

Correlations in Novel Quantum Materials

June 9–11, 2021 • Stuttgart, Germany

Max Planck Institute for Solid State Research

Scope

Materials with strongly correlated quantum particles are at the forefront of present solid state research. Understanding the experimental properties of novel quantum materials crucially relies on the application of cutting-edge analytical and numerical tools.

This workshop aims at bringing together world-leading experts in both analytical and numerical theory to advance the

current perspective on important questions of the field: What are the signatures of quantum order in newly synthesized experimental setups? Which aspects of quantum materials can be described on the model level? What are the computational and algorithmic boundaries hindering the solution of the many-body problem? What is the nature of phase transitions between these novel states of matter?

The workshop will be virtually hosted by the MPI for Solid State Research in Stuttgart.

Powered by the ZOOM video conferencing service.

Further information at

www.fkf.mpg.de/cnqm2021

Organizing Com	mittee
MPI for Solid State I	Research
Elio J. König	
Thomas Schäfer	40°Sk

Contact CNQM2021@fkf.mpg.de

Wednesday .	June 9, 2021
-------------	--------------

CEDT AM EDT AM Thomas Schäfer and Elio König 02:50 Max Planck Institute for Solid State Research, Stuttgart 08:50 Welcome

ICAM-I2CA

Tackling multiorbital systems

09:00	03:00	Roser Valentí Institute for Theoretical Physics, Goethe University Frankfurt Kitaev models and materials: a conspiracy of spin, orbital and lattice degrees of freedom
09:45	03:45	Erez Berg Weizmann Institute of Science New physics in flat moiré bands
10:15	04:15	Coffee break
10:40	04:40	Lucile Savary ENS Lyon Unconventional magnetism in FCC materials and on the triangular lattice
11:10	05:10	Maria Daghofer University of Stuttgart Ca₂RuO₄ as an excitonic magnet: Spin-orbit coupling and temperature

Program

Thursday June 10, 2021

Strong correlations at low dimensionality

EDT AM 09:00	EDT AM 03:00	Karsten Held Institute of Solid State Physics, TU Wien Nickelate superconductors a renaissance of the one-band Hubbard model
09:45	03:45	Ulrich Schollwöck LMU Munich Matrix product states for real materials
10:15	04:15	Coffee break
10:40	04:40	Philipp Hansmann University of Nürnberg-Erlangen Sr₂RuO₄: From Hund's metal to Hund's superconductor?
11:10	05:10	Giorgio Sangiovanni University of Würzburg Breakdown of low-energy protection in correlated bandstructures

Friday June 11, 2021

Signatures of correlations in dynamical response functions

09:00	03:00	Roser Valentí Institute for Theoretical Physics, Goethe University Frankfurt Kitaev models and materials: a conspiracy of spin, orbital and lattice degrees of freedom	CEDT AM 09:00	EDT AM 03:00	Karsten Held Institute of Solid State Physics, TU Wien Nickelate superconductors a renaissance of the one-band Hubbard model	CEDT AM 09:00	EDT AM 03:00	Alessandro Toschi Institute of Solid State Physics, TU Wien Multifaceted aspects of non-perturbative scattering in many-electron physics
09:45	03:45	Erez Berg Weizmann Institute of Science New physics in flat moiré bands	09:45	03:45	Ulrich Schollwöck LMU Munich Matrix product states for real materials	09:45	03:45	Georg Rohringer University of Hamburg Breakdown of many-body perturbation theory in correlated electron systems
10:15	04:15	Coffee break	10:15	04:15	Coffee break	10:15	04:15	Coffee break
10:40	04:40	Lucile Savary ENS Lyon Unconventional magnetism in FCC materials and on the triangular lattice	10:40	04:40	Philipp Hansmann University of Nürnberg-Erlangen Sr₂RuO₄: From Hund's metal to Hund's superconductor?	10:40	04:40	Patrick Chalupa Institute of Solid State Physics, TU Wien Sticky electrons: When repulsion turns into attraction
11:10	05:10	Maria Daghofer University of Stuttgart Ca₂RuO₄ as an excitonic magnet: Spin-orbit coupling and temperature	11:10	05:10	Giorgio Sangiovanni ^{University} of Würzburg Breakdown of low-energy protection in correlated bandstructures	11:10	05:10	Michel Ferrero École Polytechnique and Collège de France, Paris Pseudogap, magnetic correlations and Fermi surface topology in the Hubbard model
11:40	05:40	Ronny Thomale University of Würzburg Kagome metals	11:40	05:40	Mathias Scheurer University of Innsbruck Correlated many-body physics in moiré superlattices of graphene	11:40	05:40	Fedor Šimkovic École Polytechnique and Collège de France, Paris The Fermi-Hubbard Model from a Diagrammatic Monte Carlo Perspective
12:10	06:10	Lunch break	12:10	06:10	Lunch break	12:10	06:10	Lunch break
CEDT PM 02:10	EDT AM 08:10	Poster Ads I	CEDT PM 02:10	EDT AM 08:10	Poster Ads II			
		Numerical approaches to quantum materials			Fractionalization and novel quantum order			Quantum criticality and emergence
02:30	08:30	Numerical approaches to quantum materials Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model?	02:30	08:30	Fractionalization and novel quantum order Piers Coleman Rutgers University and Royal Holloway, University of London Spin Fractionalization in Heavy Electron Materials	CEDT PM 02:30	EDT AM 08:30	Quantum criticality and emergence Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology A quantum critical superconductor and its holographic dual
02:30 03:15	08:30 09:15	Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap:	02:30 03:15	08:30 09:15	Piers Coleman Rutgers University and Royal Holloway, University of London			Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology
		Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model? Lilia Boeri University of Rome			Piers Coleman Rutgers University and Royal Holloway, University of London Spin Fractionalization in Heavy Electron Materials Inti Sodemann Max Planck Institute for the Physics of Complex Systems, Dresden	02:30	08:30	Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology A quantum critical superconductor and its holographic dual Matthias Vojta TU Dresden Emergent mesoscale antiferromagnetism
03:15	09:15	Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model? Lilia Boeri University of Rome Ab-initio design of new conventional superconductors	03:15	09:15	Piers Coleman Rutgers University and Royal Holloway, University of London Spin Fractionalization in Heavy Electron Materials Inti Sodemann Max Planck Institute for the Physics of Complex Systems, Dresden The universal shear conductivity of spinon and electron Fermi surfaces	02:30 03:15	08:30 09:15	Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology A quantum critical superconductor and its holographic dual Matthias Vojta TU Dresden Emergent mesoscale antiferromagnetism near ferromagnetic quantum criticality
03:15 03:45	09:15 09:45	Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model? Lilia Boeri University of Rome Ab-initio design of new conventional superconductors Coffee break Anna Galler Institute of Solid State Physics, TU Wien	03:15 03:45	09:15 09:45	Piers Coleman Rutgers University and Royal Holloway, University of London Spin Fractionalization in Heavy Electron Materials Inti Sodemann Max Planck Institute for the Physics of Complex Systems, Dresden The universal shear conductivity of spinon and electron Fermi surfaces Coffee break Lohannes Knolle TU Munich TU Munich	02:30 03:15 03:45	08:30 09:15 09:45	Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology A quantum critical superconductor and its holographic dual Matthias Vojta TU Dresden Emergent mesoscale antiferromagnetism near ferromagnetic quantum criticality Coffee break Premala Chandra Rutgers University
03:15 03:45 04:10	09:15 09:45 10:10	Antoine Georges Collège de France, Paris and Flatiron Institute, New York Superconductivity, Stripes, Antiferromagnetism and the Pseudogap: What Do We Know Today about the 2D Hubbard model? Lilia Boeri University of Rome Ab-initio design of new conventional superconductors Coffee break Coffee break Institute of Solid State Physics, TU Wien Tackling electronic correlations in rare-earth compounds Sabine Andergassen University of Tübingen Recent advancements in the functional renormalization	03:15 03:45 04:10	09:15 09:45 10:10	Piers Coleman Rutgers University and Royal Holloway, University of London Spin Fractionalization in Heavy Electron Materials Inti Sodemann Max Planck Institute for the Physics of Complex Systems, Dresden The universal shear conductivity of spinon and electron Fermi surfaces Coffee break Johannes Knolle Tu Munich Anomalous Quantum Oscillations and Flat Plasmon Bands in Graphene on a Proximate Quantum Spin Liquid Lexei Tsvelik Brokhaven National Laboratory	02:30 03:15 03:45 04:10	08:30 09:15 09:45 10:10	Jörg Schmalian Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute for Technology A quantum critical superconductor and its holographic dual Matthias Vojta TU Dresden Emergent mesoscale antiferromagnetism near ferromagnetic quantum criticality Coffee break Coffee break Premala Chandra Rutgers University Novel Phases in Quantum Critical Polar Metals Snir Gazit The Hebrew University of Jerusalem Quantum phase transitions between orthogonal