
procedure: maximum variation of the height profile between two iter-
ations versus the number of the iteration loop.
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at the surface must be comprised to yield statistical reliability.)
Thus, a recalculation of the shape would be required after
reconstruction of about 105 atoms. Run on a business laptop
computer without any parallel coding, a single shape extraction
on 36 × 64 grid points needs about 10 s of calculation time.
This duration scales with the number of grid points, but is prac-
tically independent of the number of atoms in the data set,
since performing the finite difference iteration is critical, while
the time for calculating the detector densities is negligible. In
addition, the iteration loop is well suited for an effective paralle-
lization, which could reduce the calculation time by an order of
magnitude. So, we reasonably expect that the computing time
for one shape extraction can be restricted to about 1s. In con-
clusion, performing the reconstruction of 108 events by calculat-
ing a new surface shape every 105 atoms would lead to about 1h
total processing time, which is very acceptable for a careful final
reconstruction of experimental data.

In order to become computationally effective, the presented
algorithm avoids calculating ion trajectories. Instead, it uses
the simple projection law expressed by eqn (2) together with
the identification between the detection and launching
azimuth. It must be mentioned that eqn (2) has been deduced
from field ion microscopy of ideally shaped samples. In the
case of an asymmetric or rough apex, it only represents an
approximation of which we expect less accuracy the more the
tip surface deviates from a sphere. To estimate the quality of
this approximation, we investigated the considered model
structures with trajectory calculations using the TAPSim13

program. Fig. 9 compares the launching azimuth Φ with the
detection azimuth ΦD for about 200 000 events of (i) a well-
developed homogeneous tip and of the already presented
asymmetric geometries containing (ii) an off-axis precipitate or
(iii) the layer stack of varying evaporation thresholds (from top
to bottom, as labeled). For each case, the deviation between
both angles is plotted versus the detection azimuth. Grey dots
represent individual trajectories, the solid blue line the
average at a given detection angle.

For the ideal hemispherical apex (top), the expected identity
between both launching and detection azimuth is clearly con-
firmed for the average. Still, the scatter among individual tra-
jectories (grey dots) is remarkable. Its standard deviation
ranges from 5° to 7°. This scatter contributes to the well-
known limitation of APT resolution in the lateral directions.
Indeed, for the two asymmetric tip geometries (middle and
bottom), an additional systematic deviation between both
azimuth angles is seen. This deviation reveals a mirror sym-
metry around 0° and 180°, as expected for a surface geometry
with a central mirror plane, but in both cases, its magnitude
remains less than 3°. The deviations of the polar angle from
eqn (2) are of similar magnitude.

Whether such deviations are small or large, must be
decided in comparison to other relevant disturbances. First,
the natural scatter of the individual trajectories is obviously
more than twice as large, and second, the calculation of the
event density on the detector has been done with an azimuthal
discretization even larger than 10°. In view of this comparison,

we conclude that the deviation from the projection law is prob-
ably negligible in the shown cases, but it can become signifi-
cant, if a higher spatial resolution is desired. In this case,
sooner or later, one reaches the point that trajectory calcu-
lations become unavoidable. It might be sufficient to calculate
them only for the small set of discrete points of the height
profile. Since their number is relatively small, this step could
possibly already be integrated into the iteration loops when
solving the differential equation eqn (13). However, we need to
postpone a presentation of respective results and the discus-
sion of this generalization to a later communication.

Conclusions

In this work, we presented a mathematical model to extract
the surface of atom probe tomography samples from the event
distribution on the entrance aperture of the detector.

• The model is applicable to sample surfaces of arbitrary
shape. Only a differentiable convex shape of the surface has to
be postulated.

Fig. 9 Evaluation of trajectories in terms of the launching and detec-
tion azimuth for the three exemplary apex geometries: hemispherical,
asymmetric precipitate and asymmetric layer stack (from top to bottom
as labelled). The deviation between both angles is plot versus the
azimuth on the detector. Grey dots represent results of individual trajec-
tories, solid (blue) the average at given ΦD.

Paper Nanoscale

2830 | Nanoscale, 2020, 12, 2820–2832 This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 0
9 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 M

ax
-P

la
nc

k-
In

st
itu

t f
ur

 F
es

tk
or

pe
rf

or
sc

hu
ng

 o
n 

2/
11

/2
02

0 
12

:4
8:

14
 P

M
. 

View Article Online

https://doi.org/10.1039/c9nr08226c


• It is shown, in general, that the event density on the
detector correlates inversely to the Gaussian curvature, if the
atomic structure roughness at the surface is neglected. A finite
difference method is derived to determine the real space
surface shape iteratively from the curvature field.

• The convergence of the method to a unique solution and
the accuracy of this solution have been demonstrated by calcu-
lating two model structures, an asymmetrically field-evapor-
ated tip and a protruding off-axis precipitate.

• The method has also been demonstrated by successfully
reconstructing concrete experimental data. The computational
effort of the method allows designing a full reconstruction pro-
tocol for experimental data sets of hundreds of millions of
atoms in reasonable computing time.
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