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These transient facts,
These fugitive impressions,

Must be transformed by mental acts,
To permanent possessions.

Then summon up your grasp of mind,
Your fancy scientific,

Till sights and sounds with thought combine
Become of truth prolific.

James Clerk Maxwell: To the Chief Musician upon Nabla: A Tyndallic Ode





Abstract

Single-molecule imaging methods are of importance in structural biology, and specif-
ically in the imaging of proteins, since they can elucidate conformational variability
and structural changes that might be lost in imaging methods relying on averaging
processes. Low-energy electron holography (LEEH) is a promising technique for imaging
individual proteins with negligible radiation damage, which can be combined with a
sample preparation process by native electrospray ion beam deposition (native ES-IBD)
ensuring the creation of chemically pure samples suitable for holographic imaging.
The central step in the analysis of data measured by LEEH is the numerical reconstruc-
tion of the object from the experimentally acquired holograms. Full information about
the imaged object consists of both amplitude and phase information imprinted on the
scattered wave during the interaction of the electron beam with the molecule and encoded
in the hologram created by the interference of the scattered wave and the transmitted
incident wave. A propagation-based algorithm with the goal of reconstructing the wave
field in the plane of the object is presented and applied to holograms of individual proteins
prepared by ES-IBD and measured with a low-energy electron holography microscope.
The information retrieved from the reconstruction of the amplitude distribution in the
object plane is discussed by analysing holograms of antibodies, demonstrating that the
inherent conformational variability of these molecules can be mapped by LEEH. The
influence of the sample preparation process on the surface conformations is tracked by
tuning the landing energy of the proteins during deposition.
To complement the amplitude data, an iterative phase retrieval algorithm is implemented
to reconstruct the phase distribution in the object plane along with the amplitude
distribution. The algorithm’s performance and robustness is thoroughly evaluated and
simulations regarding multiple scattering effects and element-dependent variations in
scattering strength are carried out to provide a reference for the interpretation of phase
data retrieved from experimentally acquired holograms. The iterative phase retrieval
algorithm is then applied to protein data, indicating that both molecular density and
charges can be related to features in the phase reconstructions, while the presence of
metals does not correlate with specific phase signals at the current resolution obtainable
from the experimental data.
Since proteins are inherently three-dimensional, approaches towards three-dimensional
reconstruction schemes are discussed, which will be the focus of future work.

Keywords: low-energy electron holography, hologram reconstruction, phase retrieval,
single-molecule imaging, native electrospray ion beam deposition, protein imaging
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Zusammenfassung

Einzelmolekülmethoden spielen eine wichtige Rolle in der Strukturbiologie, und insbe-
sondere bei der Abbildung von Proteinstrukturen, da sie die Darstellung von konfor-
mationeller Variabilität und von Strukturänderungen erlauben, welche von Methoden,
die Mittelungsprozesse über eine große Anzahl von Molekülen erforden, nicht abgebildet
werden können. Niederenergetische Elektronenholografie (engl. low-energy electron ho-
lography, LEEH) ist eine vielversprechende Methode zur Einzelmolekülabbildung von
Proteinen unter Vermeidung von Strahlenschäden, die sich gut mit einer Probenpräpara-
tion durch Elektrospray-Ionenstrahldeposition (engl: electrospay-ion beam deposition,
ES-IBD) verbinden lässt, wodurch die Produktion chemisch reiner, für die Abbildung
durch LEEH geeigneter Proben gewährleistet werden kann.
Der zentrale Schritt in der Analyse von LEEH-Daten besteht in der numerischen Rekon-
struktion des Objekts aus dem gemessenen Hologramm. Die vollständige Information
über das abgebildete Objekt geht während des Streuprozesses in Form von Amplituden-
und Phasenänderungen auf die einfallende Welle über und wird durch die Intereferenz
zwischen gestreuter und unverändert transmittierter Welle im Hologramm gespeichert.
Ein auf Wellenpropagation basierender Algorithmus zur Rekonstruktion des komplexen
Wellenfelds in der Objektebene wird vorgestellt und auf Hologramme einzelner Prote-
ine, die durch ES-IBD präpariert und mit einem LEEH-Mikroskop gemessen wurden,
angewandt. Die in diesem Prozess gewonnenen Amplitudendaten werden anhand von
Antikörperhologrammen diskutiert, wobei gezeigt wird, dass die dieser Art von Molekülen
inhärente konfomationelle Variabilität durch LEEH abgebildet werden kann. Der Einfluss
des Probenpräparationsprozesses auf die Oberflächenkonformationen wird durch Ände-
rung der kinetischen Energie der Moleküle während des Landungsprozesses untersucht.
Um zusätzlich zu den Amplitudendaten die Phasendistribution in der Objektebene zu
rekonstruieren, wird ein iterativer Algorithmus eingesetzt. Das Verhalten und die Fehler-
robustheit des Algorithmus werden evaluiert und Effekte multiplen Streuens und elemen-
tabhängiger Variationen im Streupotential werden simuliert, um einen Referenzrahmen
für die Interpretation der Phasenrekonstruktion experimentell gemessener Hologram-
me zu schaffen. Die Anwendung des iterativen Phasenrekonstruktionsalgorithmus auf
Proteindaten zeigt, dass sowohl Dichtevariationen im Molekül als auch Ladungen mit
spezifischen Merkmalen in der Phasenrekonstruktion in Verbindung gebracht werden
können; die derzeitige Auflösung erlaubt es jedoch nicht, Phasensignale der Präsenz von
Metalatomen im Molekül zuzuschreiben.
Da Proteine dreidimensionale Objekte sind, werden abschließend verschiedene Ansätze
für eine dreidimensionale Rekonstruktion diskutiert.
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Introduction

Biological function of proteins is often related to structure and structural changes
[1, 2, 3, 4, 5]. Relevant changes can occur on all levels of the structural hierarchy, from
the atomic level to the level of subunits; often, conformational changes in higher levels
of the structural hierarchy (structural motifs, domains, entire subunits) are the result
of small-scale structural alterations [1, 6]. Thus, high-resolution biomolecular imaging
techniques capable of resolving sub-molecular detail play an essential role in answering
biological and biomedical questions on the molecular level [7], with direct consequences
for applications as for example in drug discovery [8, 9, 10].
Currently, the leading techniques for atomically resolved structure determination from
protein ensembles are X-ray crystallography, cryogenic electron microscopy (cryo-EM)
and nuclear magnetic resonance spectroscopy (NMR) [11, 12, 13, 14, 15]. X-ray crys-
tallography calculates the electron density of a protein from X-ray diffraction patterns
of small protein crystals. Because of streamlined, automated processes, it allows fast,
high-throughput structure determination of a large range of proteins [15]. While X-ray
crystallography is not limited in terms of protein size, NMR spectroscopy performs better
for smaller proteins [16]. In NMR spectroscopy, structural detail can be inferred from
the measurement of chemical shifts, the nuclear magnetic resonance frequencies relative
to a standard in an external magnetic field. The distribution of chemical shifts can be
related to the electron distribution, from which distances between the nuclei, and in turn
the molecular structure, can be determined [17]. NMR additionally provides insights into
protein dynamics on various time scales [18, 19].
Recent advances in instrumentation resulted in a growing number of high-resolution
protein structures from cryo-EM imaging [20]. Protein samples are prepared by plunge
freezing [21] and imaged by transmission electron microscopy at low radiation doses,
resulting in a reduced radiation damage, but also reduced contrast, which is compensated
by sophisticated alignment and averaging workflows. While the method can be applied
to proteins that cannot be crystallized, sample preparation is often challenging, and
successful structure determination depends on the performance of the classification algo-
rithms employed to retrieve a molecular structure from a multitude of imaged proteins
in a sample [15].
The large amount of protein structures in the Protein Data Bank (PDB) bears witness
to the success of these techniques regarding protein structure determination. There are,
however, proteins with properties that make them difficult to study with the aforemen-
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Introduction

tioned methods, either because they are not suitable in terms of sample preparation
(e. g. they are not crystallizable) or because they exhibit flexible or disordered domains
or a high degree of conformational variability.
Since all of the techniques mentioned above rely on an averaging step that can involve
thousands of molecules, such structural variability, which can lead to significant differ-
ences in appearance between instances of molecules, complicates the imaging process.
Specifically, features in which the individual molecules differ from one another, will be
averaged out. Thus, the mapping of conformational variability is a major challenge in
protein structure determination [22, 23]. Single-molecule imaging methods, which do not
require averaging, could hence provide relevant complementary information, especially
regarding the imaging of conformationally variable proteins.
Low-energy electron holography (LEEH) is a promising single-molecule technique for
protein imaging since it provides the high contrast required for the imaging of individual
proteins at negligible radiation damage [24, 25, 26]. It operates at low electron energies in
the range of 50-150 eV and is experimentally implemented as a lens-free in-line holography
set-up. The design is based on the imaging geometry originally suggested by Gabor [27],
who first proposed holography as an imaging technique in 1948. In in-line holography,
the electron emitter, the sample and the detector are arranged along the same axis. The
incident wave produced by the emitter (the reference wave) interacts with the sample,
resulting in a scattered wave (the object wave). The interference pattern created by the
object wave and the reference wave at the detector is called the hologram. It encodes the
information about the amplitude and phase distribution of the imaged object, which, since
the hologram is not a real-space image, has to be retrieved by a numerical reconstruction
process.
The fabrication of suitable electron emitters enabled the development of a low-energy
electron in-line holography set-up [28, 29, 30] which allowed for the imaging of suspended
macromolecules [25]. The presence of charging artefacts due to the lack of a substrate
initially hindered the hologram reconstruction. However, with the introduction of single
layer graphene as a substrate [31], the imaging and reconstruction of biomolecules was
facilitated [32], culminating in the demonstration of the LEEH imaging of small, globular
proteins at a resolution of approximately 1 nm [24] when combining LEEH with sample
preparation by native electrospray ion beam deposition (ES-IBD) [33].

Since the image of the object is obtained by numerical reconstruction from the measured
holograms, the development and optimization of reconstruction algorithms is crucial for
successful imaging.
The interaction of low-energy electrons with proteins will lead to both elastic and
inelastic scattering events, resulting in changes to both the amplitude and phase of
the incident wave. The information imprinted on the wave by the scattering processes
is stored in the hologram, which is ultimately recorded in the holographic imaging
process. Hence, data processing and reconstruction to extract the information encoded
in the hologram plays a central role in LEEH. This requires the development of an
image analysis workflow consisting of the image reconstruction and its interpretation
in terms of the molecular structure. Amplitude information can be reconstructed by
a one-step propagation-based algorithm, while phase retrieval and the extraction of
three-dimensional (3D) information require more advanced techniques. So far, only the
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application of the one-step reconstruction has been demonstrated for experimental LEEH
data, while algorithms for phase and 3D analysis have solely been discussed in the context
of simulated examples.
Next to the optimization of the reconstruction process itself, a statistical analysis of the
measured data is essential for the interpretation of the features emerging in both the
amplitude and phase reconstructions since this allows the evaluation of structural details
elucidated on the level of an individual protein by LEEH imaging in comparison to other
molecules.

The goal of this thesis is to apply LEEH imaging to a wide range of proteins, including
proteins with a high degree of structural flexibility, and to explore the structural infor-
mation encoded in both the amplitude and phase reconstructions of protein holograms.
This is achieved by optimizing amplitude and phase reconstruction algorithms and by a
subsequent detailed analysis of the results of applying those algorithms to experimentally
acquired holograms of proteins.
Chapter 1 provides the mathematical background of hologram formation and reconstruc-
tion and details both the numerical implementation of the reconstruction algorithm as
well as the experimental set-up.
In Chapter 2, the imaging of proteins exhibiting conformational variability is studied
using the example of antibody molecules. LEEH’s capability of distinguishing different
antibody conformations and of mapping the structural variability of flexible proteins is
demonstrated. Furthermore, the relationship between the ES-IBD sample preparation
process and the observed surface conformations is explored by an in-depth statistical
analysis. Different classes of surface conformations are related to processes occurring
in the gas phase as well as during the landing on the graphene surface, and the role of
the landing energy regarding the abundance of certain types of surface conformations is
elucidated.
Chapters 3 and 4 address phase reconstruction and the interpretation of phase data. An
iterative phase retrieval algorithm and its numerical implementation are presented and
characterized in detail in Chapter 3. Its performance and robustness with respect to
artefacts is quantified. Simulations modelling the effects of multiple scattering and locally
different scattering strengths on the phase reconstruction are performed and discussed in
terms of possible interpretations of phase data.
In Chapter 4, the iterative phase retrieval algorithm is applied to experimentally acquired
holograms. Different possible contributions to the phase reconstructions are considered.
The experimental evidence suggests that the reconstructed phase distribution is related
to the molecular density. Charges and local changes in electric potential can also affect
the reconstructed phase distribution, whereas a change in local scattering strength due
to the presence of metals could not be detected at the current resolution.
Chapter 5 explores first steps towards a three-dimensional (3D) reconstruction. An
approach towards 3D reconstruction based on an iterative deconvolution algorithm with
a single-hologram input is discussed with the aid of simulated examples, and general
considerations regarding a tomographic reconstruction within the LEEH framework are
outlined.
Chapter 6 summarizes the results presented in this thesis and provides an outlook onto
future projects.
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1 Low-energy electron holography:
theory and experimental set-up

Holography as an imaging method was developed by Dennis Gabor in 1947 [34] as
part of his quest to achieve atomic resolution with electron microscopes. In 1933, the
electron microscope, first introduced by Max Knoll and Ernst Ruska in 1931 [35], was
shown to be capable of achieving higher resolution than traditional optical microscopes
[36]. The resolution was, however, still far from atomic resolution. While the deBroglie
wavelength of high energy electrons (100 keV - 1 MeV) as used in electron microscopy is
in the picometer range, i. e. much smaller than the atomic diameter, and would thus in
principle allow for atomic resolution, the aberrations of the electron lenses, specifically
spherical and chromatic aberrations [37], led to a theoretical resolution limit of 4 Å and to
a practical resolution limit of approximately 12 Å by the mid 1940s, which made atomic
resolution impossible to attain. Gabor realized that an improvement of the electron
lenses sufficient to allow for atomic resolution would be extremely difficult to achieve [38].
Indeed, it took another 50 years until the development of spherical-aberration-corrected
electron lenses [39].
Instead of working on improving the performance of electron lenses, Gabor suggested
to overcome the limitations of electron optics by making use of the wave nature of
electrons, in particular the ability of coherent waves to create interference patterns. This
allowed him to propose a microscopic set-up that did not require any electrostatic or
electromagnetic lenses [27, 38]. By superimposing the wave scattered by the object with
a coherent reference wave, an interference pattern that stores the full information about
the object wave is created. This property of the imaging process inspired the name Gabor
chose for the new technique: the word holography is a combination of the Greek words
holos (whole) and graphē (to write, draw). Gabor predicted that from this interference
pattern, when recorded and subsequently illuminated by the reference wave, the object
wave could be reconstructed [27, 38, 34]. He envisioned this “new microscopic principle”
[27] as a two-step process. The first step consists of the creation of the interference
pattern using an electron beam, in the second step, the object would be reconstructed via
a light-optical process. Since low-aberration optical lenses are much easier to fabricate
than low-aberration electron lenses, using a light-optical reconstruction process can
circumvent the problems induced by the electron lens aberrations [27, 38]. In order to
employ light in the second step, the hologram produced by the electron beam has to be
scaled up to account for the difference in wavelength between electrons and visible light.
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The incorporation of the reference wave into the imaging process, which is the main
difference between holographic and diffractive imaging, allows the storage of spatial
information in the interference pattern, which makes this technique suitable for imaging
any kind of object without requirements regarding symmetry or periodicity [40].
Gabor provided a proof of principle of the holography method in 1947 using an optical
setup consisting of a mercury lamp and a pinhole as a partially coherent source, micropho-
tographs as objects and a photographic plate to record the hologram [27, 38, 34]. Since
holography requires coherent sources, which are needed to create interference patterns,
the method only became widely applied in the early 1960s, when the advent of the laser
[41, 42] provided a coherent and bright radiation source.
Dennis Gabor was awarded the Nobel prize in physics for the development of holography
in 1971. Today, the holographic imaging method is used in a wide range of experimental
set-ups: in optical settings with lasers [43, 44], in X-ray [45, 46, 47] and free-electron
laser [48] applications, and in electron microscopy, both at high [49, 50, 51, 52] and low
electron energies [24, 53]. Two different imaging geometries are commonly used, referred
to as in-line geometry and off-axis geometry. In an in-line geometry, object wave and
reference wave share the same optical axis, while in an off-axis geometry, the two waves
propagate along different axes and are only superimposed in the detector plane. While
the former geometry can be implemented without the use of lenses, the latter requires
lenses. Thus, in imaging situations for which aberration-corrected lenses are available,
an off-axis geometry, as first demonstrated by Leith and Upatnieks in 1962 [54], is often
employed, since it facilitates the removal of the twin image [49, 55], a contribution to the
hologram that prevents perfect reconstruction (see section 1.1.1). An in-line geometry
for holographic imaging is preferable when no suitable aberration-corrected lenses are
available for the radiation type used for imaging.

The goal of this thesis is to investigate electron holography as an imaging method for
biomolecules at the single-molecule level. When applying holography to the single-
molecule imaging of biomolecules, such as proteins, several factors have to be taken into
account in choosing a suitable imaging set-up and radiation source. Specifically, three
main parameters have to be considered: the desired resolution, which, since the length
scales of interest in protein imaging are in the angstrom range, would ideally be in the
size range of a single atom, the achievable image contrast and the radiation damage
induced by the irradiating beam. These parameters cannot be independently selected, as
will be discussed in the following section.
To obtain sufficient contrast for imaging proteins at the single-molecule level without
averaging or staining, high scattering cross sections characterising the interaction between
the molecules and the beam are necessary. The electron scattering cross sections increase
with decreasing energy, reaching a maximum around 100 eV [56, 57, 58]. Diffraction-
limited resolution depends on the wavelength, hence, in that respect, high energies, which
correspond to short wavelengths, are advantageous.
In theory, resolution is only limited by the wavelength and the optical system (e.g. by
electron lenses), in practice, radiation damage is an additional limiting factor regarding
the attainable resolution of an imaging technique, especially when investigating radiation-
sensitive objects such as biomolecules [59, 60, 61]. The main types of radiation damage
are atomic displacement (knock-on damage), associated with high-angle elastic scattering
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events [61, 62, 63], and radiolysis [61, 62], the breaking of bonds by ionising radiation.
Radiolysis is the result of inelastic scattering processes and can both be induced by
primary radiation, i. e. the incoming beam, as well as by secondary electrons generated by
the primary damage [60, 64]. Radiation damage during imaging can significantly reduce
the achievable resolution. For high resolution imaging, radiation damage must thus
either be minimized, e. g. by introducing cryogenic conditions, which reduces damage
by secondary electrons [60, 62], or “outrun”, i. e. the imaging process has to happen on
a shorter timescale than the damage (“diffraction before destruction” [65, 66]). Since
radiation damage is more severe in photon irradiation than in electron irradiation, as
the energy transferred per inelastic scattering event is larger [67], the latter concept is
mainly pursued in XFEL imaging [65, 66].
Atomic displacement does only significantly contribute to radiation damage at high
energies because it requires incident energies above a threshold energy [62], which
depends on the atomic number Z of the target atom; energies sufficient for hydrogen
displacement are in the range of 5 keV [67]. Higher scattering cross sections at lower
energies yield higher image contrast, and hence an increased information content per
image at a fixed dose. While this speaks in favour of employing low-energy electrons for
imaging single biomolecules, it would seem that the drawback would be an increase in
radiation damage by radiolysis. However, experimental studies with low-energy electrons
(∼ 100 eV) have shown that proteins appear to be stable on the time scale of minutes
[24, 25] even at electron doses [25, 26] exceeding those typically employed in electron
microscopy [59, 11]. The interaction of low-energy electrons and biological matter is
complex, hence radiation damage in this energy range is not yet fully understood. Despite
the high cross sections and the corresponding short inelastic mean free paths in the
nanometer range [57], there are indications that mechanisms exist, which limit the
radiation damage by beams of very low incident energies in the range of 100 eV [61, 26],
especially when imaging thin samples. In thin samples, such as individual proteins, whose
thickness is in the order of magnitude of the inelastic mean free path, smaller amounts
of secondary electrons are produced. Additionally, in the case of thin samples, these
secondary electrons can escape into vacuum before interacting with the object [61, 68],
which reduces the amount of multiple scattering processes within the sample. Moreover,
at very low beam energies, the incident electrons may not have sufficient energy to
create a large number of secondary electrons, thereby limiting radiation damage [61, 68].
Depending on the dominant ionization mechanism underlying radiolysis, there could be
energy thresholds below which radiation damage would decrease dramatically, e. g. if
only K-shell ionization, which requires energies exceeding certain, element-dependent
thresholds, would significantly contribute to ionization-related damage [61, 69, 70, 71].
While experimental evidence of low-energy electron imaging shows that radiation damage
does not seem to be critical for imaging at a resolution of approximately 1 nm [24], since
no structural changes are observed at this length scale, it is of course possible that the
radiation damage occurs on smaller lengths scales while leaving the overall molecular
structure intact.
These considerations imply that thin samples, such as single proteins, could be imaged
by low-energy electrons with minimal radiation damage. Holography with low-energy
electrons in the range of 50-200 eV hence appears to be a promising candidate for non-
destructive biomolecular imaging, even over longer time scales in the range of minutes.
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Since lens corrections at these energies are very difficult to engineer as aberrations are
energy-dependent and are stronger at low energies [72], the lensless in-line geometry
originally proposed by Gabor [27, 38] is the preferable imaging geometry for this energy
range.

This chapter will be divided into two parts: the first part will expound the theory of
in-line holography, starting from general principles and covering both the mathematical
formulation and the numerical implementation of hologram formation and reconstruction.
Furthermore, coherence of the source as a prerequisite of holography as well as the
achievable resolution will be discussed. The second part will focus on the application of
holography to the specific case of single-molecule imaging of biomolecules with low-energy
electrons in an in-line holography microscope. The experimental set-up as well as the
sample preparation steps required for successful imaging of biomolecules with low-energy
electron holography will be explained in detail.

1.1 Holography Theory

1.1.1 General principle of holography

Holographic imaging is based on the superposition of the wave front diffracted by an
object (the object wave) with a coherent background wave front that has not interacted
with the object (the reference wave). This superposition leads to the interference of
the reference wave with the coherent part of the object wave, creating an interference
pattern that stores information about both the amplitude and phase distribution of the
object [27, 38]. A record of this interference pattern on a detector or a photographic
plate, which encodes the modulus squared of the complex wave field in the detector
plane, is referred to as the hologram. Maxima in the hologram correspond to regions in
which the object wave and the reference wave had the same phase, which resulted in a
constructive interference of the two waves. Thus, if the recorded hologram, e. g. in the
form of a photographic plate, is in turn illuminated by the reference wave, the phases in
the regions of maximum transmission will coincide with the phases of the object, and the
variation of transmissibility will map the amplitude modifications induced by the object
[27]. As a result, the object can be reconstructed from the hologram by illumination
with the reference wave.
In in-line holography, the experimental geometry for holographic imaging discussed in this
thesis, reference wave and object wave share the same optical axis. Hence, the reference
wave itself is used to illuminate the object during hologram generation [27, 38, 73] (see
Fig. 1.1). When using a point source to illuminate an object, the reference wave has
the form of a spherical wave, which results in the geometric magnification of the object
without the need for any optical elements. While part of the incident reference wave is
scattered due to the interaction with the object, resulting in the creation of the object
wave, most of the reference wave will pass through the object plane without scattering.
Behind the object, the reference wave and the object wave interfere, and the resulting
wavefront propagates to the detector, where it is recorded as a hologram (see Fig. 1.1).
The hologram formation comprises the first step of the two-step holographic imaging
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process [38]. As a second step, the wave front in the object plane, which is usually referred
to as the exit wave [73], is reconstructed from the hologram, retrieving information about
the imaged object.
The superposition of object wave and reference wave in the detector plane yields several
contributions to the hologram. The complex wave field U created by the interference has
the form

U = ψR + ψO, (1.1)

where ψR and ψO denote the reference wave and the object wave, respectively. Since the
hologram H actually recorded by a detector is a real-valued quantity, it takes the form
of the modulus squared of the complex wave field U ,

H = |U |2 = |ψR + ψO|2 = ψRψ
∗
R + ψOψ

∗
O + ψRψ

∗
O + ψ∗

RψO, (1.2)

where * denotes the complex conjugate.
The reference wave is assumed to be a monochromatic wave of amplitude aR and phase
φR, i. e. ψR = aRe

iφR . The object wave can analogously be written as ψO = aOe
iφO . aR,

aO, φR and φO are real-valued. In the following, the letter U will be used to denote
complex-valued wave fields, whereas the letter a is used for real-valued amplitudes.
Substituting the definitions of ψR and ψO into eq. (1.2) yields

H = |aR|2 + |aO|2 + aRe
iφRa∗

Oe
−iφO + a∗

Re
−iφRaOe

iφO (1.3)
= a2

R + a2
O + aRaOe

−i(φO−φR) + aRaOe
i(φO−φR). (1.4)

Since the amplitudes are real-valued, i. e. a∗
i = ai with i = {R,O}, the modulus squared

of the amplitudes has been replaced by the squares of the amplitudes in the second step
and the * has been dropped. The first term, a2

R, is the intensity contribution of the
reference wave, which, in the ideal case of uniform illumination, is constant. The second
term, a2

O, is the intensity contribution of the object wave, and the last two terms, which
are complex conjugates of one another, encode the interference effects.
An illumination of the hologram with the reference wave thus results in the reconstructed
wave field

Urec = ψRH = aRe
iφR

[
a2

R + a2
O + aRaOe

−i(φO−φR) + aRaOe
i(φO−φR)

]
(1.5)

= a2
Re

iφR

[
aR + a2

O

aR
+ aOe

−i(φO−φR) + aOe
i(φO−φR)

]
. (1.6)

Comparing this to the complex wave field created by the interference of the object wave
with the reference wave

U = ψR + ψO = aRe
iφR + aOe

iφO = eiφR

[
aR + aOe

i(φO−φR)
]
, (1.7)

it is evident that the first and the last term in the brackets of eq. (1.6) are the same as
in eq. (1.7) apart from the factor a2

R, which is constant if the reference wave provides
a uniform background. Thus, if eq. (1.6) is to reconstruct U as given in eq. (1.7), it
needs to be shown that the other two terms appearing in eq. (1.6) do not significantly
contribute to the reconstructed wave field [38]. The second term, which originates from
the scattered intensity, is small if the scattered amplitude aO is much smaller than the
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(x,y) (X,Y)

U= ψR+ψO

ψR

source object detector

zz0

H=|U|2

Figure 1.1: Schematics of in-line holography: In-line holography requires a source producing
the reference wave ψR, which subsequently interacts with the object. This leads to a scattered
wave ψO which interferes with the reference wave to form the wave front U = ψR + ψO that
propagates to the detector. Lowercase letters (x, y) denote the spatial coordinates in the object
plane, while uppercase letters (X,Y ) represent the coordinates in the detector plane. In in-line
holography with a spherical incident wave, the source-to-sample distance, z0, is in general several
orders of magnitude smaller than the sample-to-detector distance, z, which allows for large
geometric magnification factors.

amplitude of the reference wave aR. By using a bright source, this condition can be
fulfilled.
The third term in eq. (1.6) is the complex conjugate of the fourth term, i. e. it has the
same amplitude, but phases of opposite sign. While the fourth term represents the wave
originally scattered by the object (the exit wave), the third term constitutes the so-called
twin image, which appears in focus in a plane that is symmetric to the object plane with
respect to the source [38, 74] (see Fig. 1.2). The ambiguity resulting in the twin image is
due to the lack of absolute phases measured at the detector. While the relative phases
are encoded in the interference pattern, they do not allow a unique determination of the
sign of the reconstructed object’s phase, i. e. both the object and the point-symmetric
twin object with phases of different sign would produce the same hologram. Thus, the
third term in eq. (1.6) describes an out-of-focus contribution of the twin image to the
reconstruction of the exit wave.
To eliminate the contributions by the twin image and hence retrieve the accurate
reconstruction of the object, one has to find experimental or numerical schemes to
separate the two signals. Experimentally, this is possible by increasing the source-to-
sample distance z0, which in turn increases the separation of object and twin image and
thus reduces the out-of-focus contribution. High-magnification imaging in an in-line
geometry, however, requires small source-to-sample distances. By changing the geometry
to an off-axis set-up [54], the twin-image contribution can easily be separated from the
object reconstruction [49, 55], this, however, requires the use of optical elements. A
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numerical scheme for eliminating the twin image contribution and thereby recovering the
object’s phase distribution is presented in Chapter 3.

object

source

twin image

z0 z0 z

Figure 1.2: Twin image: Because the absolute phases at the detector are not known, the
reconstruction process yields two images, the object and its twin image with identical amplitudes
and phases of opposite sign. The twin image appears in point symmetry to the object with
respect to the source.

1.1.2 Mathematical formulation of holography

In the previous section, the general principle underlying holography has been described.
In order to formulate an algorithm for reconstruction, the mathematical form of the
quantities involved has to be understood, specifically, the relation between the complex
wave front U and the properties of the object needs to be elucidated. Since U is formed
by diffraction at the object and subsequent wave front interference, the general principles
of diffraction are reviewed and subsequently applied to in-line holography.

Diffraction

Diffraction is the result of the interaction of a wave with an object or an aperture which
leads to a change of the wave front’s propagation direction that allows the wave to spread
into regions defined by the geometrical shadow of the object, i. e. regions that would
not be accessible to the incident wave. Such phenomena have first been described by
Grimaldi in the 17th century, who also first used the term diffraction [75, 40]. In 1818,
Fresnel [76] was able to explain diffraction effects by combining Huygens’ proposal [77]
that every point on a wave front can be viewed as the source of a spherical wave, whose
envelope forms the wavefront at any later time, with the principle of interference [40].
This is know as the Huygens-Fresnel principle.
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Q χ

P0 P

r0 r1

S

Figure 1.3: Huygens-Fresnel principle for free-space propagation: To calculate the complex
wave field at a point P , the contributions of all spherical waves emanating from points on the
wavefront S (such as Q) have to be integrated. The wavefront S is formed by the spherical wave
emitted from the source at P0.

Mathematically, it can be expressed in the following way [40]: Starting from a point source
at P0, which emits a monochromatic spherical wave U0(r0) = A0eikr0

r0
with amplitude A0

and wave number k, a wave front S with radius r0 can be constructed (see Fig. 1.3).
Following Huygens, each point on the wavefront S can now be considered as the origin
of another spherical wave. As an example, the point Q on S is considered, which is the
origin of the spherical wave of unit amplitude UQ = eikr1

r1
, where r1 is the distance to

the point P at which the complex wave field is to be evaluated (see Fig. 1.3). Thus,
the contribution to the complex wave field U(P ) at P originating from the wave front
element dS at Q is given by

dU(P ) = K(χ)A0e
ikr0

r0

eikr1

r1
dS. (1.8)

K(χ) is called the inclination factor and encodes the influence of the diffraction angle
χ, with K being maximal for χ = 0 and zero for χ = π

2 , which would correspond to QP
being tangential to S [40]. Since not only Q, but all points on S contribute to the wave
field at P , U(P ) takes the form

U(P ) = A0e
ikr0

r0

∫∫
S
K(χ)e

ikr

r
dS, (1.9)

where the integration over S takes into account the different distances r between the
points on the wave front and P , as well as the respective diffraction angles χ.
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By comparing this result to the experiment, Fresnel concluded that an additional factor
− i

λ must be included in eq. (1.9) [40], yielding

U(P ) = − i

λ

A0e
ikr0

r0

∫∫
S
K(χ)e

ikr

r
dS. (1.10)

The origin of this term becomes clear when looking at Kirchhoff’s mathematically rigorous
formulation of the theory of diffraction [40].

Kirchhoff demonstrated that the Huygens-Fresnel principle is an approximation of an
integral theorem, known as the Kirchhoff integral theorem. This theorem provides the
solution of the homogeneous wave equation

(∇2 + k2)U = 0 (1.11)

at a point P as a function of both the solution of the wave equation and its first derivative
at all points of a closed surface encompassing P [40]. In the following, U is considered to
be the spatial part of a monochromatic scalar wave with wave number k. For two wave
functions U and U ′, Green’s second identity holds, i. e.∫∫∫

V
(U∇2U ′ − U ′∇2U)dV = −

∫∫
S

(
U
∂U ′

∂n̂
− U ′∂U

∂n̂

)
dS, (1.12)

if U and U ′ have continuous first and second partial derivatives within the integration
volume V and on its surface S = ∂V [40]. ∂

∂n̂ designates the derivative with respect to
the inward normal of S. If U and U ′ both satisfy the homogeneous wave equation, the
left side of eq. (1.12) is zero, which yields∫∫

S

(
U
∂U ′

∂n̂
− U ′∂U

∂n̂

)
dS = 0. (1.13)

In order to derive a solution for U , U ′ can be set to U ′ = eikr

r , where r is the distance to
a point P within the volume V at which U is to be evaluated. U ′ has a singularity at
P (r = 0), hence P cannot be part of the integration domain. This can be taken into
account by including a small sphere around P as a second integration surface S1. This
results in∫∫

S

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS +

∫∫
S1

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS = 0. (1.14)

Evaluating the partial derivative of U ′ in the second term of eq. (1.14) leads to
∫∫

S

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS = −

∫∫
S1

(
U
eikr

r

(
ik − 1

r

)
− eikr

r

∂U

∂n̂

)
dS, (1.15)

with ∂
∂n̂

eikr

r = ∇ eikr

r · n̂ = eikr

r (ik − 1
r ). The last equality holds because the surface S1

that n̂ is normal to is a sphere, hence in spherical coordinates only the radial derivative
remains, i. e. ∇ eikr

r · n̂ = ∂
∂r

eikr

r · r̂.
Since the surface S1 has been chosen as a sphere, the integral can be rewritten in
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spherical coordinates by expressing the surface element dS in terms of the solid angle
dΩ, dS = s2dΩ. With this, the integral takes the form∫∫

S

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS = −

∫∫
Ω

(
U
eiks

s
(ik − 1

s
) − eiks

s

∂U

∂n̂

)
s2dΩ (1.16)

= −
∫∫

Ω
eiks

(
iksU − U − s

∂U

∂n̂

)
dΩ. (1.17)

In the limit s → 0, the first and the third term of eq. (1.17) vanish, thus the right hand
side of the integral yields 4πU . This leads to the final form of the Kirchhoff integral
theorem

U(P ) = 1
4π

∫∫
S

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS. (1.18)

From the Kirchhoff integral theorem (eq. (1.18)), an expression for U(P ) can be derived
that closely resembles the integral form of the Huygens-Fresnel principle (eq. (1.9)),
which is useful for calculating the diffraction resulting from the interaction with an object
and can hence be applied in holography theory. This form of the integral theorem is
known as the Fresnel-Kirchhoff diffraction formula [40, 38].
To derive the Fresnel-Kirchhoff diffraction formula, one can consider the situation depicted
in Fig. 1.4: a monochromatic, spherical wave U(r0) = a eikr0

r0
emitted from a source at

P0 that propagates towards a barrier with an aperture. The value of the complex wave
field is evaluated at a point P behind the barrier. The aperture is assumed to be large
in comparison to the wavelength λ = 2π

k , but small in comparison to the distances r0
and r of P0 and P to the barrier. U(P ) can be calculated by evaluating the Kirchhoff
integral theorem on a closed surface formed by the aperture, the barrier and a sphere of
radius R centred around P that intersects the barrier and thereby closes the surface. The
integral can hence be split into three parts which are integrated over the three different
contributions to the closed surface: the aperture (S1), the barrier (S2), and the section
of the sphere (S3) (see Fig. 1.4). This yields:

U(P ) = 1
4π

∫∫
S1

+
∫∫

S2
+
∫∫

S3

(
U
∂

∂n̂

eikr

r
− eikr

r

∂U

∂n̂

)
dS. (1.19)

For an exact solution of the Kirchhoff integral theorem, the values of both U and ∂U
∂n̂

would have to be known for all three parts of the integration surface. This is in general
not the case, however, reasonable approximations can be made.
For the segment S1, it can be assumed that U and ∂U

∂n̂ are the same as in the case of free
propagation without an object present:

US1 = a
eikr0

r0
and ∂US1

∂n̂
= a

eikr0

r0

(
ik − 1

r0

)
cos(θ0), (1.20)

where the factor cos(θ0) comes in since ∂US1
∂n̂ = ∇US1 · n̂.

In the segment S2, at the barrier, both quantities can be assumed to be zero, i. e.

US2 = 0 and ∂US2

∂n̂
= 0. (1.21)
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P0

Pr0

n̂

S3

R

Q
r

S2

S1

θ0
θ1

Figure 1.4: Derivation of the Fresnel-Kirchhoff diffraction formula: The Kirchhoff
diffraction theorem is evaluated over the combined surface S1 +S2 +S3, where S1 is the aperture
(green), S2 is the barrier (blue) and S3 is a sphere of radius R centred on P (red). P0 is the
source of a spherical wave, n̂ is the normal to the barrier, θ0 and θ1 are the angles of r0 and r
form with the normal, respectively.

Equations (1.20) and (1.21) comprise Kirchhoff’s boundary conditions [40].
The remaining contribution from S3 becomes negligible if R is chosen so large that at
the time the wave field at P is evaluated, no contribution from S3 could have reached P .
This implies that the wave field comes into existence at a certain point in time t0 and
then takes time t to reach a radial extension of R. Since strictly monochromatic waves
exist at all times, the argument only holds for not strictly monochromatic waves, hence
the resulting formula is only an approximation of the integral theorem.
With

∂

∂n̂

eikr

r
= eikr

r

(
ik − 1

r

)
cos(θ1), (1.22)

the Fresnel-Kirchoff diffraction formula takes the form

U(P ) = 1
4π

∫∫
S1

[
a
eikr0

r0

eikr

r

(
ik − 1

r

)
cos(θ1) − eikr

r
a
eikr0

r0

(
ik − 1

r0

)
cos(θ0)

]
dS.

(1.23)

= − i

2λ

∫∫
S1

[
a
eik(r0+r)

r0r
(cos(θ0) − cos(θ1))

]
dS. (1.24)

In the last step, the assumption that the wavelength is much smaller than the distances
r0 and r, λ ≪ r0 and λ ≪ r, which, with k = 2π

λ , implies k ≫ 1
r0

and k ≫ 1
r , has been

used to drop the terms involving 1
r0

and 1
r .
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Comparing to eq. (1.9), the prefactor has been mathematically justified, and an expression
for K(χ) has been found in terms of the angles θ0 and θ1.

Application to holography

The Fresnel-Kirchhoff diffraction formula can be directly applied in the context of in-line
holographic imaging [38, 73] as depicted in Fig. 1.1. While in general, the objects
imaged by holography are three-dimensional, the discussion in this section focuses on
two-dimensional objects, corresponding to a projection of a three-dimensional object
into a plane, for enhanced mathematical clarity. Such an object can be described by
a complex-valued transmission function t(x, y), where x and y are the coordinates in
the object plane. For the conditions utilized in the derivation of the Fresnel-Kirchhoff
diffraction formula to hold, t should not vary noticeably on length scales smaller than
the wave length of the incident radiation [38]. Assuming a spherical wave as incident
illumination, the application of the Fresnel-Kirchhoff diffraction formula yields the wave
field at a point P = (X,Y ) in the detector plane:

U(P ) = − i

2λ

∫∫ [
t(x, y)e

ik(r0+r1)

r0r1
(cos(θ0) − cos(θ1))

]
dxdy, (1.25)

where r0 is the source-to-sample distance and r1 the sample-to-detector distance and the
amplitude a in eq. (1.24) has been replaced by the transmission function t(x, y). The
integration is carried out over the coordinates of the object plane. For small opening
angles of the incident beam, which is the case in most experimental in-line holography
set-ups, cos(θ0) = − cos(θ1) ≈ 1, hence

U(X,Y ) = − i

λ

∫∫ [
t(x, y)e

ik(r0+r1)

r0r1

]
dxdy. (1.26)

This integral can also be interpreted as the exit wave Uexit(x, y) = Uincident(x, y)t(x, y)
being propagated to the detector by a propagator function of the form [73]

exp (ik|r − R|)
|r − R|

, (1.27)

where |r − R| denotes the distance between a point r = (x, y, z) in the object plane and
a point R = (X,Y, Z) in the detector plane.
Representing the coordinates in that way, the complex wave field Udet at a point (X,Y )
in the detector plane for an incident spherical wave Uincident = eikr

r can be evaluated as

Udet(X,Y ) = − i

λ

∫∫ [
t(x, y)e

ikr

r

e(ik|r−R|)

|r − R|

]
dxdy. (1.28)

For small opening angles, the paraxial approximation is valid, hence r and |r − R|, which,
when calculated exactly takes the form |r − R| =

√
(x−X)2 + (y − Y )2 + (z − Z)2, can
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be approximated by the expressions [38, 73]

r ≈ z + x2 + y2

2z (1.29)

|r − R| ≈ Z + (x−X)2 + (y − Y )2

2Z , (1.30)

which can be derived by expanding the square root. In eq. (1.30), the fact that z ≪ Z has
additionally been taken into account, a condition necessary for magnifying the image in
the lens-free in-line set-up. The use of the paraxial approximation significantly simplifies
the evaluation of the diffraction integral and is common in many applications of in-line
holography [38, 73, 78, 79].
Inserting those expressions into the arguments of the exponentials in eq. (1.28) and
approximating the denominators by the first-order terms of the respective expansions
results in

Udet = − i

λ

∫∫ t(x, y)
exp

(
ik
(
z + x2+y2

2z

))
z

exp
(
ik
(
Z + (x−X)2+(y−Y )2

2Z

))
Z

dxdy

(1.31)

= − i

λzZ
e(

2πi
λ

(Z+z))
∫∫

t(x, y)e(
iπ
λz

(x2+y2))e(
iπ
λZ

((x−X)2+(y−Y )2))dxdy (1.32)

= − i

λzZ
e(

2πi
λ

(Z+z))e(
iπ
λZ

(X2+Y 2))
∫∫

t(x, y)e(
iπ
λz

(x2+y2))e(
iπ
λZ

(x2+y2))e(− 2πi
λZ

(xX+yY ))dxdy.
(1.33)

Since z ≪ Z holds, the contribution of the term exp
(

iπ
λZ (x2 + y2)

)
is much smaller than

that of exp
(

iπ
λz (x2 + y2)

)
, hence it can be neglected, yielding

Udet(X,Y ) = − i

λzZ
e(

2πi
λ

(Z+z))e(
iπ
λZ

(X2+Y 2))
∫∫

t(x, y)e(
iπ
λz

(x2+y2))e(− 2πi
λZ

(xX+yY ))dxdy.
(1.34)

This equation takes the form of a Fourier transform as defined in eq. (1.44).
While the complex wave field at the detector can in principle be evaluated this way, it
is useful to bring this integral into the form of a convolution since this facilitates its
numerical evaluation by allowing the use of the convolution theorem.
The convolution f ∗ g of two functions f and g is defined as

f ∗ g(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ. (1.35)

Eq. (1.34) can be rewritten as

Udet(X,Y ) = − i

λzZ
e(

2πi
λ

(Z+z))e(
iπ
λZ

(X2+Y 2)(1− z
Z

))
∫∫

t(x, y)e(
iπ
λz

((x−X z
Z

)2+(y−Y z
Z

)2))dxdy.
(1.36)
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Setting X ′ = X z
Z and Y ′ = Y z

Z , the integral takes the form of a convolution:

Udet(X,Y ) ∝ − i

λz

∫∫
t(x, y)e(

iπ
λz

((x−X′)2+(y−Y ′)2)dxdy (1.37)

=
∫∫

t(x, y)s(x−X ′, y − Y ′)dxdy (1.38)

= (t ∗ s)(X ′, Y ′), (1.39)

with

s(x, y) = − i

λz
e(

iπ
λz

(x2+y2)). (1.40)

Ignoring the constant prefactors, the hologram H generated from a transmission function
t thus takes the form

H(X,Y ) = |Udet(X,Y )|2 = |(t ∗ s)(X,Y )|2. (1.41)

Equations (1.28) - (1.41) describe the process of hologram generation. Hologram recon-
struction can be treated in the same way, by replacing t(x, y) by H(X,Y ) in eq. (1.39),
changing the propagation direction by reversing the sign of the argument of the propaga-
tor function s, and integrating over the detector plane instead of the object plane [73].
This yields the reconstructed exit wave

Uexit(x, y) ≈ i

λz

∫∫
H(X,Y )e(− iπ

λz
(x2+y2))dXdY = (H ∗ s∗)(x, y), (1.42)

where s∗(x, y) = i
λz exp

(
− iπ

λz (x2 + y2)
)

denotes the complex conjugate of the propagator
function s (eq. (1.40)).
The main difference between hologram reconstruction and hologram simulation is that the
transmission function t is in general complex-valued, hence full knowledge of t will yield
an exact value of Udet, while the hologram H is always a real-valued. Thus, the exit wave
calculated by eq. (1.42) is not an exact reconstruction of the transmission function since
the absolute phases in the detector plane are unknown. Eq. (1.42), however, works well
in many situations, approaches overcoming this ambiguity will be discussed in Chapter 3.
For the numerical implementation of hologram simulation and reconstruction, the con-
volution form is advantageous since it allows the integral to be expressed in terms of
two Fourier transforms, which are very easy to evaluate numerically via the convolution
theorem.
The convolution theorem states that the Fourier transform of a convolution of two
functions is equal to the product of the Fourier transforms of the individual functions:

F(f ∗ g) = F(f)F(g), (1.43)

where F(f) denotes the Fourier transform of a function f , which is defined as

F(f)(p) =
∫ ∞

−∞
f(x)e−2πipxdx. (1.44)
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The theorem can be derived by inserting the definition (1.44) into the left hand side of
eq. (1.35):

F(f ∗ g) =
∫ ∞

−∞
e−2πipt

[∫ ∞

−∞
f(τ)g(t− τ)dτ

]
dt. (1.45)

Since the integration limits are infinite, setting x = t− τ does not change them, hence
this yields

F(f ∗ g) =
∫ ∞

−∞
e−2πipxe−2πipτ

∫ ∞

−∞
f(τ)g(x)dτdx (1.46)

=
∫ ∞

−∞
f(τ)e−2πipτ dτ

∫ ∞

−∞
g(x)e−2πipxdx (1.47)

= F(f)F(g), (1.48)

which proves the theorem.
With the help of the convolution theorem, a convolution of two functions can be expressed
as

f ∗ g = F−1(F(f)F(g)), (1.49)

where F−1 denotes the inverse Fourier transform, i. e.

f(x) = F−1(F(f)(p)) =
∫ ∞

−∞
F(f)(p)e2πipxdp. (1.50)

Hence Udet and Uexit can be written as

Udet = F−1(F(t)F(s)) (1.51)

Uexit = F−1(F(H)F(s∗)) (1.52)

in terms of the transmission function t, the hologram H and the propagator function s
and its complex conjugate s∗.
Equations (1.51) and (1.52) can directly be used to develop an algorithm for hologram
simulation and reconstruction (see section 1.1.3). Thus, as a last step before turning to
the numerical implementation, F(s) needs to be calculated.
Since s (eq. (1.40)) has the form of a Gaussian function, its Fourier transform is straight-
forward to compute by completing the square in the argument of the exponential:

F(s)(u, v) = − i

λz

∫ ∞

−∞

∫ ∞

−∞
e

iπ
λz

(x2+y2)e−2πi(ux+vy)dxdy (1.53)

= − i

λz

∫ ∞

−∞

∫ ∞

−∞
e

iπ
λz ((x−λzu)2+(y−λzv)2)e−iπλz(u2+v2)dxdy (1.54)

= − i

λz
e−iπλz(u2+v2)

∫ ∞

−∞

∫ ∞

−∞
e

iπ
λz (x′2+y′2)dx′dy′, (1.55)

where u and v are the coordinates in Fourier space. In the last step, a change of variables
with x′ = x− λzu and y′ = y − λzv has been implemented. The remaining integral term
is a product of two identical Gaussian integrals, each of which has the solution∫ ∞

−∞
e−ax2dx =

√
π

a
, (1.56)
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with a = − iπ
λz . Inserting this, F(s) becomes

F(s) = − i

λz
e−iπλz(u2+v2)

√
π

− iπ
λz

√
π

− iπ
λz

= − i

λz
e−iπλz(u2+v2) π

− iπ
λz

= e−iπλz(u2+v2).

(1.57)

Although the convolution approach has so far been discussed in the paraxial approxima-
tion, it is not restricted to the paraxially approximated integral, since the general form
of the diffraction integral used to calculate the exit wave can also be written in the form
of a convolution, i. e.

U(x, y) = − i

λ

∫ ∞

−∞

∫ ∞

−∞
H(X,Y )R(X,Y )e

−ikρ

ρ
dXdY (1.58)

with ρ =
√

(X − x)2 + (Y − y)2 + (Z − z)2, which yields

U(x, y) = (H ·R) ∗ S = F−1(F(H ·R) · F(S)) (1.59)

with the propagation function

S(X,Y ) = e−ik
√

X2+Y 2+(Z−z)2√
X2 + Y 2 + (Z − z)2 . (1.60)

The Fourier transform of the propagator function, however, is much harder to evaluate
in the general case.

Applicability of a wave-optical description to electron holography

In principle, in-line holography can be performed with different types of radiation, most
commonly, photons and electrons are used. The mathematical description of holographic
imaging provided in this chapter has been based on wave-optical principles, specifically
on Kirchhoff’s diffraction theorem, which in turn is derived from the Helmholtz equation.
The Helmholtz equation is a form of the time-independent homogeneous wave equation
and can be expressed as follows: (

∆ + k2
)
U(r) = 0, (1.61)

where ∆ is the Laplace operator, k is the wave number, and U(r) is the spatial part of a
wave field.
Since the wave equation can directly be derived from Maxwell’s equations, the wave
equation is an appropriate description of the propagation of electromagnetic waves and
can thus be applied in a wave-optical description of photon scattering.
The experimentally acquired protein holograms discussed in this thesis, however, are
generated using a beam of low-energy electrons. Since electron wave functions are
governed by the Schrödinger equation, the validity of applying the Helmholtz equation-
based wave-optical description of holography outlined in the previous sections needs to
be discussed.
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1.1 Holography Theory

Like the wave equation, the Schrödinger equation can be split into a time-dependent and
a time-independent part using a separation ansatz for the wave function. The resulting
time-independent Schrödinger equation has the form

Ĥψ(r) = Eψ(r), (1.62)

with the Hamiltonian Ĥ = − ℏ2

2m∆ + V (r), where m is the electron mass, E denotes the
energy of the system, and V (r) describes a time-independent potential through which
the electron is moving.
Inserting the expression for the Hamiltonian, the time-independent Schrödinger equation
can be rewritten as (

− ℏ2

2m∆ + V (r)
)
ψ(r) = Eψ(r) (1.63)

⇔ − ℏ2

2m∆ψ(r) + (V (r) − E)ψ(r) = 0 (1.64)

⇔
(
∆ + k2

)
ψ(r) = 0, k(r) =

√
2m
ℏ2 (E − V (r)). (1.65)

With this, the time-independent Schrödinger equation takes the same form as the
Helmholtz equation. Thus, in scattering situations with time-independent potentials,
as can be assumed to be the case for protein potentials in our in-line holography set-
up since radiation damage and diffusion effects are negligible, electron scattering can
be approximately described by a wave-optical formalism as presented in this chapter.
To incorporate effects specific to electron scattering at the energies employed in our
experimental scheme, different approaches need to be pursued, a first attempt towards
this is discussed in section 3.3.2.

1.1.3 Numerical implementation

Gabor’s original idea for reconstruction was an experimental scheme involving illumi-
nation by the reference wave. In many situations, however, the use of a numerical
reconstruction algorithm is advantageous. While a numerical implementation of the
general integral form of the reconstructed exit wave (eq. (1.28)) can in principle be
found, the expression derived via the convolution theorem (eq. (1.52)) is useful from a
numerical point of view, since instead of an integral, it employs two Fourier transforms.
The evaluation of integrals can be numerically costly, but Fourier transforms can be
implemented via fast Fourier transform (FFT) algorithms which reduce the necessary
computation time considerably; a direct evaluation of the integral is approximately 600
times slower than a convolution approach (see section 3.3.2). Additionally, reconstruction
schemes utilizing two Fourier transforms instead of one have the benefit that hologram
and object are sampled with a similar amount of pixels [73].
Based on eq. (1.52), an algorithm for hologram simulation and reconstruction can be for-
mulated. In the case of hologram simulation, the following steps need to be implemented
[73]:
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1. Calculation of the Fourier transform of the transmission function t. As discussed
below, it is necessary to centre the Fourier transform on the optical axis.

2. Calculation of the Fourier transform of s, F(s) = e−iπλz(u2+v2), where u and v are
the coordinates in Fourier space.

3. Multiplication of F(t) and F(s) and calculation of the inverse Fourier transform
of the product. Taking the modulus squared of the result yields the real-valued
hologram.

The corresponding procedure for hologram reconstruction is:

1. Calculation of the Fourier transform of the hologram H.

2. Calculation of the Fourier transform of s∗, F(s∗) = eiπλz(u2+v2).

3. Multiplication of F(H) and F(s∗) and calculation of the inverse Fourier transform
of the product.

In order to translate this into code, as a first step, a routine for the discrete Fourier
transforms needs to be implemented. The images of the experimentally obtained holo-
grams are taken as digital photographs with a number of pixels N2, hence a discretized
version of the continuous Fourier transform discussed above has to be employed. Since
the imaging system is centred on the optical axis, the Fourier transform has to be centred
on the optical axis as well to obtain correctly transformed images. Mathematically, this
can be expressed as follows [73]:
Fast Fourier transforms are based on discrete Fourier transforms, which take the form

F (p, q) = FT(f(m,n)) =
N∑

m,n=1
f(m,n)e− 2πi

N
(mp+nq), (1.66)

where (p, q) denote the pixel numbers in the Fourier domain, (m,n) denote the pixel
numbers in the spatial domain and FT denotes the discrete Fourier transform. To centre
the Fourier transform, coordinate transformations have to be made both in the spatial
domain (coordinates (x, y), pixel size ∆O) and in the Fourier domain (coordinates (u, v),
pixel size ∆F ) to align the centre of the distribution f(x, y) with the centre of the
(x, y)-coordinate system:

x =
(
m− N

2

)
∆O, m = 1, ..., N (1.67)

y =
(
n− N

2

)
∆O, n = 1, ..., N (1.68)

u =
(
p− N

2

)
∆F , p = 1, ..., N (1.69)

v =
(
q − N

2

)
∆F , q = 1, ..., N, (1.70)

(1.71)
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where the pixel sizes in the respective domains are defined via the sizes of the corresponding
image areas, SO and SF , as

∆O = SO

N
and ∆F = SF

N
. (1.72)

The centred phase term for eq. (1.66) thus takes the form

2π
N

(xu+ yv) = 2π
N

(
mp+ nq − N

2 (m+ p+ n+ q) + N2

2

)
. (1.73)

Inserting this into eq. (1.66) while dropping the last, constant term, yields the centred
discrete Fourier transform

F (p, q) = eiπ(p+q)
N∑

m,n=1
f(m,n)e− 2πi

N
(mp+nq)eiπ(m+n) (1.74)

= eiπ(p+q)FT
(
f(m,n)eiπ(m+n)

)
, (1.75)

and, analogously, its inverse

f(m,n) = e−iπ(m+n)FT−1
(
F (p, q)e−iπ(p+q)

)
. (1.76)

Using the programming language Python, this can be implemented into code in two
ways, either functions following the form of equations (1.75) and (1.76), or the NumPy
function fftshift can be used.
The former case can be written as functions of an input hologram holin that represents
f(m,n):

1 def FT2D( holin ): #2D centred Fourier transform
2 (Nx ,Ny)= holin . shape [:2]
3 sum_ij =[i+j for i in range (Nx) for j in range (Ny)]
4 sum_ij = np. array (sum_ij , dtype = complex )
5 f1=np. empty (Nx*Ny , dtype = complex )
6 f1=np.exp (1j*np.pi* sum_ij )
7 f1=np. reshape (f1 , (Nx , Ny))
8 FT=np.fft.fft2(f1* holin )
9 return f1*FT

10
11
12 def IFT2D ( holin ): #2D centred inverse Fourier transform
13 (Nx ,Ny)= holin . shape [:2]
14 sum_ij =[i+j for i in range (Nx) for j in range (Ny)]
15 sum_ij = np. array (sum_ij , dtype = complex )
16 f2=np. empty ((Nx ,Ny), dtype = complex )
17 f2=np.exp (-1j*np.pi* sum_ij )
18 f2=np. reshape (f2 , (Nx , Ny))
19 FT=np.fft. ifft2 (f2* holin )
20 return f2*FT

In line 2, the shape of the input array, which determines the shape of the Fourier
transformed array, is read out. In line 3 and 4, an array with entries (i + j) for all
pixel numbers (i, j) is created. To improve the performance of the algorithm, i. e. to
decrease computation time, the for-loop in line 3 has been written in matrix form. Line
4 initialises an empty array of the same shape as the input array. This array is filled
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in line 6, corresponding to an array with entries eiπ(i+j) for all (i, j) ((i, j) represents
(m,n) in the code). The last two lines of code correspond to eq. (1.75). First, the Fourier
transform of f(m,n)eiπ(m+n) is calculated using the NumPy function fft2 in line 8.
Since the arrays in the spatial and the Fourier domain have the same shape, sum_ij
represents both (m + n) and (p + q). Thus, in line 9 the result is multiplied with the
array with the eiπ(i+j) entries to yield the final result.
Alternatively, the centred Fourier transform can be based on the NumPy functions fft2
and fftshift and the corresponding inverse functions:

1 def FFT2 ( holin ):
2 F = ifftshift (fft2( fftshift ( holin )))
3 return F

1 def iFFT2 ( holin ):
2 F = fftshift ( ifft2 ( ifftshift ( holin )))
3 return F

For the second step, the calculation of the Fourier transform of s, a propagator function
has to be defined. Since an analytical expression for F(s) is known, this can be directly
implemented.

1 def Propagator (ar , distance , holin , wavelength ):
2 delta0 = 1/ ar
3 (Nx ,Ny)= holin . shape [:2]
4 uv =[(ii -Nx /2) **2+( jj -Ny /2) **2 for ii in range (Nx) for jj in range (Ny)]
5 uv=np. array (uv , dtype = complex )
6 p=np. empty ((Nx ,Ny), dtype = complex )
7 p= np.exp (1j*np.pi* wavelength * distance *( delta0 **2)*uv)
8 p=np. reshape (p, (Nx , Ny))
9 return p

The propagator function takes four arguments: the physical object size (ar), corre-
sponding to the physical side length of the input image, the source-to-sample distance
(distance), the input hologram or object (holin) and the wavelength (wavelength).
delta0, defined in line 2, is the pixel size in Fourier space. As in the definition of the
centred Fourier transform above, line 3 extracts the shape of the input array, which is
then used to set the shape of the output array (line 6). Line 4 and 5 calculate an array
with entries u2 + v2, where u and v are centred coordinates. In line 7, the expression
eiπλz(u2+v2) is calculated. Since u and v are Fourier space coordinates, they have to be
multiplied by the Fourier space pixel size delta0.
The above propagator function assumes a square input, i. e. Nx = Ny. Since the detector
used in the experimental set-up presented here is circular, this is in general the case for
experimentally obtained holograms. To allow for non-square input, the propagator has
to be slightly modified:

1 def Propagatornonsquare (ar0 , ar1 , distance , holin , wavelength ):
2 delta0 = 1/ ar0
3 delta1 = 1/ ar1
4 (Nx ,Ny)= holin . shape [:2]
5 uv =[((ii -Nx /2)* delta0 ) **2+(( jj -Ny /2)* delta1 )**2 for ii in range (Nx) for jj in

range (Ny)]
6 uv=np. array (uv , dtype = complex )
7 p=np. empty ((Nx ,Ny), dtype = complex )
8 p= np.exp (1j*np.pi* wavelength * distance *uv)
9 p=np. reshape (p, (Nx , Ny))

10 return p
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By taking into account the different physical sizes of the object’s dimensions (ar0 and
ar1), one obtains different Fourier pixel sizes for the different dimensions that need to
be multiplied with the respective pixel numbers (line 5).

With the help of these functions, the final simulation and reconstruction steps can be
implemented. For the simulation of a hologram starting from a transmission function t,
this yields:

1 U_t= IFT2D (FT2D(t)*np. conjugate ( Propagator (area , z0 , t, Lambda )))
2 hologram_t =abs(U_t)**2

To account for the change in propagation direction, the complex conjugate of the
propagator function defined above is employed. Since the first line yields a complex-
valued array, the modulus squared has to be taken in the second line to create the
hologram.
The reconstruction of the hologram takes a similar form with the propagator as defined
above:

1 U_rec = IFT2D (FT2D( hologram_t )* Propagator (area , z0 , hologram_t , Lambda ))
2 arec=abs( U_rec )

In the second line, the absolute value of the complex-valued array Urec has been taken to
extract the reconstructed amplitude arec.
One of the input parameters of the above code is the source-to-sample distance z0. In the
case of simulated examples, the in-focus source-to-sample distance is always known, since
it is used in the simulation step. For experimentally obtained holograms, however, the
in-focus distance z0 has to be reconstructed alongside the object. Since the physical size
of the hologram h, which is given by the size of the detector, and the sample-to-detector
distance z are known, z0 can be determined via the focus plane. This can be implemented
by reconstructing the hologram for a range of source-to-sample distances from z0_start
to z0_end with a distance z0_step between the reconstruction planes:

1 S = round (( z0_end - z0_start )/ z0_step )
2 for x in range (0,S):
3 z0= z0_start + x* z0_step
4 area = z0*h/(z+z0)
5 arec=abs( IFT2D (FT2D( hologram_t )* Propagator (area , z0 , hologram_t , Lambda )))

The object size, which is an input parameter of the propagator function, can be calculated
via the magnification for each source-to-sample distance (line 4).
The resulting stack of reconstruction planes can then be inspected by eye to find the
in-focus image and the corresponding source-to-sample distance z0. In in-focus images,
the reconstructed objects appear with sharp edges. Alternatively, focus-finding algorithms
can be employed to determine the focus [80, 81]. The need to reconstruct a stack of focus
planes for each image significantly increases the number of images to be processed in the
reconstruction of an experimental data set. This warrants the use of powerful computing
tools such as a parallelized architecture like a cluster for the reconstruction of experimental
data since this allows the simultaneous reconstruction of a large number of images and
thus considerably decreases the time required to obtain the desired reconstructions.
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The parameters z0, area, and Lambda are interrelated via the propagator function,
hence there are value regimes for which those parameters are optimized, which results
in holograms with high-order interference fringes. Since the wavelength is fixed by the
experimentally measured energy value, this optimization mostly concerns the source-to-
sample distance. In order to obtain a high number of interference fringes in the hologram,
which encode the desired information, the source-to-sample distance has to be chosen
such that empty spaces around an object are optimally filled with fringes [74]. From this
condition, suitable values for z0 can be derived depending on the area of empty space,
the maximal attainable resolution and the wavelength [74].
Another consideration regarding parameter optimization concerns sampling, i. e. the
number of pixels in a hologram of a given physical size. For a correct sampling of
the propagator function S∗(u, v) with N × N pixels, the argument of the exponential
exp (iπλz(u2 + v2)) must be reducible to iπ

N (m2 +n2) [73]. Since u = m∆F and v = n∆F ,
with ∆F = 1

Sobject
, this yields the condition [73]

S2
object

λz
≤ N, (1.77)

which relates the experimental parameters to the number of pixels. A small number of
pixels thus leads to a decreased resolution.

When reconstructing experimental holograms, further steps may have to be taken to
avoid artefacts due to the imaging conditions. One source of artefacts that result in
fringe patterns in the reconstructed image are sharp edges, i. e. localised large changes
in contrast. Since the detector utilized in the set-up presented here (see section 1.2.1)
is a phosphor screen, digitizing the holograms involves photographing the interference
pattern formed on the circular screen with a digital camera. This means that the rim of
the detector creates a sharp edge in the digital holograms.
To avoid artefacts in the reconstruction arising from these sharp edges, an apodization
filter is used. This filter works as a mask multiplied with the hologram [73]: inside a
radius η, the multiplication factor is 1, leaving the values of the hologram unchanged.
This is followed by a ring of width ω in which the multiplication is proportional to a
squared cosine function which results in a smooth fall-off to zero. Outside the radius
η + ω, the multiplication factor is zero, i. e.

C(ρ) =


1, 0 ≤ ρ ≤ η

cos2 ( π
2ω (ρ− η)

)
, η < ρ < η + ω

0, ρ ≥ η + ω

(1.78)

Numerically, this can be implemented as follows:
1 def Cosapo (holin , omega , eta):
2 (Nx ,Ny)= holin . shape [:2]
3 c=np. empty ((Nx ,Ny), dtype = complex )
4 for ii in range (Nx):
5 for jj in range (Ny):
6 if (0 <= np.sqrt ((ii -Nx /2 -1) **2+( jj -Ny /2 -1) **2)
7 and np.sqrt ((ii -Nx /2 -1) **2+( jj -Ny /2 -1) **2) <=eta):
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8 d=1
9 elif (eta <np.sqrt ((ii -Nx /2 -1) **2+( jj -Ny /2 -1) **2)

10 and np.sqrt ((ii -Nx /2 -1) **2+( jj -Ny /2 -1) **2) <eta+ omega ):
11 d=np.cos (( np.pi /(2* omega ))*( np.sqrt ((ii -Nx /2 -1) **2
12 +(jj -Ny /2 -1) **2) -eta))**2
13 else: d=0
14 c[ii ][ jj ]=d
15 return c* holin

To demonstrate that the reconstruction algorithm presented in this section works on
both simulated and experimental data, Fig. 1.5 shows amplitude reconstructions of a
hologram obtained by applying the simulation algorithm to a disk of amplitude a = 0.6
and of an experimentally acquired hologram of a monoclonal antibody imaged by low
energy electrons (see Chapter 2).
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Figure 1.5: Amplitude reconstruction of a simulated and an experimentally acquired
hologram: a Disk with amplitude a = 0.6 that serves as input for the hologram simulation.
b Hologram simulated from the disk shown in a using the convolution approach presented in
this section. c Amplitude reconstruction obtained with the algorithm described in this section
from the hologram simulated in b. The amplitude of the object itself is reconstructed to a high
degree of accuracy, the fringes in the background can be attributed to the contribution of the
twin image. d Molecular model of an antibody molecule (PDB: 1IGT [82]). e Experimentally
acquired hologram of a monoclonal antibody molecule (Herceptin). f Amplitude reconstruction
of the hologram in e at source-to-sample distance z0 = 310 nm. The three subunits and the hinge
region connecting them are clearly identifiable in the reconstructed image.

In the simulated example (Fig. 1.5a-c), the amplitude of the object itself is reconstructed
to a high degree of accuracy, but the background amplitude is not uniform. It exhibits
modulations in the form of fringes that can be explained by the out-of-focus contribution
of the twin image in the object plane. In a single-step reconstruction, as presented in
this section, this contribution cannot be avoided in an in-line geometry. An iterative
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treatment that can remove these contributions is discussed in Chapter 3.
In the case of the reconstruction obtained from the experimentally measured hologram
(Fig. 1.5e), the transmission function of the object is unknown, hence it is harder to
estimate the accuracy of the reconstructed values. The size and shape of the recon-
structed molecule (Fig. 1.5f), however, match those known from crystallographic data
[82] (Fig. 1.5d), and many structural features are identifiable. In general, the recon-
structed amplitude can be associated with absorption properties and inelastic scattering
interactions, as briefly discussed in the introduction to this chapter. The information
about the object that can be extracted from amplitude images will be discussed in more
detail in Chapters 3 and 4 in relation to the phase information encoded in the hologram.
In Chapter 2, the amplitude reconstruction algorithm presented in this section will be
utilized for the single molecule imaging of highly flexible proteins, thus demonstrating its
value in scientific applications.

1.1.4 Coherence

Coherence is a measure for the ability of two waves to interfere. Since the interference
of the scattered wave with the reference wave is at the basis of holography, a coherent
source is an essential prerequisite for holographic imaging. In the discussion carried out
in the previous sections, a point source was assumed, which yields a perfectly coherent
monochromatic reference wave. Since a perfect point source cannot physically exist, the
effect of a partial loss of coherence due to an extended source on holographic imaging
has to be considered.
Coherence implies that both the waveform and the frequency of the two wave fields
in question are the same, these two components are often called spatial and temporal
coherence. While full coherence requires both spatial and temporal coherence, spatial
coherence can exist without temporal coherence and vice versa.
Temporal coherence can be viewed as a measure of the monochromaticity of the source.
While two monochromatic waves with a given phase difference will retain that phase
difference over time, this is not the case any more if at least one of them is not perfectly
monochromatic, i. e. if it has a frequency spread ∆f . Then, the waves lose their correlation,
i. e. become incoherent, on the time scale τc = 1

∆f [83, 84]. τc is called the coherence time.
Temporal coherence can also be characterized by a spatial length, called the longitudinal
coherence length Ll since it characterizes the coherence along the propagation direction,
which is the length it takes for two waves with a small difference in wavelength to interfere
destructively. It can be shown to depend both on the wavelength λ and the spread in
wavelength ∆λ [85]:

Ll ∝ λ2

2∆λ (1.79)

For a known energy spread of the source, Ll can hence be directly calculated.

Spatial coherence, on the other hand, describes the coherence properties in the direction
transverse to the wave propagation. The corresponding coherence length is thus referred
to as the transverse coherence length Lt. A limited spatial coherence can directly
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Figure 1.6: Derivation of the transverse coherence length: Interference patterns produced
by a double slit set-up with slit distance d with an extended source of size r. The transverse
coherence length Lt is defined as the slit distance for which the waves originating from the centre
and the edge of the source interfere destructively.

be related to the source being physically extended rather than a perfect point. That
an extended source affects the resulting interference pattern can easily be seen when
considering a double slit experiment to generate an interference pattern as sketched in
Fig. 1.6. Considering waves originating from different points of a source with extension
r, they will create the same interference patterns (i. e. the spacing between maxima
will be identical), but the diffraction angles will differ, which leads to a shift of the
interference patterns with respect to one another, which in turn reduces the contrast
of the interference pattern. This can be elucidated quantitatively by examining a wave
emitted from the centre of the extended source and comparing it to a wave emitted from
the upper edge of the source. Maxima of the interference pattern generated by a wave
originating from the centre of the source emerge at diffraction angles sin θ = nλ

d , n ∈ Z,
where d is the separation between the two slits. The minima emerge at the corresponding
angles with n = ±1

2 ,±
3
2 , ... . For small angles, when the approximation sin θ = tan θ

can be made, this yields a fringe spacing of λz
d . The maxima generated by the wave

originating from the edge of the source are shifted by an angle β = r
2z0

, i. e. they appear
at angles nλ

d + r
2z0

and are spaced rz
2z0

apart, which can be derived by again assuming
small angles. The transverse coherence length is then defined as the slit separation d for
which the first maximum of the wave from the edge coincides with the first minimum of
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the central wave. Hence

1
2
λz

d
!= rz

2z0
. (1.80)

⇔ d = λz0
r

(1.81)

⇔ Lt = λz0
r

(1.82)

Equation (1.82) directly relates the transverse coherence length to the source size r. If
the transverse coherence length can be determined experimentally, e. g. by measuring the
extent of the fringe pattern in the detector plane, this relation can serve as an estimate of
the effective source size reff . A similar relation can be derived via the van Cittert-Zernike
theorem, which yields

reff = λz0
πLt

(1.83)

for an incoherent Gaussian source [83, 86].
In the case of spherical illumination, the geometrical magnification has to be taken into
account, hence the distance z0 has to be adjusted to match the distance to the plane
where the transverse coherence length is measured. Thus, if the transverse coherence
length is measured in the detector plane, z0 has to be replaced by the source-to-detector
distance. Equation (1.83) is often used to estimate the effective radius of a source in the
form of a sharp tip [87, 88, 89].
For a (partially) coherent source, the effective source size is smaller than the geometric
size of the source [87, 89]. The effective source, also often called the virtual source, is the
area in which the trajectories of emitted electrons intersect when backpropagating them
into the tip [87, 90]. Since the algorithm presented in the previous section assumes a
point source, the source-to-sample distance provided by the algorithm while focusing the
image is the distance to the virtual source, not to the geometrical apex of the tip.
Thus, while the preparation of emitters in the form of sharp tips (see section 1.2.2) yields
geometric tip radii in the range of several nanometers (see Fig. 1.9), a high degree of
coherence of the source can decrease the radius of the virtual source to values in the low
angstrom range [91, 89, 87], which is particularly relevant since the effective source size
is often considered to be an estimate of the attainable resolution [88].
Emitter preparation is hence a crucial part of holographic imaging, the general method is
described in section 1.2.2. Since there is evidence that cooling the tip to liquid nitrogen
temperatures [89] increases the coherence of the source due to the increased inelastic
mean free path in the tungsten tip at low temperatures, which allows a larger number of
electrons to interfere with one another, holographic imaging at low temperatures appears
to be a promising path to increase stability and resolution.

1.1.5 Resolution

The question of attainable resolution in in-line holography with low energy electrons is
not easy to answer. In general, the system is purely diffraction-limited, i. e. the size d of
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the smallest resolvable feature is given by

d = λ

2n sin θ = λ

2NA , (1.84)

where θ is the half-angle describing the divergence of the beam and n is the refractive
index of the medium. In vacuum, which is needed for low energy electron holography,
n = 1. n sin θ is also referred to as the numerical aperture NA of the system. This limit
is known as the Abbe diffraction limit.
For a typical electron beam energy of E = 100 eV, corresponding to a wavelength of
λ = ℏ/

√
2meE = 1.23 Å and a half-opening angle of 18°, which corresponds to the

maximum opening angle of the system presented in section 1.2, this yields a resolution
limit of 1.99 Å.
Depending on the exact criterion utilized to classify a feature as resolved and on whether
the derivation is carried out in real space or Fourier space, different prefactors can occur,
but all expressions for the resolution limit share the proportionality to λ

NA [92]. The
coherence of the source is of relevance for the determination of the theoretical resolution
limit, too. To account for that, the prefactors in eq. (1.84) have to be adjusted, while
the aforementioned proportionality remains [92].
In practice, however, there are many factors that can affect resolution, such as mechanical
vibrations, instabilities of the tip, limited coherence due to an extended source, which
decreases the quality of the fringe pattern, and the interaction with the object. Since no
lenses are present in an in-line geometry, lens aberrations, which determine the attainable
resolution in many other imaging systems, do not play a role here.
Furthermore, due to the numerical reconstruction, sampling also plays a role in determin-
ing the possible resolution. According to the Shannon sampling theorem [93], the correct
representation of a periodic system requires a sampling of at least two pixels per period.
Thus, the smallest resolvable fringe needs to have a width of two pixels. With a pixel
size ∆O in the object plane, this yields a resolution limit of dS = 2∆O. Since dS can be
decreased by increasing the number of pixels, thereby decreasing ∆O, dS < d is true in
most cases, especially for high-magnification images. At low magnification, dS will at
some point exceed the Abbe limit d and become the limiting factor for the achievable
resolution of the system.

While eq. (1.84) implies that the theoretical resolution limit can be lowered by employing
shorter wavelengths (i. e. higher energies) and larger numerical apertures (larger opening
angles), this course of action is restricted by practical considerations. When measuring
in an in-line geometry at high magnification, i. e. at small source-to-sample distances
z0, the sustainable voltages are limited to the range of approximately 150 V and below.
Applying higher voltages at these distances would require currents in a range that can
induce damage to the sample (see section 1.2.2 for details). Hence wavelengths below 1 Å,
which is the wavelength corresponding to an electron energy of 150 eV, are impractical
to achieve in high magnification imaging. To increase the opening angle, either the
sample-to-detector distance can be decreased or the detector size can be increased. The
sample-to-detector distance could be decreased without significant changes to the experi-
mental set-up, however, it would also lead to a decrease in the possible magnification if
the detector size remains the same. A change in detector size would require changes to
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the vacuum chamber in which the holography microscope is set up (see section 1.2.1), and
is hence difficult to implement. Furthermore, increasing the opening angle will require
modifications in the reconstruction algorithm presented in section 1.1.2 and 1.1.3, since
the paraxial approximation does not hold for large angles. Thus, one would either need
to evaluate the diffraction integral directly or implement coordinate transforms to project
the spherical wave front at the detector that cannot be approximated by a flat screen
any more, to the detector plane [73].
Due to imperfect experimental conditions, it is unlikely that a resolution at the theoretical
limit is achieved, hence other possibilities to determine the resolution of a hologram, and,
most importantly, its reconstruction, have to be considered. In imaging geometries using
a point-like source, like the one employed here, the size of the virtual source is often
used as an estimate of the attainable resolution [88], which implies that the resolution
critically depends on the coherence properties of the source. The virtual source size
can be calculated from the transverse coherence length (see section 1.1.4), which can be
approximated by the spatial extent of the fringe pattern observed on the detector. Thus,
in order to improve resolution, enhancing the coherence of the source is essential. This
could be done by cooling tip and sample, which should increase the coherence of the tip
due to an increased electron mean free path within the tip [89] and also reduce molecular
motion and vibrations of the graphene substrate.
Another possibility to estimate resolution is to determine the size of the smallest resolved
feature in the reconstructed image. In the case of the antibody molecule shown in
Fig. 1.5f, such a feature would be the distinguishable peptide chains of the hinge region,
whose width in this image is approximately 6 Å.
Since the size of the smallest resolvable feature in a given image ultimately depends
on many factors, such as tip stability, coherence, electron energy and vibrations, the
resolution can differ significantly between images, even between consecutive images of
the same molecule taken within a short time span. Furthermore, while small, isolated
features, such as the hinge region in Fig. 1.5f can be resolved, features of the same size
within the bulk of a molecule, e.g. within a subunit of the antibody in Fig. 1.5f, often
cannot be resolved because they are too close to other structural features. Thus, the
resolution estimated in that way has to be understood as a local measure, not as a global
property of the image.
An additional option for estimating the resolution of a reconstructed image is to examine
its Fourier spectrum. An estimate of the full width half maximum of a Gaussian approxi-
mation to the point spread function can be derived from a radially averaged logarithmic
intensity plot in Fourier space [94], which can be used as a measure of resolution. Since
this procedure involves the Fourier transform of the whole image, it provides a global
estimate of the resolution of the image that is not tied to a specific spatial feature [94].

So far, the discussion has been restricted to lateral resolution within the object plane.
A physical object, however, is in general three-dimensional, hence the resolution along
the optical axis is another important quantity. Ordinarily, the size of laterally resolvable
features is smaller than that of axially resolvable features, which is also reflected in the
expression of the axial resolution limit dax which is inversely proportional to NA2 rather
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than to NA [92, 95]:

dax ∝ λ

NA2 . (1.85)

Again, different prefactors can occur depending on the specific derivation of the expression.
Reconstruction along the axial direction is further exacerbated by the fact that when
looking at a given reconstruction plane, not only the part of the object in focus in that
plane will have contributed to the reconstructed signal, but also parts of the object
located in different planes along the optical axis, which has already been shown in the
discussion of the twin image (see section 1.1.1). Separating the contributions from the
different planes, especially when they are in significant lateral overlap and the planes
are in close proximity, as is generally the case for three-dimensional objects such as
proteins, is very complex and requires the application of additional methods as discussed
in Chapter 5.

In general, resolution is determined by the experimental conditions, in some cases,
however, the processing of the recorded hologram can enhance resolution slightly, e. g. by
removing high frequency noise from the hologram. While this can also lead to a blurring
of the smallest fringes, it in general makes the visible fringes more pronounced, and thus
can bring out some features more clearly in the reconstruction. This becomes apparent
when comparing the amplitude reconstructions of a single antibody shown in Fig. 1.7.
While Fig. 1.7a shows the reconstruction from the unprocessed hologram, Fig.1.7b is the
result of the reconstruction of the same hologram with the high frequency noise removed
in Fourier space. The image processing steps will be discussed in section 4.1. Some of
the features appear more pronounced, and the smallest resolved features in the hinge

5 nm 5 nm

a b

Figure 1.7: Comparison of reconstructions from processed and unprocessed holograms
of a single antibody: a Reconstruction of a single antibody from the unprocessed hologram.
b Reconstruction of the same antibody molecule from a hologram with high frequency noise
removed in Fourier space.

region near the Fab and the Fc subunits are measured to have a size of 5 Å.
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Further possibilities for image enhancement after measuring are compensation of noise
by deblurring with a Gaussian [93] and extrapolation of the fringe pattern [96].

1.2 Experimental set-up
This section focuses on the experimental requirements and implementation of both LEEH
imaging and sample preparation. The first part provides an overview of the design of the
LEEH microscope and the imaging conditions, followed by a discussion of sharp tips as
coherent low energy electron sources and their preparation. The second part addresses
sample preparation, discussing the steps necessary for obtaining specimen suitable for
LEEH imaging. This involves both the preparation of the single layer graphene (SLG)
substrate and the deposition of the molecules on the substrate by native electrospray ion
beam deposition (ES-IBD).
The development and construction of the experimental LEEH set-up used to measure
the experimentally acquired holograms discussed in this thesis is described in detail in
Sven Szilagyi’s doctoral thesis “Low-energy Electron Holography Microscope for Imaging
of Single Molecules”.

1.2.1 Low energy electron holography

LEEH imaging needs to take place in an ultraclean environment, because any additional
scatterers, such as impurities on the sample, would contribute to the hologram and hence
complicate the discrimination between the signal from the system of interest and from
such impurities. This, along with the increasing instability of the electron sources used in
LEEH at higher pressures due to adsorbates, requires ultra high vacuum (UHV) imaging
conditions [24].
Our LEEH microscope is integrated into a vacuum chamber with a base pressure in the
low 10−10 mbar range. Next to the microscopy chamber, where LEEH imaging takes
place, our set-up is also equipped with a preparation chamber in which the tips used as
electron emitters can be characterized and prepared (see section 1.2.2).
The microscope itself consists of three parts: the electron source, the sample and the
detector, which are arranged in a vertical in-line geometry (see Fig. 1.8a-b) that allows
for lensless holographic imaging [27].
As electron source, a sharp tungsten tip is used (see section 1.2.2), which is mounted
on a custom-build tip holder, allowing for the application of a voltage to the tip during
imaging as well as a current for annealing during tip preparation. For imaging, the
tip holder is placed on an xyz piezo motor stack to enable relative motion between
tip and sample. This relative movement is critical for imaging different parts of the
sample and for tuning the magnification by adjusting the source-to-sample distance.
While the source-to-sample distance is variable, ranging from mm to nm distances, the
sample-to-detector distance is kept constant at 11.5 cm. The resulting magnification is
purely geometric and yields magnification factors of up to 107. The extended range of
magnifications allows the acquisition of both survey images (Fig. 1.8c) and holograms of
individual molecules (Fig. 1.8d). The source-to-sample distances for high magnification
imaging are typically in the range of 200 − 500 nm, whereas they are in the micron range
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Figure 1.8: LEEH set-up and imaging: a Schematics of in-line holography geometry b LEEH
microscope head c survey hologram d high magnification hologram.

in the case of survey images. Since the source-to-sample distance cannot directly be
measured experimentally in this set-up, it has to be determined numerically by finding
the source-to-sample distance for which the reconstructed object appears in focus (see
section 1.1.3).
For imaging, a negative voltage is applied to the tip to generate electrons by field emission.
At high magnifications suitable for imaging individual molecules, the voltage is in the
range between −50 and −150 V, corresponding to electron wavelengths between 1.7 Å
and 1 Å. At low magnification, which allows a view of the whole sample (see section 1.2.3
and Fig. 1.10c), higher voltages in the range of −350 to −750 V are typically required.
The wave scattered by the investigated molecule, and the reference wave, which did
not interact with the molecule, overlap in the region behind the sample. The resulting
interference pattern (the hologram) is recorded on the fluorescent screen of a microchannel
plate detector. The holograms are digitalized by photographing the pattern displayed on
the screen with a digital camera. The final image is obtained by numerical reconstruction
of the digital images as described in section 1.1.
In order to obtain high resolution reconstructions, high-order interference fringes must be
visible in the holograms since these high-order interference fringes encode small spatial
features. To achieve this, it is crucial to isolate the microscope from vibrations as
the interference fringes appear closer together the higher their order. Since high-order
interference fringes encode short length scale spatial information, even small vibrations
can lead to a blurring of the holograms that negatively affects the image resolution. To
eliminate sources of noise that could affect the quality of the holograms, the chamber was
mounted on a stiff and heavy frame attached to a concrete block on air springs and set
up in an electromagnetically and acoustically shielded box [97]. To avoid noise induced
by the experimenter, measurements are conducted remotely, i. e. from outside the box.
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In addition to these vibration isolation measures aimed at shielding the whole system
from noise, the microscope head is placed on a stage that is decoupled from the chamber
via a Viton R⃝ O-ring internal damping system (Fig. 1.8b). This internal damping system
significantly reduces high-frequency vibrations and even allows for certain experiments,
such as establishing the cleanliness of the substrate prior to sample preparation (see
section 1.2.3), to be conducted while the turbo pumps are running. High resolution
images can, however, only be acquired with the pumps turned off, in these situations the
pressure is kept in the low 10−10 mbar range by an ion getter pump.

1.2.2 Tip preparation

Electron holography requires a coherent electron source to create stable interference
patterns (see section 1.1). The coherence of an electron source is inversely proportional
to the source size, i. e. to the volume from which electrons are emitted [98]. Thus, a
small source size – as close to the ideal of a point source as possible – is desirable. Such
point-like electron sources, which can be considered to emit spherical electron waves,
can be created by field emission from sharp metal tips with only a few atoms at the
apex [29]. Field emission from metals into vacuum is a quantum mechanical effect in
which the potential barrier defined by the work function of the material is overcome by
electron tunnelling facilitated by the presence of an electric field. The application of an
electric field modifies the shape of the potential barrier, resulting in a rounded triangular
barrier [99, 100, 101] that decreases in height with increasing field strength. The specific
tunnelling behaviour through a triangular barrier, as is the case in these geometries,
is called Fowler-Nordheim tunnelling. It can be described by Fowler-Nordheim type
equations that relate the emission current from the tip to the applied electric field [99].
Sharp tip geometries are efficient field emission sources since the electric filed at a sharp
tip is enhanced due to an increased density of field lines. The electric field E at a sharp
tip can be described as E = k V

d , where V is the applied voltage, d is the source-to-sample
distance, and k is an enhancement factor that describes the local enhancement of the
field at the tip and depends both on the source-to-sample distance and the tip radius
[102]. This implies that the extraction voltage decreases with decreasing source-to-sample
distance when the emission current is kept constant. LEEH measurements can be carried
out both in constant current and in constant voltage mode; in most cases, constant
current mode is preferable since this ensures a consistent illumination throughout the
measurement.
Due to field enhancement, sharp tips allow low extraction voltages [53] in the range
desired in LEEH. Typically, the voltages applied to the tip are in the range of −50
to −200 V at high magnification source-to-sample distances (ca. 200 − 500 nm) and
emission currents in the range of 10 − 50 nA, producing electrons with energies between
50 and 200 eV, which are low enough to avoid radiation damage to the sample. While
higher voltages produce electrons of shorter wavelength, which is in principle desirable
in terms of resolution, higher currents are usually the consequence of operating at such
voltages. High currents, however, can decrease the stability of the tip and can lead
to excessive brightness and even to sparking, which can severely damage both tip and
sample. Electron energies between 100 and 150 eV at source-to-sample distances suitable
for single molecules imaging have proven to produce the highest quality holograms, since
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Figure 1.9: Tip preparation and characterization: a Light microscope image of a tungsten
tip after electrochemical etching. The symmetry of the tip is vital for obtaining stable and
coherent field emission. b Scanning electron microscopy (SEM) image of a tungsten tip. c Field
ion microscopy (FIM) image of a tungsten (111) tip imaged at 18 kV. The orientation of several of
the facets can be identified as indicated in the image. The geometrical tip radius was measured
to be approx. 9 nm. d FIM image of a different tip with a clearly recognizable three-atomic apex
with a measured geometrical tip radius of 10.5 nm.

at these energies, source size and wavelength are optimally balanced [103].
Field emission is in principle possible for all metals, tungsten, however, is the material of
choice for electron sources for low-energy electron holography since it can be fabricated
in ultrasharp geometries [29], has a high melting temperature, which makes it possible
to clean the tips by annealing without blunting them, and is in general highly stable.
Polycrystalline tungsten tips can in principle be used as electron sources for low-energy
electron holography since their apex will in general be smaller than the crystallite grain
size the wire is composed of, hence the emission area itself will be monocrystalline,
although the orientation of the plane at the apex is not a priori predictable [104]. Due
to their more consistent field emission characteristics, however, it is usually preferable to
fabricate LEEH tips from single crystal tungsten (111) wire, which always yields a (111)
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orientation at the apex, and results in smoother and more symmetric tips [105] because
the electrochemical etching process selectively etches different crystal orientations with
different etching rates [106].
Sharp tip geometries, as required for a LEEH electron source, can be prepared by
electrochemical etching [106] (see Fig. 1.9a, b). For this, a piece of tungsten wire
(diameter 0.125 mm, length 2-5 mm) is spot-welded to a tantalum arc (diameter 0.25 mm)
and subsequently immersed into a 20 wt% NaOH solution while a voltage is applied
between the wire and a counter electrode. The etching process leads to the formation
of a neck in the wire until enough tungsten has been etched away for the lower part
of the wire to break off [107]. At this point, due to the sudden change in current, the
voltage is cut off, which stops the etching process. After the electrochemical etching
process, the tip is cleaned in water to remove salt residues and is immediately brought
into vacuum to avoid oxidation and the adsorption of impurities. The field emission
of the tip is tested in ultra high vacuum. In order to improve the performance of the
emitter, additional UHV preparation steps can be employed. Tip preparation in UHV
includes self-sputtering by field emission in vacuum and sputtering with Neon to sharpen
the tip, as well as annealing to remove impurity adsorbates and tungsten oxide.
Since the tip geometry is essential for the creation of coherent LEEH sources, it can be
useful to characterize the tip by imaging it on the atomic level. This can be done with
a field ion microscope (FIM) [108, 109]. In field ion microscopy, the chamber is filled
with helium (partial pressure ca. 10−4 mbar) and a high positive voltage (in the range of
10 − 30 keV) is applied to the tip. The high electric field at the tip ionizes the helium
atoms close to the tip. The positively charged gas ions are repelled from the tip and
move along the field lines to the detector, thereby creating an atomically resolved image
of the tip (see Fig. 1.9c, d). In addition to that, the tip can be sputtered with nitrogen
during FIM imaging, which both sharpens and stabilises the tip [91], and functionalised
by picking up graphene flakes or carbon nanotubes.

1.2.3 Sample preparation

In general, molecular imaging with LEEH is not tied to a specific method of sample
preparation. However, several conditions have to be fulfilled in order to be able to acquire
high quality holograms.
First of all, a suitable substrate is crucial for successful imaging with LEEH. LEEH
requires an atomically clean, low-energy electron-transparent substrate in order to produce
a stable and undisturbed reference wave. An ideal substrate for LEEH would only induce
a global phase shift which does not affect the interference pattern recorded on the detector.
Furthermore, the substrate needs to be conductive to allow for distortion-free imaging
by providing an equipotential surface at the sample and by avoiding charging effects.
Additionally, the substrate material should weakly interact with the molecules to be
studied in order to minimize structural changes in the molecules induced by molecule-
substrate interaction. Single layer graphene (SLG) possesses all the aforementioned
characteristics, i. e., it is transparent to low-energy electrons, can be prepared in an
ultraclean fashion, is conductive and interacts with biomolecules via weak van der Waals
forces [110], hence it is an ideal substrate for imaging proteins with LEEH.
In addition to a substrate, a method of depositing the proteins onto the substrate is
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required to produce a sample for LEEH imaging. Dropcasting might first come to mind
as a method of transferring molecules directly from solution onto a substrate. LEEH,
however, requires an ultraclean sample to avoid disturbances of the reference wave.
Solution residues on the sample could distort the reference wave significantly as they
could lead to a non-uniform background and introduce additional scatterers that can
interfere with the signal from the molecule. Depending on the solvent, solution residues
can be eliminated from the graphene surface by heating the sample after dropcasting.
For aqueous solutions that are used to maintain a native state of the proteins, however,
temperatures of at least 100°C would be necessary to ensure that the purity of the
sample is sufficient for LEEH imaging, which could in turn damage the proteins. If the
molecules can withstand the temperatures needed for evaporating the remaining solvent,
dropcasting could be used as a method of sample preparation for LEEH. While we have
successfully prepared carbon nanotube samples for LEEH by dropcasting, these results
will not be discussed here. The data presented in this thesis has solely been obtained
from samples prepared using native electrospray ion beam deposition (native ES-IBD).
Since native ES-IBD can both retain a native state of the sample, and, by mass-selective
deposition that eliminates possible contaminants, produce clean samples in UHV [33], it
is the method of choice for LEEH sample preparation [24].
In the following sections, the steps required to prepare both graphene substrates and
protein samples are described in detail.

Single layer graphene substrate preparation

To fabricate ultraclean single layer graphene substrates for our LEEH experiments, the
protocol described in [111] is followed: flakes of PMMA-coated single layer graphene on
a copper substrate are suspended on a 0.33 mol/l ammonium persulfate solution to etch
away the copper. After the etching, the flakes are transferred into clean water several
times to eliminate residues. Following the cleaning procedure, the single layer graphene
is fished using TEM grids. These grids consist of a silicon nitride membrane (thickness
200 nm) with four arrays of holes (hole diameter 500 nm, pitch distance between holes
2µm), see Fig. 1.10a, b. Before the graphene is fished on the grids to cover the holes
and thus create a free-standing single layer graphene substrate for protein deposition
(Fig. 1.10), the grids are plasma cleaned and sputter coated with 5 nm of platinum and
10 nm of chromium on both sides to make the grids conductive, which is necessary to
avoid charging effects during imaging. The platinum is additionally used as a catalyst
to remove the PMMA layer in a stepwise heating procedure. Once the graphene has
been held at 300°C for 45 minutes, it is immediately transferred into vacuum to avoid
contamination from the air.
The cleanliness of the graphene substrate is ensured by a LEEH measurement before
molecules are deposited. Characterization of specific holes before the deposition of
proteins also facilitates returning to the same holes when imaging proteins to ensure that
the imaged molecules stem from the deposition.
In general, this procedure yields holes covered by single layer graphene, but both empty
holes (Fig. 1.10c) and holes partially covered by multiple layers of graphene can occur.
Multi-layer graphene results in a much darker contrast than single layer graphene, which
in most cases makes it too dark for successful imaging.
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Figure 1.10: Single layer graphene-covered TEM grids: a Image of the sample holder with
the graphene-covered TEM grid in the centre. b Low magnification image of the sample showing
the holes in the TEM grid that are arranged in four arrays consisting of 25 × 25 holes each. Each
of the holes has a diameter of 500 nm, the pitch distance between two holes in 2µm. A sufficient
pitch distance is necessary to avoid imaging artefacts due to contributions of neighbouring holes.
This geometry facilitates finding and coming back to certain holes, which allows a comparison
of the holes before and after the deposition of molecules. c Free-standing graphene sample at
high magnification (left) and medium magnification (right). In the medium magnification image,
holes covered with single layer graphene appear small and circular, whereas empty holes result in
larger, angular shapes, which are due to charging and lensing effects. The high magnification
image shows a perfectly clean SLG substrate without any contaminants or defects.

The graphene grids are transferred between the holography microscope, where character-
ization and imaging happens, and the native ES-IBD deposition chamber, in which the
protein sample is prepared, utilizing a vacuum suitcase (base pressure 1 ∗ 10−10 mbar) to
avoid contamination both before and after protein deposition. Thus, once the samples
are brought into vacuum, they are constantly kept at low 10−10 mbar pressure.
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Protein preparation

The most important prerequisite for protein sample preparation by native ES-IBD are
solution conditions that support native protein conformations [112, 113], which will be
referred to as native solution conditions in the following. Native solution conditions
require a spray solution with stable pH, to achieve this, aqueous solutions like ammonium
acetate (200 mM) are used, which is very common in native electrospray ionization
techniques [112].
Depending on the proteins and their properties, they can either be stored as lyophilised
powders or in a buffer solution (tris buffered saline solution, pH=7.6). In the former case,
the proteins are directly desolved in 200 mM ammonium acetate, this solution is then
purified via a biospin process. In the latter case, the buffer solution has to be exchanged
with ammonium acetate, which is also done via a biospin process. For the biospinning,
size exclusion columns are used in a centrifuge that is cooled to 4°C [114, 115]. The
resulting solution is then diluted to concentrations of 0.5 − 1 mg/ml and kept on ice until
it is filled into the nanospray emitter.

Native electrospray ion beam deposition

Electrospray ionization (ESI) is a versatile tool for transferring a broad range of molecules,
including large and complex biomolecules such as proteins, into the gas phase by soft
ionization and is hence widely used in mass spectrometry applications [116, 117, 118,
119, 120, 121, 122].
The transition from solution to the gas phase is achieved by applying a high voltage to a
sharp emitter filled with solution. The strong electric field at the apex of the emitter
results in a deformation of the liquid into a Taylor cone [123], which emits a jet of charged
droplets once a certain threshold voltage is reached [124]. While the droplets move
towards the counter electrode at the vacuum interface, the solvent evaporates, causing
the droplets to become unstable due to the increase of charge per droplet volume. The
repulsion of the charges within the droplets results in Coulomb fission, which leads to
the disintegration of the larger droplets into several smaller ones. This process iterates
as a result of continued solvent evaporation until only desolvated molecular ions remain.
The specific mechanism governing the final desolvation step and thus the transition into
the gas phase can follow one of two main pathways: the charge residue model and the ion
evaporation model [125, 126, 127, 128, 129, 130, 131]. The charge residue model proposes
that the fission process due to solvent evaporation continues until a droplet only contains
a single molecule. Upon the evaporation of the remaining solvent, the charge in the
droplet is transferred to the molecule, producing molecular gas phase ions. In contrast,
the ion evaporation model suggests that molecular ions can be ejected from droplets
whose radius is small enough to lead to electric fields at the surface strong enough to
ionize the molecules in the droplet. By which process the transition into the gas phase
takes place may also depend on the size of the molecules [132]. Both models allow the
molecular ions to be multiply charged, and large molecules, such as proteins, have been
shown to carry high amounts of charge [132, 133, 134].
The molecular ions are subsequently transferred into vacuum by an ion funnel that creates
an ion beam of defined kinetic energy that can be steered towards mass spectrometry
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and deposition by ion optics.
In principle, electrospray ionization is possible both in positive and negative mode,
i. e. with positive and negative voltages applied to the emitter, respectively. This, in turn,
creates positively and negatively charged molecular ions. Which mode is used depends
strongly on the properties of the molecules, especially their functional groups, and the
solvents used. Proteins are usually sprayed in positive mode [112, 135, 136, 134, 137],
whereas other types of molecules, such as saccharides, work best in negative mode
[138, 139, 140].
As a sample preparation tool, electrospray ionization has the advantage that it can
directly be combined with preparative mass spectrometry techniques and ion mobility
measurements, which does not only allow a clean sample preparation in UHV, but also
the mass selection of specific charge states and hence the control of molecular properties
such as the protein fold [141, 137] (see Fig. 1.11).
In our electrospray ion beam deposition setup [142], a quadrupole mass filter and a
time-of-flight mass spectrometer are used to characterize and mass-select molecules
with the desired m/z ratio, which are subsequently deposited onto a substrate in UHV
(p ≈ 10−10 mbar). This yields samples with the high chemical purity necessary for LEEH
imaging, since additional scattering due to impurities is eliminated.
The landing energy of the molecular ions on the substrate can be tuned via a voltage
applied to the sample, which permits the exploration of both soft-landing and reactive
landing regimes [143, 142, 144, 24, 138, 145, 146, 147, 148, 149]. The amount of deposited
charge, and thereby, since the charge states are known from mass spectrometry, the
amount of deposited molecules, is determined via a current measurement on the sample,
which allows the control of the coverage of the sample.
When using ES-IBD to prepare samples for studying proteins in a native state, the
experimental conditions have to be carefully chosen in order to retain a native-like state
of the protein at every point of the process. The term native-like, which is to be used in
the following, indicates that while the proteins’ primary, secondary and overall tertiary
structure remains intact, changes in environment during the sample preparation process
can induce deviations from the native protein structure in solution [150], for example
side chain collapse [151] and subunit rearrangement [152].
Conditions appropriate for the retention of native-like conformations include the usage of
low ionization voltages (1.0−1.5 kV) applied to sharp metal-coated glass emitters to avoid
damaging or unfolding of the molecules during the ionization process, temperatures at
the air-vacuum interface of approx. 70°C to assist solvent evaporation without damaging
the proteins, and small voltage offsets in the higher pressure parts of the setup to avoid
activation due to background gas collisions. This ensures gas phase protein structures
with intact stoichiometry and minimal structural deviation from the native solution
structures [112]. Furthermore, a retarding voltage applied to the sample yields soft-
landing conditions with low kinetic energies (≤ 5 eV per charge) upon impact to exclude
damage to the proteins during the landing process.
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Figure 1.11: a Native ES-IBD workflow: Starting from native solution conditions, in which
proteins can retain their native tertiary and quarternary structure, the application of a voltage
(approximately 1000 − 1500 V) to a thin emitter results in a jet of charged droplets. Desolvation
produces molecular gas phase ions that are mass filtered by two quadrupoles after characterization
by mass spectrometry with a time-of-flight mass spectrometer and deposited on the surface
using soft-landing conditions (kinetic energy upon landing ≤ 5 eV per charge) regulated by the
application of a retarding voltage to the sample. During the ES-IBD process, the environment of
the molecules changes several times, from solution via the gas phase to the surface, which can
affect the molecules’ conformation, as discussed in detail in Chapter 2.
b Mass spectrometry: Mass spectrum of a native hemoglobin (Hb) beam before (left) and after
(right) mass filtering. Hemoglobin is a protein complex with a total mass of 64 kDa, consisting
of four subunits with a mass of 16 kDa each. Before mass selection, a large number of peaks
is visible in the mass spectrum (left) that can be categorised into four classes by fitting the
observed mass-to-charge values to charge states of either the intact protein or its subunits. The
peaks in the high mass range (approx. 3500-4000m/z, charge states +15 to +17, marked in red)
correspond to charge states of the intact hemoglobin molecule, i. e. to the tetramer composed of
four subunits. The peaks between 2500 and 3000m/z can be identified as two different charge
states (+10, +11, marked in blue) of the dimer, i. e. the partially dissociated molecule consisting
of only two subunits, while the peaks around 2000m/z correspond to the charge states +6 and
+7 (labelled in green) of the momomer, i. e. to a single subunit. The broad peak distribution
centred around 1000m/z can be associated with unfolded molecular conformations. After mass
filtering (right), only the charge states corresponding to the tetramer remain. This allows for a
selective deposition of specific charge states associated with the molecular species of interest.
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2 Imaging of Conformational
Variability of Single Antibody
Molecules by LEEH

Imaging on the single molecule level is of particular importance when studying molecules
with a high degree of structural flexibility. Biologically, this is of relevance since confor-
mational changes are often associated with the molecules’ functionality [1, 2, 3, 4, 5, 153].
Flexible molecules are often hard to crystallize [154, 155, 156] and to image with tech-
niques relying on averaging over a large number of molecules. In contrast, single-molecule
techniques can explore the full conformational space of the molecule in the imaging
environment [157, 158]. While the conformational space on the surface, which can be
examined by LEEH imaging, is not a one-to-one map of the conformational space of the
molecule in solution, studying surface conformations can still provide useful insights into
the general flexibility of the molecule and into the range of stable conformers.
While LEEH has been shown to be capable of single-molecule imaging of small globular
proteins [24] and suspended macromolecules [159, 160, 161], highly flexible molecules
have so far not been successfully imaged.
Probing LEEH’s capability of imaging conformational variability on the single-molecule
level requires a test system. Such a system should both exhibit a high degree of structural
flexibility on the large scale – yielding the possibility of a change to the overall shape of
the molecule that is detectable with the current LEEH resolution of approx. 1 nm – and
additionally have characteristic structural features, such as well-distinguishable subunits,
to facilitate the identification and distinction of different conformations.
An molecular system that meets these criteria are Immunoglobulin G (IgG) antibodies.
IgG antibodies are glycoproteins that consist of four peptide chains (two heavy chains
and two light chains), which interconnect to form three distinct subunits. Each subunit
is composed of two peptide chains forming a loop around a cavity. Two of the subunits,
the antigen-binding Fab subunits, which consist of a light chain and part of a heavy
chain, respectively, are identical, while the third subunit, the Fc subunit, consists of
two heavy chains and mediates the antibody’s biological function. The hinge region
connecting the subunits is highly flexible, which allows for each of the subunits to reorient
independently. This high degree of flexibility is vital for antibodies to fulfil their biological
role [162, 157] and is reflected by a multitude of possible antibody conformations. This
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flexibility and the related variety in conformation pose a substantial challenge for the
imaging of antibodies by techniques relying on averaging over many molecules [23, 158].
Additionally, IgG antibodies are a well-known system in native electrospray ionization
mass spectrometry [141, 136, 152]. In the light of these considerations, IgG antibodies
are ideal candidates for exploring the potential of LEEH in imaging protein flexibility on
the level of individual molecules.
Furthermore, antibodies, being at the centre of the human immune response, are of
immense importance in biology and medicine, and are specifically studied with the aim of
developing therapeutics [163, 164, 165]. In this respect, the antibodies’ binding behaviour
and interaction with other molecules is of particular interest [166, 167]. Successful
imaging of antibodies on the single-molecule level could be a first step towards imaging
binding behaviour and structural changes induced by interactions with protein antigens,
which could help answer questions of direct medical relevance.
Among the large number of IgG antibodies, Herceptin (Trastuzumab), a monoclonal
antibody that binds to the HER2-receptor and is used to treat HER2-positive forms of
breast and stomach cancer, was chosen as a test system for LEEH since it has been studied
extensively by native electrospray ionization mass spectrometry [136, 168, 152, 169].

This chapter focuses on the analysis of Herceptin molecules, deposited on single layer
graphene in 10 separate ES-IBD experiments (see section 1.2.3). LEEH imaging revealed
a multitude of conformations that can be classified into two categories: structures with
distinguishable antibody subunits that can be mapped to the crystallographic model
(22% of the observed molecules at a landing energy of 5 eV per charge) and compact
conformations with no discernible substructure (78% of the observed molecules at a
landing energy of 5 eV per charge). In order to understand the origin of these different
classes of antibody conformations on the surface and their relation to the antibody’s
native solution structure, the influence of the whole sample preparation process of ES-IBD
has to be taken into account.
The chapter will thus be split into two parts: The first part of this chapter focuses
on LEEH’s ability of imaging highly flexible molecules by studying the first class of
conformations, which features distinguishable subunits, showing that the imaging of
variability on different structural levels – the overall molecular shape and the subunits –
is possible in single-molecule LEEH experiments.
The second part of the chapter examines the influence of the ES-IBD process on the protein
conformation during the different stages of LEEH sample preparation and the resulting
relationship of the surface conformations probed by LEEH to the native conformations
in solution that is of biological interest.
The results discussed in this chapter have been published in [170].

2.1 Imaging antibody conformations with LEEH
The class of antibody conformations with distinguishable subunits is highly diverse,
which makes it ideal for studying the structural variability both within the proteins and
in relation to the graphene substrate. 10% of the imaged structures that fall into this
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Figure 2.1: Y-shaped conformation: a High-resolution amplitude reconstruction of an individ-
ual antibody molecule. The size of the smallest resolved features is 5Å. The three subunits and
the hinge region are clearly discernible. The hinge region consists of two strands stemming from
the lower subunit, identifying said subunit as the Fc subunit. The two Fab subunits (top) exhibit
different orientations, on the top left subunit, the cavity is visible (bright spot at the centre of
the subunit). b Molecular model of the antibody conformation observed in a, generated from the
1IGT [82] crystallographic structure by bond rotation in the hinge region. The model and the
experimental structure are in close agreement, the slight deviations can likely be attributed to
additional degrees of freedom in the hinge region that are not included in the model.

class (2% of the total amount of imaged molecules) exhibit three clearly distinguishable
subunits and can hence be readily recognized as the characteristic Y-shaped antibody
structure known from crystallographic models [82, 171]. Fig. 2.1a shows a high resolution
amplitude reconstruction of a single antibody molecule in a Y-shaped conformation with
three distinguishable subunits. The three subunits are interconnected by a well-resolved
hinge region consisting of two discernible peptide chain segments originating from the
lower subunit. This characteristic of the hinge region identifies the lower subunit as the
Fc subunit. The subunit’s dimensions, which are slightly larger than those of the other
two subunits, further support this classification. The other two subunits, depicted by the
areas of high contrast in the upper part of Fig. 2.1a, can consequently be recognized as
the Fab subunits. The image yields further structural details beyond the identification of
the subunits: within the Fc subunit, two distinct dark regions are resolved, which can be
interpreted as the two heavy chains composing the subunit. The area of low contrast
that separates the peptide chains depicts the hydrophobic pocket hosting the glycan
chains. Both the overall size of the molecule and the size of the individual subunits are
in agreement with the expected molecular dimensions based on X-ray crystallography
models of IgG antibodies [82, 171].

As described in section 1.1, the numerical reconstruction of LEEH holograms yields
two-dimensional (2D) amplitude images that map the object’s absorption. Given the
imaging geometry, these 2D images can be understood as projections of the molecules
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Figure 2.2: Subunit size and shape: a Measured size distributions of individual distinguishable
subunits. Length (top) and width (bottom), longer and shorter subunit dimension, respectively,
were determined at 90° angles as indicated by the blue and red lines in the insets of a. b
Projections of the 1IGT crystallographic structure and its individual subunits. The directions of
projection are marked by the arrows. The projection directions were selected to present maximal
differences in orientation-dependent subunit shape and size. Mapping the flexibility of the hinge
region, these projections provide an indication of the range of shapes and sizes the antibody
subunits can assume on the surface. The experimentally measured size distribution in a matches
the size range obtained in b, suggesting that the antibody subunits remain intact upon landing
on the surface.

along the optical axis. This is crucial for interpreting the reconstructed images since
it implies that different protein conformations, including conformations with three-
dimensional components, will result in different 2D shapes. This is illustrated by the
two Fab subunits in Fig. 2.1a. While they are chemically and structurally identical, they
present different molecular shapes: the Fab subunit on the right appears as a compact
shape, whereas the Fab subunit on the left exhibits a torus-like shape with a low-contrast
area at its centre. This region of low contrast can be interpreted as the characteristic
substructure of the subunit, the cavity between the two chains constituting the subunit.
The diversity in subunit appearance can be explained by the subunits’ orientation with
respect to the graphene surface. The intrinsic flexibility of the hinge region allows for the
independent rotation and reorientation of the subunits within a single molecule, which
yields a large number of subunit configurations that manifest in significantly different
subunit appearances in the reconstructed images. Thus, shape and size, and especially
the visibility of the cavity, can vary significantly with subunit orientation. The range of
possible subunit geometries and the corresponding sizes is illustrated in Fig. 2.2b, which
shows projections of the subunits of the crystallographic 1IGT model in directions that
display maximal differences in size and shape.
The shapes presented by the experimentally observed molecules can be replicated by
rotating the subunits around the hinge region, thus changing their orientation with
respect to the surface, while assuming a flexible hinge region and rigid subunits. The
best-fitting structure for the molecule presented in Fig. 2.1a is shown in Fig. 2.1b. The
structural variability of antibody molecules is not only manifest within a single molecule,
but is further elucidated when comparing different examples of experimentally observed
Y-shaped antibody molecules, as depicted in Fig. 2.1a and Fig. 2.3a-c. While they display
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a large variety of subunit shapes and sizes, there are also clear variations in the overall
shape and size of the molecules. These variations can be explained by the fact that the
molecules are three-dimensional entities, hence subunits cannot only reorient by rotation
within the substrate plane, but also rotate out of this plane. Such out-of-plane rotations
decrease the apparent distances between subunits in the 2D reconstruction. Despite these
variations in overall shape and subunit appearance in the antibodies imaged by LEEH,
the statistical distribution of the sizes of individual subunits (Fig. 2.2a) is in agreement
with the expected size distribution for the subunits of the crystallographic model [82]
under different orientations (indicated in Fig. 2.2b). This congruence of measured and
expected size distributions on the level of the individual antibody subunits, along with
the appearance of characteristic structural features such as the cavity, suggests that
the individual antibody subunits, that are in itself more rigid than the full antibody
structure, retain their conformation even when the overall shape of the antibody changes.

The plethora of experimentally observed structures can be mapped to the crystallographic
structure by modelling the inherent flexibility of the hinge region by rotating the φ and
ψ angles of the Gly 236 residues [82] of both the heavy chains, see Fig. 2.4. These angles
were chosen because of the location of the residues in the middle of the hinge region
between the Fc subunit and the respective Fab subunit. Moreover, changes in the φ and
ψ angles of the Gly 236 residues do not alter the disulfide bonds between the two heavy
chains that stabilize the hinge region. By sampling all possible permutations of the φ
and ψ angles for stepwise rotation by 60° (0°, 60°, 120°, 180°, 240°, 300°, with 0° being
the angle observed in the original PDB model), 64 = 1296 different configurations are
generated.
Among those, however, a significant portion of structures features overlapping backbones
in the subunits which eliminates these configurations from the set of possible models due
to steric hindrance. The remaining 400 configurations that exhibit no relevant steric
hindrance were considered for the interpretation of the experimental data.
Many projections, corresponding to different imaging directions, were created for each
structure in this subset. Suitable matches between these projections and the experi-
mentally observed molecules are found by a visual comparison (see Fig. 2.3). In most
cases, several of the generated projections fit the structure presented by the experimental
data (see Fig. 2.5). The remaining differences can be explained by additional degrees of
freedom of the hinge region that are not incorporated in the model used to generate the
projections, as well as surface interactions.
While part of the model-generated molecular configurations result in Y-shaped projections
with three clearly distinguishable subunits, most of the structures produced by the model
feature a degree of overlap of the antibody subunits resulting in projections in which not
all three subunits are separable. This is mirrored by the experimental data, in which only
2% of the total number of molecules feature three distinct subunits, whereas 20% of the
molecules display only two distinguishable subunits. To explain the appearance of the
experimentally observed structures that match the projections with two distinguishable
subunits, the relationship between the antibodies’ adsorption geometry on the graphene
and the imaging geometry of the LEEH setup has to be considered. Since the LEEH
imaging process leads to a 2D image of a three-dimensional object, a Y-shaped antibody
structure with three distinct subunits can only be experimentally observed when the
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Figure 2.3: Diversity in antibody adsorption geometry: a-c Amplitude reconstructions
of individual antibody molecules adsorbed in a flat geometry, as depicted schematically in d,
leading to a Y-shaped appearance of the molecules, and corresponding model projections. The
three subunits are clearly distinguishable in all examples, but the visibility of the hinge region
and the cavities in the subunits varies: a hinge region not visible, cavities visible on all three
subunits b hinge region partially visible, cavity visible on one subunit (top left) c hinge region
partially visible, no cavities discernible.
e-g Amplitude reconstructions of individual antibody molecules in a vertical adsorption geometry
as schematically depicted in h and matching projections obtained from the PDB structure by
rotation of the subunits. Because of the ambiguity induced by the obscured third subunit in the
projection, it is harder to assign molecular models to conformations featuring a vertical adsorption
geometry. All three molecules display two clearly distinguishable subunits, in f, the third subunit
is partially visible. In e and g, one of the subunits appears larger, respectively, indicating a
possible contribution of the third subunit located above the other subunits as sketched in h. All
six images correspond to a field of view of 25 × 25 nm2.
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Figure 2.4: Modelling antibody flexibility I: Theoretical model a Ball and stick represen-
tation of the 1IGT X-ray crystallographic structure with the two Gly-236 residues highlighted in
green. b A close-up view of the hinge region around the two Gly-236 residues (yellow rectangle
in a). The pale blue and orange arrows represent the rotations corresponding to a change of the
φ and ψ angles, respectively; the rotation axes are depicted as dashed lines. The color scheme
used in both panels is: carbon in light gray, oxygen in red, nitrogen in blue and sulfur in yellow.

antibody molecule is absorbed on the graphene in a flat geometry, with all three subunits
in the graphene plane. The antibody molecules’ structural flexibility, however, extends
into the third dimension. Thus, once one subunit is rotated out of the substrate plane,
which, according to the model presented above, is a frequent occurrence, the subunits will
overlap in the resulting projection. Hence, the structures with only two distinguishable
subunits can be interpreted as antibody conformations that are adsorbed to the graphene
substrate in vertical geometries, as schematically depicted in Fig. 2.3h.
In a vertical geometry, only one or two of the antibody subunits are interacting with the
graphene substrate, leading to a partial (Fig. 2.3f) or complete (Fig. 2.3g) eclipse of the
third subunit in a projection along the optical axis. In some cases, the third subunit
is partially visible (Fig. 2.3f), in others, one of the two subunits appears larger than
the other, which indicates a partial overlap of the subunits (Fig. 2.3e). In general, the
subunits observed in these conformations match the intact subunits of the crystallographic
model in size and shape (see Fig. 2.2), supporting the interpretation that the subunits
themselves remain rigid while the antibody molecule as a whole changes its conformation.
The existence of vertical antibody adsorption geometries has also been confirmed by
other imaging techniques, e. g. in a combined atomic force microscopy and molecular
dynamics investigation, both in water and in air [172].
As in the case of Y-shaped structures, the flexibility of the molecule results in vertical
conformations that are diverse in appearance, especially regarding the separability of
the subunits and the visibility of the hinge region, see Fig. 2.3e-g and Fig. 2.6. While
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Figure 2.5: Modelling antibody flexibility II: Comparison of experimental data with several
conformations obtained from the model described in Fig. 2.4. For each experimentally obtained
image (a - d), several model conformations can be found that fit the experimental conformation
in both size and shape. Despite the fact that the model only introduces modifications at one
specific place in the hinge region, most experimentally observed features can be reproduced to a
high degree of accuracy. The remaining discrepancies between the structures derived from the
model and the imaged antibody structures can be attributed to degrees of freedom of the hinge
region not included in the model and to interactions between the molecules and the graphene
surface.

antibodies in flat and vertical adsorption geometries, i. e. structures with three and two
distinguishable subunits, respectively, might at a first glance appear as two different
classes of conformations, this analysis shows that they are to be classified as the same
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Figure 2.6: Diversity of vertical adsorption geometries: The experimental data yields a
range of conformations that can be classified as vertical geometries with two distinguishable
subunits. As shown in this figure, this includes conformations with a clearly discernible hinge
region (a, b), regions of lower contrast between the subunits (c), touching subunits (d, e) and
subunits blending into each other (f).

type of conformation – a conformation with an extended hinge region that can be mapped
to the crystallographic structure – and only differ in their adsorption geometry.
In conclusion, LEEH is capable of imaging the structural variability of antibody molecules
in extended conformations, both of the molecular structure as a whole and on the subunit
level. Furthermore, it cannot only elucidate variability within the substrate plane, as
exemplified by the observation of the cavities as substructure of the subunits, but can
partially map the flexibility towards the third dimension by distinguishing adsorption
geometries.

2.2 The influence of the ES-IBD process on the conforma-
tions observed on the surface

While the structures with two distinguishable subunits are congruent with out-of-plane
antibody geometries, the compact structures that make up the majority of observed
molecules in the LEEH experiments do not match the projections obtained from the
modified crystallographic model, neither in flat nor vertical geometry, i. e., they cannot
be mapped to structures with an extended hinge region. The dimensions of the compact
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Figure 2.7: Gas phase-related conformations: a Length and b width distributions of Herceptin
molecules in collapsed conformations. Length and width were measured at 90° angles as indicated
by the blue and red lines in the insets of a and b. Comparison with the size distributions in
Fig. 2.2a shows that the collapsed antibody conformations have larger dimensions than individual
antibody subunits. c-d Amplitude reconstructions of antibodies in a collapsed conformation. e
Percentage of extended and collapsed conformations for different landing energies. The amount
of collapsed structures increases at lower landing energies, suggesting a close relation between
the collapsed structure and the gas-phase conformation. For this analysis, a large number of
molecules was evaluated at each landing energy: 378 molecules at 0.5 eV, 1259 molecules at 5 eV,
382 molecules at 10 eV and 239 molecules at 25 eV.

structures (Fig. 2.7a-b) are larger when compared to the length and width distributions of
the individual subunits (Fig. 2.2a), hence these structures cannot be individual subunits.
Thus, the compact conformations can be interpreted as intact antibodies with all three
subunits in significant overlap, which results in the lack of observable substructure.
In order to expound the origin of the different classes of surface conformations – ex-
tended conformations with distinguishable subunits and compact conformations without
discernible substructure – the impact of the ES-IBD process on the protein conforma-
tion has to be taken into consideration. The conformation of a protein could change
during several steps within the ES-IBD sample preparation process: during ionization,
gas-phase flight, collision with the graphene surface, and due to adsorption interaction.
The transitional steps, i. e. the passage from the liquid phase into the gas phase and the
landing process, are of particular importance to this investigation, since during these
two processes, changes in the molecules’ environment occur, which in turn potentially
alter the proteins’ conformation space. The most dramatic change in environment takes
place during the final desolvation step upon transition into the gas phase. The loss of
water has a direct effect on the hydrophobic bonding and the electrostatic interactions
within the molecule which can affect the protein’s stability [150]. Mass spectrometry
and ion mobility measurements indicate that antibodies do not unfold or fragment when
transitioning into the gas phase since the peaks in the mass spectra (see Fig. 2.8) match
those of the folded protein and collisional cross section measurements are in the range
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Figure 2.8: Native mass spectrum of antibodies: Before deposition on the single layer
graphene substrate, the Herceptin molecules (molar mass 149 kDa) are characterized and mass-
selected in a linear time-of-flight mass spectrometer. The native solution conditions and gentle
ionization parameters ensure that the antibody molecules remain in a folded, native-like state.
Each peak corresponds to a low charge state (z = +22 to +26).

expected for native-like protein conformations [136, 168, 152].
To ensure that the conformations observed on the surface originate from native solution
conformations, a mass spectrum of denatured antibodies was obtained by modifying the
solution conditions. This leads to significant changes in the mass spectrum (Fig. 2.9a)
and an altered size distribution of the deposited molecules (Fig. 2.9b-d), confirming that
the surface conformations observed after native ES-IBD sample preparation are indeed
related to the native solution structure.
However, when comparing antibody collision cross sections that were experimentally
obtained by ion mobility measurements with the corresponding cross sections calculated
from the crystallographic model, the experimental cross sections are up to 30% smaller
than the theoretical values [152]. This suggests that the tertiary structure of proteins can
collapse onto itself upon transition into the gas phase [152, 173, 174, 175]. This conclusion
is supported by molecular dynamics simulations of the transition into the gas phase that
yields collapsed, compact gas-phase structures [152]. While compaction in the gas phase
can occur for a large range of molecules, it is specifically relevant for non-globular proteins
and proteins featuring flexible, elongated parts [173, 176, 152]. The highly flexible hinge
region of the antibodies is primarily responsible for the collapse of antibodies in the gas
phase since it allows the subunits to come into close contact [152, 173]. The compact
surface conformations that do not feature distinguishable subunits can thus be interpreted
as chemically intact antibodies that have collapsed in the gas phase and retained this
compact conformation upon landing on the graphene surface. The comparison of the size
distribution of the experimentally observed compact structures to the sizes derived from
projections of simulated collapsed antibody structures provided by Hansen et al. [152]
further underpins this interpretation. The simulated models generate a length range
of 6 − 12 nm and a width range of 5 − 9 nm, which is in good agreement with the size
distributions found experimentally (Fig. 2.7a-b).
In the LEEH experiments, however, a significant portion of the molecules presents
extended conformations, as discussed in section 2.1, despite the strong indication that
antibody molecules collapse in the gas phase. The presence of extended conformations
on the graphene surface can be explained in two ways: on the one hand, the extended
structures could already be present in the gas phase and retained upon landing on the
surface. On the other hand, these structures could be a product of the landing process.
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Figure 2.9: Denaturing of antibodies: a Mass spectra of denatured antibodies (blue) and
native antibodies (black). Denaturing of the molecules in solution was achieved by adding both
organic solvent and formic acid to the solution. While the native spectrum exhibits clear peaks in
the high mass-to-charge range, corresponding to intact, folded molecules, the denatured spectrum
shows a broad distribution in the lower mass-to-charge range, corresponding to overlapping,
unresolved high charge states. Due to the limited resolution of the linear time-of-flight mass
spectrometer employed to obtain these spectra, the peaks corresponding to high charge states that
should appear close to each other cannot be resolved. This is exacerbated by the heterogeneity
introduced into the molecular sample through denaturing, which creates a multitude of peaks in
a given mass-to-charge range. b Length distribution of denatured antibodies imaged by LEEH.
c Width distribution of denatured antibodies imaged by LEEH. In comparison with the size
distributions for the collapsed conformations shown in Fig. 2.7a-b, the denatured molecules
have a broader length distribution and a width distribution that is shifted to lower values. The
heterogeneity indicated by the broad intensity distribution in the denatured mass spectrum is also
reflected in these size distributions, especially in the broadened length distribution. The shift to
smaller width values illustrates the loss of folding due to the denaturing of the molecules, resulting
in chain-like conformations. d Reconstruction of a denatured antibody molecule measured by
LEEH presenting in a conformation that is longer and narrower than the structures observed after
deposition from native solution conditions. The heterogeneity exhibited both on the level of the
mass spectrum and of the size distributions is also represented by the diversity of the appearance
of the molecules observed on the surface. This implies that molecules in various states of folding,
from completely unfolded to partially folded, are present in the denatured molecular ion beam.

The results from both ion mobility measurements and the molecular dynamics simulations
[152] indicate that the existence of extended conformations in the gas phase is improbable,
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hence it seems that the former hypothesis could not generate the observed percentage of
extended structures on the surface. The absence of extended conformations from the
gas phase is further reflected by the fact that the collision cross-sections that can be
calculated from the models assigned to the observed Y-shaped conformations (Fig. 2.3)
with the software tool IMPACT [177] are larger than the collision cross-sections obtained
from ion mobility measurements (9700 ± 100 Å2 for the model vs. 6827 ± 81 Å2 measured
experimentally), but are close to the collision cross-sections calculated from the initial
crystallographic model (e.g. 9780 ± 30 Å2 for 1IGT [82]).
Assuming that the antibody gas-phase conformation indeed takes the form of a collapsed
structure, the landing process has to allow for the re-extension of the hinge region upon
impact on the surface. In general, the deposition process again involves a change of
the molecule’s conformation space since the landing can be described as a transition
from a gas phase conformation to an adsorption conformation [143]. This transition is
characterised by the conversion of translational kinetic energy into vibrational modes
of both the molecule and the graphene substrate [149, 138, 148], hence kinetic energy
transfer is a defining factor regarding possible surface conformations. Charge transfer
and adsorption interaction also affect the surface conformation space. Since thermal
energy can be excluded as a relevant influence on the surface conformations given that
neither molecular motion nor diffusion are observed during the LEEH measurement, the
presence of extended antibody conformations on the surface can be attributed to the
dissipation of kinetic energy during the landing process or the adsorption interaction,
which allows the recovery of extended conformations from collapsed structures.
Whether a molecule changes from a collapsed to an extended structure during landing
depends both on the orientation of the molecule upon impact and on its kinetic en-
ergy [138, 148]. Before they reach the surface, the molecules are slowed down by the
application of a retarding voltage to the graphene substrate. The default retardation
to create soft landing conditions is such that the maximal landing energy is 5 eV per
charge, which yields a kinetic energy at impact of around 110 - 130 eV per molecule
for charge states between +22 and +26 as observed in the mass spectrum of native
antibodies (see Fig. 2.8). This translates to approximately 10 meV per atom, which
is less than the thermal energy at room temperature (kBT = 25 meV) and hence far
from a reactive collision regime [148] that could induce the breaking of bonds and result
in damage to the molecules. Since the kinetic energy is mostly transferred into soft
vibrational modes of the molecule, conformational changes coupled to these soft modes
can occur even at low collision energy, while the primary and secondary structure remain
intact. In the case of antibodies, these soft modes can lead to modifications of the hinge
region. As long as the landing energy is not high enough to reach the reactive regime,
the energy transfer during the landing process favours extended surface conformations
with increasing deposition energy [138]. Such a dependence of the conformation of the
antibody molecules on deposition energy can also be observed experimentally. When
examining a range of landing energies between 0.5 and 25 eV per charge, the observed
percentage of extended conformations on the surface increases from 11 ± 2% at the lowest
landing energy of 0.5 eV per charge to 22 ± 4% at a landing energy of 5 − 10 eV per charge
and to 33 ± 3.5% at 25 eV per charge (Fig. 2.7e). While the percentages measured at 5 eV
and 10 eV are in the same range within the error (22 ± 4% at 5 eV and 18 ± 2% at 10 eV),
this constitutes a clear trend relating the amount of extended structures on the surface
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to the landing energy. The relatively large error bars are mostly due to the ambiguity
during the manual classification of the imaged structures into extended and collapsed
configurations. Next to the error calculated from the number of ambiguous molecules
in the sample, the standard error SE(p̂) =

√
V ar(p̂) was also calculated for each set of

landing energies under the assumption of a binomial distribution of the extended and
collapsed populations, respectively, the larger one of the two errors was used as the error
bar in Fig. 2.7e. The fact that almost all molecules at a landing energy of 0.5 eV present
compact conformations further underpins the conclusion that these compact structures
are directly related to the gas-phase structure of the molecules since the dissipated energy
per atom (≈ 1 meV per atom at 0.5 eV per charge) is too low to induce conformational
changes in most cases.
When increasing the landing energies even further, to 50 eV per charge (80 − 100 meV
per atom), the reactive regime is reached. While both extended (25 ± 4%) and collapsed
(47 ± 4%) conformations can still be observed on the surface, a new class of confor-
mations appears: approx. 20% of the structures are elongated structures without clear
substructure with lengths between 20 and 40 nm and widths between 4 and 7 nm. These
structures could be the result of a partial unfolding of the molecules during the landing
process.
The collapsed conformations that are still observed at high landing energies indicate
that not only the landing energy itself, but also other factors such as the orientation
of the molecule with respect to the surface upon landing [148] play an important role
in determining whether the energy transfer can induce conformational changes. The
molecular orientation upon impact could also affect the molecules’ adsorption geometry.

This analysis shows that the conformations imaged on the surface are formed during
several processes within the ES-IBD sample preparation. While the extended structures
recovered during the landing process can be mapped to the crystallographic model and
thus to the solution structure, the compact conformations are related to the molecules’ gas-
phase conformations. To some extent, the ratio of extended and collapsed conformations
can be steered by tuning the parameters of the ES-IBD process, primarily the landing
energy.
LEEH imaging hence allows the examination of both conformation spaces and hence
could be used both for answering questions pertaining to the solution structure of flexible
proteins as well as to applications of structural biology in the gas phase.

2.3 Outlook
The results presented in this chapter show that LEEH can indeed be used as a tool
for single-molecule imaging of highly flexible proteins such as IgG antibodies at sub-
nanometer resolution. While antibodies by themselves are systems of biological relevance,
their interaction with other molecules is of particular interest in the context of medical
research, hence the demonstration of the imaging of structural variability on the single-
molecule level could be a first step towards targeting open questions of biological and
medical relevance with LEEH.
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A question of interest in the development of therapeutics for inflammatory bowel diseases
is the interaction of the IgG antibody Ontamalimab with MAdCAM-1 molecules [178, 179].
MAdCAM-1 (mucosal vascular addressin cell adhesion molecule 1) is a protein that plays
a role in the inflammatory response by bringing leukocytes to the site of inflammation.
An overexpression of MAdCAM-1 is associated with inflammatory bowel diseases [178],
hence a possible therapeutic approach is to inhibit the interaction of MAdCAM-1 with
the leukocytes by targeting it with the monoclonal antibody Ontamalimab.
Preliminary LEEH results show that Ontamalimab can be imaged by LEEH and exhibits
very similar behaviour and statistics as Herceptin. However, it has so far been difficult
to retain a bound state between Ontamalimab and MAdCAM-1 that can be observed in
the mass spectrum. The mass spectra featured both peaks in the high m/z range that
could be associated with the intact antibodies and a less defined, broadened distribution
at lower m/z values, indicating that the bound state has not been preserved in the gas
phase. This could be due to the bound state already being unstable in solution, which
in turn could be related to the choice of buffer, since the binding is facilitated by the
presence of salts, while in native ES-IBD, aqueous solutions without salts are preferable.
These results show that the challenges regarding binding experiments with LEEH are
not only limited to the imaging process and analysis, but also pertain to the sample
preparation. In order to transfer a bound complex to the graphene surface intactly to
enable imaging with LEEH, the conditions have to be optimized at each step of the
native ES-IBD process. Still, it is likely that once a sample is successfully prepared,
LEEH can contribute towards elucidating antibody binding behaviour.
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3 Phase reconstruction: Theory

The exit wave produced by the scattering of an incident wave by an object, such as a
protein, can in general be described as a complex-valued function, i. e. the scattering
process does not only change the amplitude of the incoming wave, but also its phase.
Detectors, however, can only record intensity distributions, hence the phase of the complex
wave field in the detector plane cannot be directly measured. The loss of information
resulting from the lack of direct phase detection is often referred to as the phase problem
[180, 181, 182]. This is especially relevant in the context of diffraction methods such
as crystallography, where knowledge of the phases is needed for the calculation of the
electron density [180, 181].
A widely used approach to phase retrieval are iterative methods. Iterative methods start
from either a random initial phase distribution or a suitable initial guess for the phases
and use this, along with the measured intensity data, to calculate the missing phases
by iteratively applying constraints to both amplitude and phase. Enforcing suitable
constraints changes the reconstructed amplitudes and phases, which consequently leads
to a better approximation of the object’s properties in each consecutive iteration. After a
number of iterations, the calculated phases converge to the actual phase shift distribution
induced by the object.
The phase problem in holography is much less severe than in crystallography or other
diffraction-based methods. While diffraction patterns only record intensities [38], the
presence of the reference wave in holography yields relative phase information stored in
the interference pattern recorded by the detector, i. e. the hologram. Thus, holography is
part of a class of methods employed to measure phase information [183, 184]. However,
the phase problem itself, i. e. the loss of absolute phase at the detector, persists in
holography and leads to an ambiguity that impedes full phase reconstruction in in-line
holography.
This ambiguity takes the form of the twin image, the complex conjugate of the object,
which induces the same phase shifts as the object itself, but with opposite sign, and
hence also solves the reconstruction integral when the absolute phases at the detector
are not known.
In an in-line geometry, the twin image appears in a reconstruction plane that is mirror-
symmetric to the object plane with respect to the source and hence creates an out-of-focus
contribution to the object plane (see section 1.1.1). This ambiguity can be avoided by
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Figure 3.1: Comparison of the reconstruction from the hologram and the complex
wave field: a Object used as input with absorption α = 0.5 (i. e. amplitude a = e−α = 0.61
(arbitrary units)) and phase φ = −0.5 rad. The three panels show the amplitude, the phase and
the line profile of each (amplitude in blue and phase in orange) through the centre of the image. b
Amplitude and phase along with the respective line profiles of the object reconstructed from the
hologram simulated from the object shown in a. Since the hologram is the modulus squared of
the complex wave front impinging on the detector, the absolute phases in the detector plane are
unknown. While the obtained reconstructions are close to the input, they suffer from imperfections.
c Amplitude and phase along with the respective line profiles of the object reconstructed from
the complex wave field in the detector plane simulated from the object shown in a. Knowledge of
both amplitude and phase in the detector plane results in the perfect reconstruction of the input
amplitude and phase in the object plane.

performing holography in an off-axis rather than an in-line set-up since the object and
the twin image can be separated in Fourier space [54, 55, 49] when they do not share the
same optical axis. Hence, using an off-axis geometry facilitates phase reconstruction in
holography; to experimentally implement such a geometry, however, optical elements are
required, which, for the case of electrons, suffer from severe aberrations in the low-energy
range. Low-energy electron holography imaging is thus tied to an in-line geometry and
an accurate phase reconstruction warrants the elimination of the twin image contribution
in the object plane.
The effect of the presence of the twin image on the reconstruction is clearly visible
when comparing the reconstruction of a simulated object from the complex wave field at
the detector and from the hologram (the modulus squared of the complex wave field).
While the reconstruction from the complex wave field leads to a perfect reconstruction of
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amplitude and phase (see Fig. 3.1c), this is not the case for the reconstruction from the
hologram (Fig. 3.1b). A perfect reconstruction of the object hence requires the knowledge
of both the amplitude and phase distributions in the detector plane.
In order to understand the significance of the information encoded in the phase, the
interaction of the incident beam with the object has to be considered. Scattering within an
object can be due to both elastic and inelastic processes. In an elastic scattering process,
the energy of the scattered electron remains constant, but its momentum changes. From
a particle point of view, this is associated with a change of direction, which translates to
a path difference and hence to a phase shift in the wave picture. Elastically scattered
electrons retain their coherence with the reference wave and hence contribute to the
interference pattern. Inelastic scattering events can have more diverse results; their
defining characteristic is a transfer of energy. On the one hand, these processes can result
in a reduction of beam intensity by preventing electrons from reaching the detector by
absorption or high-angle scattering. On the other hand, inelastic scattering can, while
inducing a change in energy, lead to virtually unchanged directions [185]. In general,
inelastic scattering leads to loss or reduction of coherence [49, 185, 186]. If partial
coherence can be retained, the inelastically scattered electrons can contribute to the
hologram. The (partial) loss of coherence leads to a reduction in the contrast of the
hologram [49], which, at least in the high-energy regime, can be directly related to the
thickness of the object.
Phase imaging is of particular importance in situations of low amplitude contrast, i. e. for
objects that do not absorb the incident radiation, e. g. transparent objects in light
microscopy [187, 188] or weakly interacting objects in high-energy electron imaging. Still,
the phase can also yield additional insights when amplitude contrast is present, as is
the case for LEEH. On the one hand, phase imaging can increase spatial resolution
[189], on the other hand, it can map the local electric potential [49, 190] as well as
time-independent magnetic fields [49, 191, 190].

In in-line holography, the correct reconstruction of the object’s phase is contingent on
the elimination of the twin image from the reconstruction process. This can be achieved
with the help of iterative methods such as the ones used to overcome the phase problem
in crystallography.
This chapter is split into two parts: in the first part, iterative phase reconstruction
algorithms in general and their application to phase retrieval in holography are discussed.
The algorithm used for phase reconstruction in LEEH is described in detail and its
performance is characterized with simulated examples. The second part is dedicated to
the simulation of effects that likely play a role in the holographic imaging of complex
structures, such as proteins, in order to provide a framework for interpreting phase data
reconstructed from experimentally obtained holograms of such systems.

3.1 Iterative phase reconstruction

In 1972, Gerchberg and Saxton proposed an iterative algorithm [183] that uses two sets
of intensity measurements in two planes (the image plane and the diffraction plane)
to calculate the missing phase information starting from a random initial phase input.
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The intensity measurements in these two planes are connected via a Fourier transform
relation, hence one can propagate between the two planes by Fourier transforming the
complex wave field in each plane and then constrain the amplitudes to the measured
amplitude data in each plane. Both constraints are implemented once per iteration.
In holography, one could realize a similar reconstruction scheme by measuring two
holograms at different source-to-sample distances. Propagating back and forth between
these two holograms and applying the respective amplitude constraints would then yield
the correct complex wave fields in the hologram planes from which the object could then
be reconstructed [192].
The general idea of the Gerchberg-Saxton algorithm, i. e. the propagation of a wave
field between two planes while enforcing constraints in each plane, can be applied to
a multitude of imaging situations, including those with a single data set, e. g. a single
hologram. In those cases, the constraint applied in the image plane cannot come from
measured data, but has to be something else that is known about the object or the
imaging system.
In general, this variant of the Gerchberg-Saxton algorithm can be delineated in the
following way [193, 192] (see also Fig 3.2): the object is described as a complex-valued
transmission function of the form

t = e−α(r)eiφ(r), (3.1)

where α(r) and φ(r) are the absorption and phase distribution of the object, respectively,
and r = (x, y) are the spatial coordinates in the object plane. The object’s amplitude is
related to the absorption as follows:

a(r) = e−α(r) (3.2)

This representation allows us to easily separate amplitude and phase contributions and
to apply constraints to each of them. In the following, phase values are given in rad, and
amplitude and absorption values in arbitrary units (a. u.).
Starting from the input, which consists of the measured amplitudes in the hologram plane
A =

√
Imeasured =

√
H, i. e. the square root of the measured intensity distribution (the

hologram H), Imeasured = H, and an initial phase distribution Φinit, the corresponding
complex wave field at the detector is formed, U = AeiΦinit . This complex wave field
is then propagated from the hologram plane to the object plane which yields the first
estimate of the transmission function of the object, t = aeiφ, with amplitude a and phase
φ. If the initial guess for the phase is zero, this step results in the same reconstruction as
the basic reconstruction algorithm discussed in section 1.1. Following that, the constraints
in the object plane are applied, leading to a modified transmission function t′ = a′eiφ′ .
Different possible constraints in the object plane are discussed in section 3.1.1. This
new transmission function is subsequently propagated to the hologram plane, yielding a
new complex wave field U ′ = A′eiΦ′ . The constraint in the hologram plane is applied,
i. e. the calculated amplitudes A′ are replaced by the measured amplitudes A =

√
H.

The complex wave field then has the form U = AeiΦ′ . This is the input for the second
iteration of the algorithm.
As stated above, this iterative scheme is very general and works with a variety of different
constraints and imaging strategies. In the case of inline holography, the wave field
propagation is carried out with Fresnel-Kirchhoff propagators, which are used to simulate
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and reconstruct holograms in non-iterative reconstruction schemes as well (see section
1.1.2).

Hologram plane Object plane

Initial amplitude: 

𝐴 = 𝐻

Initial phase:
Φ = Φinit

𝑈 = 𝐴 𝑒𝑖Φ 𝑡 = 𝑎𝑒𝑖φ

𝑡′ = 𝑎′𝑒𝑖φ′𝑈′ = 𝐴′ 𝑒𝑖Φ

backward propagation

hologram reconstruction

forward propagation

hologram simulation

apply
constraints

apply
constraints

Figure 3.2: Iterative reconstruction algorithm: Starting from the measured amplitudes
A and an initial guess for the phase Φinit, the complex wave field U in the detector plane is
calculated. This wave field is propagated backwards to the object plane using the propagator
employed for the reconstruction of holograms recorded by spherical waves (see section 1.1.2),
which results in a transmission function t. As a next step, suitable constraints are enforced,
yielding a modified transmission function t′. From t′, a complex wave field U ′ in the hologram
plane is simulated by forward propagation. Subsequently, the constraints in the hologram plane
are applied, which completes one iteration of the algorithm. The resulting complex wave field
serves as input for the next iteration.

3.1.1 Constraints

The choice of constraints depends on the imaging situation and on what is known about
the object. A type of constraint often used in iterative phase retrieval processes are
support constraints [194, 195, 196, 197]. A support constraint is a mask that determines
which parts of the object plane are considered background. In these regions, the complex
wave field is set to zero, thereby specifying the area in which the object can be located.
Support constraints work well in general, but too loose supports can be inefficient, while
to tight supports can bias the outcome of the reconstruction. The constraints applied in
the object plane do not generally have to involve considerations regarding the object’s
support, any other properties of the object that are known a priori (such as certain phase
properties, symmetries etc.) can be used to formulate constraints.
Since we in general do not have a priori knowledge of the objects we study in LEEH,
we choose a very general constraint, as suggested in [193]: the requirement that energy
needs to be conserved during the imaging process. Energy conservation necessitates
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that an interaction with the object will in general lead to reduced transmission (or in
the case of a pure phase objects to unit transmission), but can never lead to increased
transmission. Thus, the amplitude of the exit wave must be lower or equal to the
amplitude of the incident wave. Given the relation between amplitude and absorption
(eq. 3.2), this translates to a constraint on the object’s absorption distribution: it has to
be non-negative, α ≥ 0. Negative absorption values occurring in a transmission function
can be attributed to the interference of the twin image with the reference wave and can
hence be set to zero. Alternatively, the same constraint can be directly applied to the
amplitude by setting amplitudes larger than 1 (corresponding to increased transmission
and hence negative absorption) to 1. For these constraints to be effective, the hologram
needs to be normalized by division by the background intensity. If the background
intensity cannot be measured separately, this can be achieved by division by the mean of
the hologram.
To obtain a perfect reconstruction of both amplitude and phase, it turns out that requiring
the absorption to be non-negative is not sufficient (see Fig. 3.3a, c), and that the phase
needs to be constrained in each iteration along with the amplitude. The constraint on the
phase employed here involves setting the phase to zero at points of negative absorption.
In a simulated example, pixels with negative absorption values in general only occur
in the background since physical objects with non-negative absorption are assumed as
simulation input. Negative absorption values are due to the contribution from the twin
image, which most prominently appear in the form of fringes in the reconstruction of
both absorption and phase. In the background, the correct phase should be the phase of
the reference wave in the object plane, thus relative to the reference wave, the background
phase outside of the object should remain unchanged and hence take the value zero in
the reconstruction. Hence, setting the phase values of pixels with negative absorption
values to zero is a phase constraint that will yield a better approximation of object and
background.
Without this additional constraint on the phase, both amplitude and phase can be
retrieved with much higher accuracy than with a one-step reconstruction, however, the
process falls short of perfectly reconstructing both the phase and the amplitude input (see
Fig. 3.3a, c). This appears to be due to the fact that the contributions originating from
the twin image do not only result in pixels of negative absorption in the background, but
also in pixels of incorrect positive absorption values (the correct background absorption
should be zero), which can be seen in the cross sections shown in Fig. 3.3e, f. Incorrect
positive absorption values cannot be corrected by the non-negativity constraint applied
on the absorption level. If the phase values are left unchanged during the iterative
process, positive absorption values will again be induced in the reconstruction of the
next iteration, and the algorithm will ultimately converge to imperfectly reconstructed
amplitude and phase images. Adding the constraint on the phase level fixes this problem
since correcting the phases for pixel of negative absorption affects the phase estimate
for the neighbouring pixels in the next iteration. This process results in a step-wise
correction of both absorption and phase values over the whole of the image (Fig. 3.3e, f),
and thereby yields perfect reconstructions of both amplitude and phase (Fig. 3.3b, d).
Employing this phase constraint is especially important when dealing with objects of
high absorption (see Fig. 3.3c-d), in this case, the algorithm with constraints for both
absorption and phase still succeeds in perfectly reconstructing amplitude and phase,
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Figure 3.3: Significance of constraining both phase and absorption: a Iterative reconstruc-
tion of amplitude, phase and absorption of a disk of absorption α = 1 and phase φ = −0.5 rad
after 100 iterations. The constraint employed sets negative absorption values to zero, but leaves
the phase unchanged. Neither amplitude nor phase are perfectly recovered. The imperfect recon-
struction is not due to an insufficient number of iterations since the reconstruction converges to
the values shown here after less than 50 iterations. b Iterative reconstruction after 100 iterations
of the same object as used in a, with the additional constraint that the phase value at pixels
with negative absorption values is also set to zero. The application of the constraints to both
absorption and phase yields a perfect reconstruction of both amplitude and phase input after
approximately 50 iterations. c Iterative reconstruction of amplitude, phase and absorption of a
disk of absorption α = 3 and phase φ = −0.5 rad after 100 iterations. The constraint employed is
the same as in a, i. e. only the absorption is constrained. Compared to a, especially the phase is
much harder to recover for the strongly absorbing object. d Iterative reconstruction after 100
iterations of the same object as in c, with constraints on both absorption and phase as described in
b. Despite the strong absorption of the object, both amplitude and phase are recovered perfectly.
e Series of line profiles of phase (φ, left) and absorption (α, right) for several iteration steps
(for iteration 0, 5, and 20) of the iterative process with constraints applied to both absorption
and phase as in b and d. The progression towards the correct values happens for both the pixel
values of negative (indicated by black arrows in e) and for those of non-negative absorption values
(indicated by green arrows in e). The latter is not the case if only the absorption constraint is
used, as can be seen from the corresponding series of line profiles in f. 67
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while the algorithm featuring only the absorption constraint yields a phase reconstruction
significantly different from the phase input. This is particularly relevant when dealing
with experimental data (see Chapter 4) since high absorption values frequently occur in
this context.
If negative absorption would also occur within the object, potentially due to charging
effects, this additional phase constraint could lead to artefacts in the reconstruction.
However, assuming that the phase value corresponding to a pixel with negative absorption
is incorrect, changing it to zero should not a priori induce more artefacts than keeping it
at its initial value. An option to avoid this, however, would be to combine the constraints
discussed here with a support constraint which allows the phase constraint only to be
applied to pixels of negative absorption outside the molecule.

3.1.2 Iterative phase retrieval algorithm

With the constraints discussed in the previous section, the algorithm described here takes
the following form:

1. Form an initial complex wave field U in the hologram plane from the measured
amplitudes and an initial phase distribution.

2. Propagate the complex wave field to the object plane using a Fresnel-Kirchhoff
propagator in a convolution approach.

3. Apply the constraints for both absorption and phase to the transmission function t
that resulted from the previous step, i. e. set both absorption and phase of t to zero
for pixels with negative absorption values. This yields the modified transmission
function t′.

4. Propagate the modified transmission function t′ to the hologram plane.

5. Apply the amplitude constraint: replace the calculated amplitude distribution by
the measured amplitude distribution.

The code corresponding to these steps can be implemented as follows:

Step 1: Load and normalize hologram, take the square root, which yields the measured
amplitudes, and create an initial phase distribution. Form the initial complex wave field
in the detector plane from the amplitude and phase distributions.

1 hologram =np.load( filename ) #load hologram
2 hologram = hologram /np.mean( hologram ) # normalize hologram
3 hologram_sqrt =np.sqrt( hologram ) # measured amplitude
4 phase =np. random .rand(nx ,ny) # initialise with random phase distribution
5 hologram_field = hologram_sqrt *np.exp (1j* phase ) #form complex wave field

Step 2: Propagate the complex wave field hologram_field to the object plane using
a Fresnel-Kirchhoff propagator in a convolution approach to calculate the transmission
function t. area is the object size, z0 is the source-to-sample distance, and Lambda is
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the electron wavelength. The Fresnel-Kirchhoff propagator Propagator is defined as in
section 1.1.3.

1 t= IFT2D (FT2D( hologram_field )* Propagator (area , z0 , hologram_field , Lambda ))

Step 3: Apply the constraints in the object plane.
1 # calculate amplitude and absorption from transmission function
2 amplitude =abs(t)
3 absorption =-np.log( amplitude )
4 # calculate phase from transmission function
5 Phase =np. angle (t)
6 # apply constraints
7 for i in range (0, nx):
8 for j in range (0, ny):
9 if absorption [i][j] <0:

10 absorption [i][j]=0
11 Phase [i][j]=0
12 # calculate modified transmission function
13 new_amplitude =np.exp(- absorption )
14 t_new = new_amplitude *np.exp (1j* Phase )

Step 4: Propagate the modified transmission function t_new to the hologram plane.
1 hologram_field_new = IFT2D (FT2D( t_new )*np. conjugate ( Propagator (area , z0 , t_new ,

Lambda )))

Step 5: Apply the constraints in the hologram plane.
1 # calculate updated wave field in hologram plane
2 phase =np. angle ( hologram_field_new )
3 hologram_field = hologram_sqrt *np.exp (1j* phase )

In step 1 of the algorithm outlined here, the phase has been initialised with an array of
uniformly distributed random numbers in the range [0, 1), implemented by the NumPy
function rand(). In order to allow for both positive and negative initial phase values, the
NumPy function randn() can alternatively be used, which yields an array of normally
distributed random numbers with mean 0 and variance 1. Instead of using a random
initial phase distribution, different initial guesses can also be used and can lead to a
faster convergence of the algorithm, especially when the initial guess reflects known
properties of the object’s phase distribution. Since the phase of the background should
not change with respect to the phase of the reference wave during holographic imaging,
the background phase can be set to a constant value. Considering that the background
pixels constitute the majority of the image, using an array of zeros as the initial guess
for the phase distribution (NumPy function zeros()), is thus a viable guess.
Fig. 3.4 shows a comparison of the iterative phase reconstruction of a disk of absorption
α = 0.5 and phase φ = −0.5 rad for different initial phase inputs, generated by a
uniform distribution of random numbers using the function rand() (Fig. 3.4a), a normal
distribution of random numbers created by the function randn() (Fig. 3.4b) and an
array of zeros (Fig. 3.4c). While the results after the first iteration (Fig. 3.4a-c, left
panels, labelled Iteration 0 since Python uses zero-based numbering, which results in the
first element of a sequence being labelled with the index 0, consequently the result after
100 iterations is labelled Iteration 99) differ strongly, in all three cases, the input values
are retrieved in less than 100 iterations: in approximately 55 iterations for the uniformly
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b

a

c

Figure 3.4: Independence of the reconstruction of the initial phase distribution:
a Iterative reconstruction of a disk with absorption α = 0.5 and phase φ = −0.5 rad with a
uniform distribution of random numbers generated by the NumPy function rand() as initial
phase distribution. The input is perfectly reconstructed after approximately 55 iterations. The
error between input and reconstruction after 100 iterations is Ea = 3.5 × 10−18 for the amplitude
and Eφ = 1.6 × 10−16 for the phase. b Iterative reconstruction of a disk with absorption
α = 0.5 and phase φ = −0.5 rad with a normal distribution of random numbers generated by the
NumPy function randn() as initial phase distribution. The input is perfectly reconstructed after
approximately 75 iterations. The error between input and reconstruction after 100 iterations is
Ea = 3.6×10−15 for the amplitude and Eφ = 2.4×10−15 for the phase. c Iterative reconstruction
of a disk with absorption α = 0.5 and phase φ = −0.5 rad with an array of zeros as initial phase
distribution. The input is perfectly reconstructed after approximately 35 iterations. The error
between input and reconstruction after 100 iterations is Ea = 1.4 × 10−21 for the amplitude and
Eφ = 5.1 × 10−22 for the phase.
In all reconstructions shown in this figure, both the absorption and the phase are constrained in
the object plane. While the reconstruction after one iteration differs significantly depending on
the initial input, all examples converge to the input object in less than 100 iterations.
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distributed random input, in approximately 75 iterations for the normally distributed
random input, and in approximately 35 iterations for the zero-phase input.
For simulated input, the quality of the reconstruction can be evaluated by calculating the
error between the input amplitude and phase and the reconstructed amplitude and phase.
This can be done by calculating and summing the squared pixel-by-pixel differences,
yielding the following error measures [193]:

Ea = 1
N2

N∑
j,k=1

|ain − arec|2 (3.3)

Eφ = 1
N2

N∑
j,k=1

||φin| − |φrec||2, (3.4)

where ain and φin are the input amplitude and phase, arec and φrec are the reconstructed
amplitude and phase, and N is the number of pixels of the object in each dimension.
The summation is carried out over all pixels (j, k). The additional absolute values in the
calculation of the phase error occur because the phase values can be negative.
The errors calculated for the three cases shown in Fig. 3.4 are Ea = 3.5 × 10−18 and
Eφ = 1.6 × 10−16 for the reconstruction with the uniformly distributed random phase
input as shown in Fig. 3.4a, Ea = 3.6 × 10−15 and Eφ = 2.4 × 10−15 for the case of
the normally distributed random phase input (Fig. 3.4b), and Ea = 1.4 × 10−21 and
Eφ = 5.1 × 10−22 for the initial phase input in the form of an array of zeros (Fig. 3.4c).
While the errors are not exactly the same, they are in a similar range, this error range
corresponds to a very accurate reconstruction of the input as corroborated by the plots
and cross sections in Fig. 3.4.
As demonstrated by Fig. 3.4, the algorithm described here, which constrains both
absorption and phase in the object plane, can reconstruct the input object independently
of the initial phase distribution. In contrast, an algorithm that does not constrain
the phase on the object level, but only employs the non-negativity constraint for the
object’s absorption, exhibits a significantly different performance depending on the initial
phase input (see Fig. 3.5). If the initial guess for the phase is a constant distribution,
such as an array of zeros or ones, the object is recovered to a high degree of accuracy
(Fig. 3.5c), although not perfectly, as discussed in Fig. 3.3. The corresponding errors are
Ea = 2.5×10−12 and Eφ = 1.7×10−9. While using a uniformly distributed random input
yields a noisy reconstruction of the object (Fig. 3.5a, Ea = 5.2×10−9 and Eφ = 2.2×10−5),
a normally distributed random input does not result in a recognisable reconstruction of
the object (Fig. 3.5b, Ea = 7.1 × 10−8 and Eφ = 3.1 × 10−5). These errors are several
orders of magnitude larger than the errors in the iterative reconstructions calculated by
applying constraints to both amplitude and phase.
This further indicates that the phase constraint should be enforced to obtain reliable
reconstructions. In the following, “iteratively reconstructed” will be taken to mean
iteratively reconstructed with the presented algorithm employing both the amplitude
constraint and the phase constraint.

In summary, the constraint requiring non-negative absorption was shown to be effective in
reconstructing simulated holograms, especially when combined with an additional phase
constraint enforced on the pixels targeted by the absorption constraint. The iterative
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algorithm employing both constraints uniquely reconstructs the input, independently of
the initial guess used for the phase distribution.

a

c

b

Figure 3.5: Dependence of reconstruction success on initial phase distribution for an
algorithm without a phase constraint in the object plane: a Iterative reconstruction
without phase constraint in the object plane of a disk with absorption α = 0.5 and phase
φ = −0.5 rad with a uniform distribution of random numbers generated by the NumPy function
rand() as initial phase distribution. While some of the properties of the object can be recognised
in the reconstruction, it is very noisy. b Iterative reconstruction without phase constraint in the
object plane of a disk with absorption α = 0.5 and phase φ = −0.5 rad with a normal distribution
of random numbers created by the function randn() as initial phase distribution. The object
cannot be recovered at all. c Iterative reconstruction without phase constraint in the object plane
of a disk with absorption α = 0.5 and phase φ = −0.5 rad with an array of zeros as initial phase
distribution. The object is not reconstructed perfectly, but with a high degree of accuracy. The
error between input and reconstruction after 100 iterations is Ea = 2.5 × 10−12 for the amplitude
and Eφ = 1.7 × 10−9 for the phase.
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3.2 Characterization of the iterative phase reconstruction
algorithm

While the previous section presented an iterative phase reconstruction algorithm based
on the elimination of twin image contributions from the reconstruction and showed that
it accurately retrieves both the amplitude and phase input of a simulated object, this
section focuses on the characterization of the algorithm. For this, the algorithm is applied
to a variety of simulated objects, for example pure phase objects, which change the phase
of the incident wave, but not its amplitude, and strongly absorbing objects, and the
algorithm’s performance is evaluated. The influence of factors such as the ratio of the
object size to the size of the illuminated area, the amount of fringes in the hologram, the
physical size of the object, and noise will be discussed. This is of relevance for identifying
possible sources of artefacts or poor performance of the algorithm, which is important
for the application of the algorithm to experimental data, for which an exact input is not
known.

Before turning to the limiting cases of pure phase objects and purely absorbing objects,
the general case of an object that induces a change in both the amplitude and the phase
of the reference wave shall be examined in more detail. The transmission function of
such an object can be written as

t(x, y) = e−α(x,y)eiφ(x,y), (3.5)

where both α and φ are non-zero. While φ can assume both positive and negative values,
α is always positive for physical objects.
Figures 3.6 and 3.7 show the iterative reconstruction after 100 iterations of objects that
exhibit both absorbing and phase-shifting properties of various degrees. In all cases, the
reconstructed absorption, amplitude and phase values match the input values. Fig. 3.6
shows the reconstruction of a disk of radius 5 pixels with uniform amplitude and phase
distributions for the input amplitudes α = 0.1, α = 0.5, α = 1 and α = 3, spanning a
range from almost full transmission to strong absorption (a = 0.9, 0.61, 0.37, 0.05), for
input phases of both φ = 1 rad and φ = −1 rad. The correct retrieval of the input for
all absorption values considered shows that the algorithm performs well for simulated
objects that are both absorbing and phase-shifting over a large range of absorption
values. This implies that the code is applicable to a wide variety of physical objects,
from weakly absorbing to strongly absorbing. The extreme cases of zero absorption (pure
phase objects) and strong absorption will be discussed in the following sections.
To show that the algorithm can handle not only a large range of absorption values, but
also a large range of phase values, Fig. 3.7 shows iteratively reconstructed disks with
uniform absorption α = 1 and uniform phase shifts φ = ±0.1, φ = ±0.5, φ = ±3 and
φ = ±4 rad. The limiting case φ = 0 rad, corresponding to a purely absorbing object,
will be considered in section 3.2.1. Again, all input values are correctly reconstructed,
thus confirming the adequacy of the algorithm regarding the reconstruction of phases in
the whole domain [−π, π] rad.
Since the phase is a 2π-periodic function defined on the domain [−π, π] rad, the phase
reconstructed from input phases larger than π rad or smaller than −π rad is mapped
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Figure 3.6: Iterative reconstruction for different input amplitudes: Iterative reconstruction
of a disk of radius 5 pixels after 100 iterations for different input amplitudes, α = 0.1 (a, e),
α = 0.5 (b, f), α = 1 (c, g) and α = 3 (d, h). For each amplitude, the object has been
reconstructed for input phase values of −1 rad (a-d) and +1 rad (e-h). For all combinations, the
input values of absorption, amplitude and phase are correctly reconstructed.

onto the interval [−π, π] rad, as shown in Fig. 3.7d and h. The input phase −4 rad
is reconstructed as approximately +2 rad (Fig. 3.7d), whereas the input phase +4 rad
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results in a reconstructed phase of approximately −2 rad.

ϕ=±0.1
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Figure 3.7: Iterative reconstruction for different phase inputs: Iterative reconstruction
of a disk of radius 5 pixels and amplitude α = 1 after 100 iterations for different input phases,
φ = ±0.1 (a, e), φ = ±0, 5 (b, f), φ = ±3 (c, g) and φ = ±4 rad (d, h). The reconstructions
for negative (positive) φ are shown in the panels on the left (right). For all combinations, the
input values of absorption, amplitude and phase are correctly reconstructed. Because of the
2π-periodicity of the phase, phase values |φ| > π rad are mapped onto the interval [−π, π] rad, as
exemplified in d and h.
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So far, all examples consisted of an object with a uniform phase and absorption distribution
over the whole extent of the object. Fig. 3.8 shows examples, which demonstrate that
the algorithm can also adequately reconstruct more complex objects with non-uniform
amplitude and phase distributions. The examples shown in Fig. 3.8 include a disk of
uniform amplitude with a step change in phase from −1 to +1 rad (Fig. 3.8a), a disk with
a step change in phase from −1 to +1 rad and a step change in absorption from 1 to 0.5
(Fig. 3.8b), a Gaussian object with continually changing amplitude and phase (Fig. 3.8c),
and two overlapping disks, each with absorption 0.5 and phase +0.5 rad (Fig. 3.8d).

ba

dc

Figure 3.8: Iterative reconstruction of more complex inputs: a Iterative reconstruction
after 100 iterations of an object with a uniform amplitude of α = 0.5 and a step change in
phase from φ = −1 to φ = 1 rad. b Iterative reconstruction after 100 iterations of an object
with a step change in absorption from 1 to 0.5 and a step change in phase from φ = −1 to
φ = 1 rad. c Iterative reconstruction after 100 iterations of a Gaussian object with continually
changing absorption from α = 0 to α = 6 and continually changing phase from φ = 0 to
approximately φ = −1 rad. d Iterative reconstruction after 100 iterations of an object composed
of two overlapping disks, each of absorption α = 0.5 and phase φ = 0.5 rad. The input is shown
in the insets of each panel.
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3.2.1 Purely absorbing objects and pure phase objects

At the electron energies employed in low-energy electron holography, most physical objects
will change both the amplitude and the phase distribution of the incident reference wave.
To characterize the algorithm, however, it is relevant to also consider the limiting cases
of purely absorbing objects that do not induce a phase shift by interacting with the
reference wave, and pure phase objects that only induce a phase shift, but leave the
amplitude unaltered.

Purely absorbing objects

Purely absorbing objects are characterized by a transmission function with a non-zero
positive absorption distribution α(x, y) and zero phase shift φ(x, y) = 0, i. e.

tabsorbing(x, y) = e−α(x,y)eiφ(x,y) = e−α(x,y). (3.6)

Fig. 3.9 shows the result of the iterative reconstruction of a disk with absorption α = 1
and phase φ = 0. The reconstructions of the amplitude and absorption converge to
the input values in less than 100 iterations, i. e. on a similar scale as the example of an
object with both non-zero absorption and non-zero phase as shown in Fig. 3.3. After
100 iterations, the remaining deviations between the reconstructed phase distribution
and the input phase distribution are in the order of 10−5 (Fig. 3.9a). The remaining
deviation decreases with an increasing number of iterations, to 10−9 after 200 iterations,
10−12 after 300 iterations, and 10−15 after 500 iterations (Fig. 3.9b). Iteration numbers
larger than 500 do not significantly improve the result. This is likely the case since the
reconstructed phase after 500 iterations (Fig. 3.9e) is very close to the phase distribution
reconstructed in a single-step reconstruction with the complex wave field in the detector
plane as input (Fig. 3.9d). Since even the reconstruction from the known phases shown in
(Fig. 3.9d) yields small deviations from the input, this implies that an iterative approach
will come up against the same boundaries.
The error calculated with equations (3.3) and (3.4) are Ea = 7.6 × 10−16 and Eφ =
6.1 × 10−16 after 100 iterations, and Ea = 2.8 × 10−34 and Eφ = 5.8 × 10−34 after 500
iterations.
The same results hold for purely absorbing objects of different absorption values, both
for low absorption (α = 0.5) and high absorption values (α = 3 and α = 6). In all cases,
the phase reconstruction converges to the reconstruction from the complex wave field
after approximately 500 iterations. While the absolute value of the deviations is higher in
both the iteratively reconstructed phase and the phase reconstructed from the complex
wave field for strongly absorbing objects, for weakly absorbing objects, the number of
iterations needed to converge to the phase reconstructed from the complex wave field is
slightly larger than for strongly absorbing objects.

77



Chapter 3. Phase reconstruction: Theory

c

d

e

1e-15

1e-5

1e-15

a

1e-15

4

2

0

-2

-4

-6

1

-2

-1

0

b

1e-15

0.1

0.0

-0.1

-0.2

-0.3

-0.4
1e-5

Figure 3.9: Purely absorbing objects: a Iterative reconstruction of a disk with absorption
α = 1 and phase φ = 0 after 100 iterations. The input values of the amplitude and absorption
are recovered, small deviations from the input phase remain. b Iterative reconstruction of a disk
with absorption α = 1 and phase φ = 0 after 500 iterations. The deviations from the input phase
have been decreased by several orders of magnitude, the remaining deviations are close to the
ones occurring in a one-step reconstruction of the complex-valued wave field in the detector plane
as shown in d. c Phase distribution reconstructed with a one-step algorithm as presented in
Chapter 1.1 from the same input hologram as used in a and b. It deviates significantly from the
input phase distribution, which is equal to zero. d One-step phase reconstruction starting from
the complex-valued wave field at the detector simulated from the same input as a-c. Knowledge
of the phases in the detector plane yields a near-perfect reconstruction of the input, only a very
small error remains. e Phase distribution as reconstructed in b. The small deviations from the
input phase match those of the reconstruction shown in d, both are in the range of 10−15.

Pure phase objects

A pure phase object is defined as an object of non-zero phase shift distribution and zero
absorption, i. e. the interaction of such an object with the reference wave only changes
the phase, not the amplitude. A pure phase object would hence be fully transparent.

78



3.2 Characterization of the iterative phase reconstruction algorithm

The transmission function takes the form

tphase(x, y) = eiφ(x,y). (3.7)

As demonstrated by Fig. 3.10, which depicts iteratively reconstructed phase objects
(α = 0) for a variety of phase values, φ = ±0.5,±1,±3,±4 rad, the correct iterative
reconstruction of pure phase objects is more complicated than that of purely absorbing
objects, especially in certain phase regimes.
Fig. 3.10 shows that pure phase objects with negative phase values between 0 and −π rad
(Fig. 3.10a-c) can be reconstructed with a high degree of accuracy. While the phase is
reconstructed almost perfectly, a small error in amplitude and absorption remains. The
convergence of the algorithm, however, is not as stable for these types of objects as it is
in the case of objects with both absorbing and phase-shifting properties or in the case
of purely absorbing objects, since for some phase values, additional iterations will lead
to a jump from a highly accurate reconstruction to one quite far from the input values.
Additionally, for some cases, even though the reconstructed values are highly accurate,
some fluctuations around the correct values remain (e.g. Fig. 3.10h).
For pure phase objects with positive phases, an accurate reconstruction of the input
is harder to obtain, especially for small positive phase values (Fig. 3.10e-f). In these
cases, the phase reconstruction is noisy and far from the input values, and the remaining
deviations from zero in the absorption are large, independently of the number of iterations.
While the object starts to become recognizable in the phase reconstruction for phase
values above approximately +π

2 rad, although the exact phase values are not reached
and the errors in the absorption remain large, the correct phase values can be stably
retrieved for phase values above approximately +2.2 rad, see Fig. 3.10g.
Reconstructing pure phase objects with phase shifts |φ| > π rad yields the same result
as the corresponding phase shift values in the domain [−π, π] rad (Fig. 3.10d, h). The
phase values ±5 rad approximately correspond to ∓1 rad, as can be seen when comparing
Fig. 3.10d, h to Fig. 3.10b, f. Thus, reconstructing pure phase objects correctly is
especially difficult for small, positive phase shifts.
Adding a small absorption value can remedy the situation, an absorption contribution
of α = 0.1, corresponding to 90% transmission, is enough to yield a perfect phase
reconstruction independently of the input phase. The accurate reconstruction of strong
phase shifting objects (φ = 4 rad) for objects with absorption α = 0.1 has also been
reported in [198].
Physically, the reason for the problems occurring in the reconstruction of pure phase ob-
jects with small positive phase shifts could be that in the absence of inelastic interaction,
only negative phase shifts would be expected to occur. Positive phase shifts occur when
the scattering potential is attractive, while negative phase shifts are the result of repulsive
potentials [199]. Assuming that most of the elastic interaction in low-energy electron
scattering is due to the interaction of the incident electron beam with the electron density
of the object, the scattering is dominated by a repulsive potential yielding negative phase
shifts. Since the simulated object is thin, multiple scattering, which could lead to an
accumulation of phase, can be neglected, hence if a pure phase object would physically
exist, it should induce negative phase shifts.
Despite the difference in energy, on an interaction level, this is similar to the X-ray
regime, in which negative phase shifts can be assumed for thin objects [200, 201].
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Figure 3.10: Pure phase objects: Iterative reconstructions after 100 iterations of disks of
absorption α = 0 for different phase values: a φ = −0.5 rad b φ = −1 rad c φ = −3 rad d
φ = −5 rad e φ = +0.5 rad f φ = +1 rad g φ = +3 rad h φ = +5 rad. While the input values are
reconstructed with a high degree of accuracy for negative phase shifts in the range [−π, 0] rad
(a-d) as well as for positive phase shifts close to +π rad (g), the input values cannot be retrieved
for low positive input phases (e-f). Phase shifts larger than ±π rad are mapped to the interval
[−π, π] rad (d, h).
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On the level of the algorithm, the difficulties arising during reconstruction could be
explained by the fact that such an “unphysical” object would produce a hologram with
properties that differ from the properties of holograms for which a reconstruction of the
input can be achieved. Comparing the hologram in Fig. 3.11a, which is simulated with
parameters in the regime for which reconstruction has been shown to be problematic
in Fig. 3.10, to the holograms in Fig. 3.11b-f, from which the input parameters can be
retrieved accurately, clear differences are observable, most obviously in the hologram con-
trast. Holograms for which the correct amplitude and phase values can be reconstructed,
feature maximum intensity values only slightly above 1 (1 is the background intensity) as
well as values significantly below 1, both for the case of pure phase objects (Fig. 3.11d) and
for the case of objects with both absorbing and phase-shifting characteristics (Fig. 3.11e-f).
For holograms simulated from a pure phase object in the low positive phase regime, the
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Figure 3.11: Hologram contrast: a - f Holograms simulated from disks of a absorption α = 0
and phase φ = +1 rad, b absorption α = 1 and phase φ = +1 rad, c absorption α = 3 and phase
φ = +1 rad, d absorption α = 0 and phase φ = −1 rad, e absorption α = 1 and phase φ = −1 rad,
f absorption α = 3 and phase φ = −1 rad. The contrast in the hologram in a is reversed with
respect to b-f. g - i Holograms simulated from disks of negative absorption α = −0.5 for phase
φ = 0 rad (g), φ = −3 rad (h) and φ = 3 rad (i). The background intensity is marked in red on
the colorbars.
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contrast is reversed. While the background still has intensity 1, the minimum values are
slightly below 1, whereas the maximum values in the hologram significantly exceed the
background intensity (Fig. 3.11a). Since these differences appear already at the level
of hologram simulation, the reconstruction behaviour of pure phase objects in the low
positive phase regime is not a feature specific to the iterative reconstruction, but of the
basic hologram simulation and reconstruction.
The high maximum values in Fig. 3.11a stem from the addition of two waves of unit
amplitude in regions of constructive interference. For non-zero absorption, the amplitude
of the object wave is less than 1, hence the maximum values in the hologram also decrease.
The hologram contrast for absorbing objects with positive phase shifts (Fig. 3.11b-c)
approximates that of absorbing objects with negative phase shifts (Fig. 3.11e-f), for large
values of absorption, the two holograms simulated from objects of opposite phase have
a very similar contrast (Fig. 3.11c, f). The hologram in Fig. 3.11a shows significant
similarities to the holograms simulated from objects with negative absorption, as depicted
in Fig. 3.11g-i. Such an object with negative absorption is unphysical since it would
correspond to an object that, instead of absorbing part of the incident beam, would emit
additional electrons in the forward direction, thereby violating the conservation of energy.
Adding a small absorption remedies the problem since absorbing characteristics of the
object reduce the amplitude of the constructively interfering waves, which in turn reduces
the maximum values in the holograms. Physically, adding absorption adds inelastic
interaction, which can yield large phase shifts as well as large scattering angles, both of
which can result in positive phase shifts.
Since in the low-energy electron regime, proteins, which constitute the main class of
molecules studied in this work, are far from the pure phase object regime, the artefacts
described in this section should not pose a problem on the practical level when dealing
with experimentally measured holograms.

3.2.2 Strongly absorbing objects

While the previous section examined the algorithm’s performance regarding objects with
very low absorption values, this section will focus on strongly absorbing objects which
only very weakly transmit.
As shown in Fig. 3.12, amplitude, absorption and phase can be reconstructed correctly
even in regions of high absorption, i. e. of low amplitude. Up to an absorption of
approximately α = 5, which corresponds to an amplitude of a = 6.7×10−3 (transmittance
0.67%), the reconstruction is artefact-free (Fig. 3.12a-b). For absorption values between
α = 6 and α = 9, corresponding to amplitudes between a = 2.5 × 10−3 (transmittance
0.25%) and a = 1.2×10−4 (transmittance 0.012%), small errors occur in the reconstruction
of both amplitude and phase (Fig. 3.12c-d, shown for α = 8, i. e. a = 3.3 × 10−4,
transmittance 0.033%). For absorption values α ≥ 10 (a ≤ 5 × 10−5, transmittance
≤ 0.005%), as shown for the example of α = 12 (a = 6.1 × 10−6, transmittance 0.00061%)
in Fig. 3.12e-f, the errors in the phase become large, and the reconstructions for the
different input phases in the strongly absorbing part are not distinguishable any more.
Mathematically, the reason for this artefact is that the amplitude of the wave is so close
to zero that the propagation equations are fulfilled for an arbitrary phase. Thus, for
strongly absorbing objects, artefacts and errors can occur in the phase reconstruction.
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3.2 Characterization of the iterative phase reconstruction algorithm

This point will be examined further on the level of reconstructions of experimentally
acquired holograms in Chapter 4.

α=5 

α=8 

α=12 

ba

c d

fe

Figure 3.12: Strongly absorbing objects: Iterative reconstruction after 100 iterations of
objects with a strongly absorbing component. The absorption of the outer ring is α = 0.5 for
all examples, the phase shift of the outer ring is φ = −1 rad. The absorption of the strongly
absorbing inner disk varies from α = 5 (a, b) to α = 8 (c, d) and α = 12 (e, f), the phase of
the strongly absorbing part is either φ = 0 (a, c, e) or φ = +1 rad (b, d, f). For α = 5, the
reconstruction is artefact-free, for α = 8, small errors occur, whereas for α = 12, the amplitude is
too low for the phase to be correctly reconstructed.

3.2.3 Noise

While simulated holograms are in general noise-free, experimental holograms feature a
certain degree of noise due to the experimental conditions. Hence, the robustness of the
algorithm’s performance regarding noisy holograms needs to be examined.
This can be done by adding noise with a Gaussian distribution with mean 0 and different
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standard deviations σ to the hologram. Since the square root of the hologram has to
be taken to create the initial input for the iterative reconstruction and to fulfil the
amplitude constraint, the noise is added directly to the square root of the hologram to
avoid artefacts when calculating the square root.
Fig. 3.13a shows that the algorithm retrieves an almost perfect reconstruction of the
input values (α = 1, φ = −1 rad) for holograms with a low noise level (σ = 0.001).
As shown in Fig. 3.13b, the algorithm can still handle a noise level of σ = 0.01, the
resulting deviations from the input object remain small. Increasing the noise level to
σ = 0.1 still yields a recognizable object, but the deviations from the input increase
significantly (Fig. 3.13c). An additional increase of the noise level to σ = 0.2 results in a
reconstruction in which the object is barely discernible (Fig. 3.13d).

b

d

σ=0.01σ=0.001a

σ=0.2σ=0.1c

Figure 3.13: Effect of noise on the reconstruction: Iterative reconstruction after 100
iterations of a disk of α = 1 and φ = −1 rad with Gaussian noise with mean 0 and standard
deviation σ added to the square root of the hologram. The quality of the reconstruction depends
strongly on the noise level. a σ = 0.001 b σ = 0.01 c σ = 0.1 d σ = 0.2.

Experimentally, random noise does occur in LEEH measurements, but in general, the
signal-to-noise ratio of the images is high compared to other methods, due to the high
contrast inherent to this technique even at the single-molecule level. The signal-to-noise
ratio and thus the noise level in the image can be further improved by optimizing the
shutter times used for recording the experimental holograms.

A further effect of noise can be the blurring of holograms, for example due to mechanical
vibrations in the experimental set-up. Since the blurring of the hologram leads to a
reduced number of resolvable fringes, this affects the quality of the reconstruction as well
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as the resolution.
This is not only relevant because experimental conditions might result in a blurring of
the holograms, but also since a successful phase reconstruction of experimental data
(see Chapter 4) requires preprocessing of the images which involves both cropping and
smoothing the image.

Sigma =1, kernel
5x5
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c

σ=0.1

σ=0.5

σ=1

Figure 3.14: Effect of blurring on the reconstruction: Hologram of a disk of α = 1 and
φ = −1 rad blurred with a Gaussian filter of kernel size 5 × 5 pixel and corresponding iterative
reconstruction after 100 iterations. a Slight blurring, σ = 0.1 b Moderate blurring, σ = 0.5 c
Strong blurring, σ = 1.

Fig. 3.14 shows holograms blurred with a Gaussian filter with kernel size 5 × 5 pixel
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and the corresponding reconstructions. Slight blurring still allows for an accurate re-
construction (Fig. 3.14a, σ = 0.1). Moderate blurring (Fig. 3.14b, σ = 0.5) yields
reconstructions with values close to the input values, but the sharpness of edges is
lost. A further increase of the blurring in the hologram (Fig. 3.14, σ = 1) results in
inaccurately reconstructed phase values and additional blurring of the reconstructed edges.

Cutting off part of the fringes of the hologram while leaving the central part intact has a
similar effect as the blurring of the hologram since both types of treatment result in the
loss of information contained in the outer fringes.
The result of cutting off the outer interference fringes with an apodization filter as
described in section 1.1.3 with different inner radii η and a sharp cutoff (ω = 0) is shown
in Fig. 3.15. The parts of the image outside the radius η are set to zero. The images
depicted in Fig. 3.15 have a size of 100 × 100 pixels.
A cutoff radius of η = 50 pixels (Fig. 3.15 a), which only cuts off the fringes in the
corners of the image, still yields an accurate reconstruction of the object, a disk of
absorption α = 1 and phase φ = −1 rad, with only slight deviations from the input values.
The deviations from the input increase with decreasing cutoff radius (η = 30 pixels in
Fig. 3.15b and η = 20 pixels in Fig. 3.15 c), but the size of the object is still accurately
reconstructed. While the noise-like deviations from the input values are stronger when
cutting off the fringes than when blurring the entire hologram (Fig. 3.14), the sharpness
of the edges is better recovered in the former case.
When decreasing the cutoff radius such that only the innermost part of the hologram
remains (η = 10 pixels, Fig. 3.15d), the object cannot be accurately reconstructed any
more.

Since both moderate blurring and the cutting of fringes with large cutoff radius still
yield reconstructions that match the input closely, moderate hologram processing before
reconstruction should not hinder an accurate retrieval of the properties of the object.

3.2.4 Dependence of the algorithm performance on object size

As already predicted by Gabor [38], the ratio of the object size to the illuminated area
is a parameter of relevance for a correct reconstruction of the object. Starting from
a consideration of the contribution of the error terms due to the twin image to the
reconstructed object, Gabor arrives at the conclusion that in order to obtain sufficient
background uniformity, the object should only take up 1% of the illuminated area, i. e. the
object-to-area ratio should not exceed 0.01 [38].
Gabor derived this criterion in the framework a non-iterative reconstruction for both
absorbing objects and pure phase objects [38], hence, since the iterative reconstruction
discussed here is based on the removal of the twin image contributions, reconstructing
iteratively could lead to a relaxation of the criterion by eliminating error terms. While,
as expected, an iterative reconstruction yields results closer to the input values, especially
regarding phase, inaccuracies in both phase and amplitude reconstruction remain for
objects whose size-to-area ratio exceeds the Gabor criterion, as shown in Figures 3.16
and 3.17. Similar conclusions have been drawn in [198].
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Figure 3.15: Effect of the cutting of fringes: Hologram of a disk of α = 1 and φ = −1 rad
with part of the fringes cut off by an apodization filter. The cutoff radii are a 50 pixels b 30
pixels c 20 pixels and d 10 pixels.
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So far, disks with radius 5 pixels for image sizes of 100 × 100 pixels, corresponding to
a size-to-area ratio of 7.85 × 10−3 have been used to characterize the algorithm. As
shown in Fig. 3.6 and Fig. 3.7, accurate reconstructions of the object can be obtained
for different values of absorption and phase for this size-to-area ratio. Analogously, in
the case of larger objects of radius 10 pixels for image sizes of 200 × 200 pixels, which
yields the same size-to-area ratio, the objects are correctly reconstructed (see Fig. 3.8a-c,
Fig. 3.12). The slight deviations from the input values in Fig. 3.8d could be attributed
to a size-to-area ratio slightly above the limit set by the Gabor criterion.
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Figure 3.16: Effect of size-to-area ratio: a Iterative reconstruction of a disk of radius r = 6
pixels (size-to-area ratio s=1.1%), absorption α = 1 and phase φ = −0.5 rad after 100 iterations.
b Iterative reconstruction of a disk of radius r = 6 pixels (size-to-area ratio s=1.1%), absorption
α = 6 and phase φ = −0.5 rad after 150 iterations. c Iterative reconstruction of a disk of radius
r = 10 pixels (size-to-area ratio s=3.1%), absorption α = 1 and phase φ = −0.5 rad after 250
iterations. d Iterative reconstruction of a disk of radius r = 10 pixels (size-to-area ratio s=3.1%),
absorption α = 6 and phase φ = −0.5 rad after 250 iterations. The image size in all cases is
100 × 100 pixels.

To examine the influence of the size-to-area ratio, Fig. 3.16 shows the reconstruction of
disks of radius 6 pixels (Fig. 3.16a, b) and of radius 10 pixels (Fig. 3.16c, d) for an image
size of 100 × 100 pixels and absorption values of α = 1 and α = 6, with a phase shift of
φ = −0.5 rad in all cases. For r = 6 pixels, the size-to-area ratio is 0.011, i. e. slightly
above the criterion defined by Gabor, while the size-to-area ratio corresponding to r = 10
pixels is 0.031 and hence considerably above Gabor’s criterion. For r = 6 pixels, despite
the size-to-area ratio slightly exceeding 0.01, the object can be correctly reconstructed
for both absorption values shown, although in the case of higher absorption, the full
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convergence requires a higher number of iterations (150 iterations at α = 6 vs. less than
100 iterations for α = 1). A similar behaviour is observable for radii of 7 and 8 pixels
(size-to-area ratios of 0.015 and 0.020, respectively). In this range, for some cases, the
object can be correctly reconstructed in less than 100 iterations, while for other values of
absorption and phase, a larger number of iterations is necessary, or no convergence to
the input is obtained at all. Hence, for size-to-area ratios slightly exceeding 0.01, the
convergence properties strongly depend on absorption and phase values.
For size-to-area ratios above 2%, the object is not reconstructed accurately any more,
not even for a higher number of iterations, as demonstrated in Fig. 3.16c, d for the case
r = 10 pixels. The reconstructed phase changes rapidly between several values, and the
amplitude continuously decreases towards the centre of the disk. For high absorption
values (Fig. 3.16d), this trend likely continues towards negative amplitude values, which
then appear in the reconstruction as higher amplitudes, i. e. a bright spot at the centre
of the disk, because the absolute value of the transmission function is taken to calculate
the amplitude.

a b

dc

Figure 3.17: Effect of size-to-area ratio II: a Iterative reconstruction of a disk of radius r = 10
pixels, absorption α = 1 and phase φ = −0.5 rad after 100 iterations. b Iterative reconstruction
of a disk of radius r = 10 pixels, absorption α = 6 and phase φ = −0.5 rad after 150 iterations. c
Iterative reconstruction of a disk of radius r = 20 pixels, absorption α = 1 and phase φ = −0.5 rad
after 250 iterations. d Iterative reconstruction of a disk of radius r = 20 pixels, absorption α = 6
and phase φ = −0.5 rad after 250 iterations. The image size in all cases is 200 × 200 pixels.

To show that this dependence of the size-to-area ratio is independent of the image size,
the analogue to Fig. 3.16 is shown in Fig. 3.17 for an image size of 200 × 200 pixels and
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object radii of r = 10 (size-to-area ratio 7.85 × 10−3) and r = 20 (size-to-area ratio 0.031).
The same behaviour as in the case of an image size of 100 × 100 pixels is observed.
Since the derivation of the admissible size-to-area ratio is based on the requirement of a
certain degree of uniformity of the background, this emphasises the importance of a clean
substrate and of a stable illumination for the successful experimental implementation of
holography.

Next to the size-to-area ratio, there is another size-related parameter whose value
determines whether the object can be correctly reconstructed. This parameter is related
to the physical size of the object SO, i. e. in the case of simulated objects as presented
here, to the physical size assigned to the input image. The inverse of that parameter
appears in the propagator function as the pixel size in Fourier space ∆O = 1

SO
and is

crucial for correct sampling when transforming between real space and Fourier space.
While the physical object size in itself is not theoretically limited, its interplay with
the other parameters occurring in the argument of the propagator function, namely
wavelength and source-to-sample distance, determines the imaging regime and hence the
amount of fringes in the hologram, which in turn affects the performance of the algorithm
and the quality of the reconstruction.
The prefactor f of the pixel numbers in Fourier space in the argument of the propagator
function takes the form

f = λz∆2
O = λz

S2
O

, (3.8)

where λ is the electron wavelength, z is the source-to-sample distance and SO is the
physical object size, corresponding to the length of one dimension of the image, hence
S2

O is the image area.
This factor is closely related to a quantity that is often used to characterize imaging
systems, the Fresnel number Nf . Nf is a measure of the strength of diffraction at an
aperture and can thus be used to define different imaging regimes, specifically near-field
imaging (such as holography) and far-field imaging (such as diffraction imaging). The
Fresnel number is defined as [194, 198]

Nf = (maximum object size)2

λZ
. (3.9)

In the general definition, the sample-to-detector distance Z appears instead of the
source-to-sample distance z, since in many imaging systems, especially when imaging
with incident plane waves, this is the relevant parameter to describe the system. In
a holography set-up with plane waves, for example, Z rather than z appears in the
propagator (see section 3.3.1 for the derivation of the plane wave propagator), hence the
Fresnel number is proportional to the inverse of the prefactor occurring in the propagator
function. Since in literature, the Fresnel number values for which an accurate holographic
reconstruction can be obtained have been determined for incident plane waves [194, 198],
the values are not directly comparable to the ones calculated from the parameters used
in Fig. 3.18, but multiplication with the magnification factor Z

z results in values in the
same range.
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Figure 3.18: Effect of physical object size: Hologram and iterative reconstruction of a disk of
radius r = 5 pixels, absorption α = 1 and phase φ = −0.5 rad after 100 iterations for different
physical object sizes SO. a SO = 50 nm b SO = 70 nm c SO = 120 nm d SO = 500 nm.
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The change in the imaging regime resulting from changing the physical object size while
keeping λ and z as well as the pixel number N of the image constant can directly be
observed on the hologram level, as shown in Fig. 3.18. Fig. 3.18 depicts holograms
simulated from a disk of radius r = 5 pixels, absorption α = 1 and phase φ = −0.5 rad,
along with their iterative reconstructions after 100 iterations, for different physical image
sizes ranging from SO = 50 nm to SO = 500 nm. The physical image size SO = 70 nm,
as shown in Fig. 3.18b, has been used as the default in all simulations in this chapter.
Experimentally, a change in physical image size and thus in imaging regime can be
achieved by changing the sample-to-detector distance.
The effect of the increased physical object size for a given set of parameters λ, z, N
is observable in a decrease in the number and extent of fringes due to the loss of high
frequencies in Fourier space. If the other parameters are kept constant, the amount
of visible fringes decreases with increasing object size until no fringes are visible at
SO = 500 nm, which means that the imaging does not happen in the holographic regime.
This directly implies that the object cannot be reconstructed in the way presented here,
which is apparent in the corresponding reconstruction: the amplitude is still reconstructed
fairly accurately in this projection-like regime, but the phase is not. Thus, if objects of
large physical size need to be reconstructed, the other parameters have to be adjusted
accordingly.

3.3 Towards phase interpretation
When considering the holographic imaging of real, physical objects such as proteins, it is
obvious that such an object would only in very special cases have uniform amplitude and
phase distributions as the ones used in most of the simulated examples in this chapter
so far. To incorporate effects that likely occur in real samples, simulation methods for
modelling some of these aspects have to be developed, which could yield insights into the
interpretation of experimental phase data.
Non-uniformity in phase and amplitude, both in the lateral and axial dimensions, can
be the result of many different contributions stemming from the interaction of the
electrons with the sample, such as variations in sample thickness, which could lead to an
accumulation of phase and amplitude due to multiple scattering processes, and locally
different scattering strengths, e. g. due to local electric potentials and charges.
To model these effects, in the following sections a multislice algorithm to model multiple
scattering effects and an algorithm based on element-dependent scattering are discussed.

3.3.1 Multislice algorithm

Proteins, the main experimental focus of this thesis, are three-dimensional objects with
a molecular thickness in the range of several nanometers. Since the mean free path in
proteins for low-energy electrons is in a similar range as the molecular thickness [57],
multiple scattering is likely to occur in LEEH imaging of proteins. To simulate multiple
scattering processes, multislice algorithms can be applied [202, 203, 204].
A multislice approach to scattering in order to incorporate the effects of multiple scattering
events has first been proposed by Cowley and Moodie in 1957 [202] as a method of
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simulating diffraction patterns in electron crystallography. The general idea is based
on the division of the object into slices, with each slice being assigned a transmission
function ti, where i denotes the slice number [205]. After the interaction of the incoming
wave with the first slice slice (i. e. multiplication of the incident wave with the slice’s
transmission function), the resulting exit wave is freely propagated to the next slice with
a Fresnel-Kirchhoff propagation function as employed in the single scattering algorithms
described in the previous sections. The exit wave produced by the interaction with the
last slice is then propagated to the detector, where the hologram is recorded. This exit
wave contains the information from subsequent interaction with all object slices.
Since no assumptions regarding periodicity are made, the method is applicable to a wide
range of objects.
In the high-energy regime, for which the method was originally developed, the phase shift
and hence the transmission function can directly be related to the integrated potential
V (ρ, z) over the slice thickness z of the molecule [206, 205]; by including an imaginary
part in the potential, absorbing properties can be added, and the transmission function
of a slice i can be written as ti = exp(

∫ zi+1
zi

Vi(ρ) dz) [205].
For low-energy electrons, this relation does not hold, since further effects need to be
included in the description of the interaction. However, the general idea of partitioning
an object into slices with which the electron beam interacts successively, is still applicable,
even if the exact interaction is not modelled. Since the method is compatible with
the transmission function approach utilized in both the single-step and the iterative
algorithms described above, objects consisting of multiple slices can easily be incorporated
into the general framework of the simulation algorithm presented so far. The object
can either be build from a series of known two-dimensional transmission functions, for
example if the object consists of several separate overlapping or non-overlapping parts
(Fig. 3.21 – Fig. 3.23), or, if the initial object structure is three-dimensional, for example
in the case of a molecular model (Fig. 3.24), projections of volume segments of the object
onto slices can be used as input for a multislice hologram simulation.

The general form of the multislice algorithm is depicted in Fig. 3.19. The object is
divided into n slices with a distance di in between the slices. The slices can be chosen to
be equidistant, but do not need to be.
An incoming wave ψ interacts with the first slice at distance z1, characterized by the
transmission function t1, which results in the exit wave ψ1(z1) = ψ(z1)t1. Subsequently,
ψ1 is propagated a distance d1 to the next slice at z2 with transmission function t2, the
interaction yields a new exit wave ψ2(z2) = ψ1(z2)t2. This process is repeated until the
last slice at distance zn is reached. The interaction in that plane produces the final exit
wave ψn(zn) = ψn−1(zn)tn, which is then propagated to the detector at distance z, where
the hologram H = |ψn(z)|2 is calculated.
If the incident wave is a plane wave, the multislice method is straightforward to incorporate
[192, 207] since the propagator used to propagate between the sample slices is the same
type of propagator that is used for propagation to the detector. In the case of illumination
with spherical waves, as experimentally employed in LEEH, the geometrical magnification
needs to be taken into account. Because the propagation distance between two object
slices is much smaller than the source-to-sample distance, using the spherical propagator
function for propagation within the object would lead to a demagnification of the slice
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Figure 3.19: Multislice algorithm: Schematic depiction of the multislice algorithm. The
incident wave is propagated to the first object slice of transmission function t1, the interaction
results in an exit wave ψ1 that is subsequently propagated to the next slice, where it interacts
with t2, etc. Since the incident wave is a spherical wave, the final propagation step to the detector
is calculated using a spherical Fresnel-Kirchhoff propagator, whereas the propagation over the
short distances within the object is carried out with a plane wave propagator.

sizes. Thus, since the object’s thickness is small in comparison to the source-to-detector
distance, one can assume that no significant radial spreading of the wave front occurs
between slices, and that the spherical wave can be approximated by a plane wave
for propagation distances on the scale of the slice separation. This implies that the
propagation within the object can be described by plane wave propagation, which does
not involve magnification.

In order to amend the code accordingly, a propagator function for plane wave propagation
needs to be derived. Since this propagator function will be applied to very small
propagation distances z, the derivation must be in a regime that is valid for small z and
hence cannot rely on approximations regarding large propagation distances. A method
that fulfils this requirement is the angular spectrum method [73], which is valid for both
small and large z.
The angular spectrum method is based on the description of the Fourier transform of
a monochromatic, complex wave field as a sum of plane waves travelling in different
directions, which yields different angular components in the argument of the exponential
describing the plane wave [208, 209].
To derive the angular spectrum propagator, the propagation of a monochromatic complex
wave field U(x, y, 0) in the plane z = 0 to the corresponding wave field U(x, y, z) in the
parallel plane z = z shall be considered [209]. The complex wave field U(x, y, 0) can be
written as an inverse Fourier transform of a function A(u, v, 0),

U(x, y, 0) =
∫∫ ∞

−∞
A(u, v, 0)e2πi(ux+vy)dudv, (3.10)

where u and v are coordinates in Fourier space. The wave vector k = (kx, ky, kz) depends
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on the directional angles and can be written as

k = 2π
λ

(cosϕ sin θ, sinϕ sin θ, cos θ) = 2π
λ

(α, β, γ), (3.11)

with the polar angle θ and the azimuthal angle ϕ. This implies the following relation for
the direction cosines α, β, γ (see Fig. 3.20):

α2 + β2 + γ2 = 1 ⇒ γ =
√

1 − α2 − β2 (3.12)

𝐤

|𝐤|

a

b

c

γez

αex βey

α=cos(a)

β=cos(b)

γ=cos(c)

Figure 3.20: Direction cosines

With this notation, the angular spectrum A
(

α
λ ,

β
λ , 0

)
of the wave field U(x, y, 0) takes

the form

A

(
α

λ
,
β

λ
, 0
)

=
∫∫ ∞

−∞
U(x, y, 0)e−2πi( α

λ
x+ β

λ
y)dxdy. (3.13)

Analogously, the angular spectrum of a wave field U(x, y, z) at a plane z is given by

A

(
α

λ
,
β

λ
, z

)
=
∫∫ ∞

−∞
U(x, y, z)e−2πi( α

λ
x+ β

λ
y)dxdy. (3.14)

Thus, to determine the function that propagates the wave field from plane z = 0 to z = z,
the relationship between the angular spectra A

(
α
λ ,

β
λ , 0

)
and A

(
α
λ ,

β
λ , z

)
has to be found.

For this, the wave field U(x, y, z) can be rewritten in terms of its angular spectrum,

U(x, y, z) =
∫∫ ∞

−∞
A

(
α

λ
,
β

λ
, z

)
e2πi( α

λ
x+ β

λ
y)dα

λ
dβ
λ
. (3.15)
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U(x, y, z) also satisfies the Helmholtz equation (see section 1.1), i. e.

∇2U + k2U = 0, (3.16)

which, when applied to the expression in eq. (3.15), yields

d2

dz2A

(
α

λ
,
β

λ
, z

)
+
(
k2 − 4π2

λ2

(
α2 + β2

))
A

(
α

λ
,
β

λ
, z

)
= 0. (3.17)

With

(kx, ky, kz) = 2π
λ

(α, β, γ), (3.18)

this results in

d2

dz2A

(
α

λ
,
β

λ
, z

)
+
(2π
λ

)2
(1 − α2 − β2)A

(
α

λ
,
β

λ
, z

)
= 0. (3.19)

This is a well-known differential equation which is solved by the exponential function

A

(
α

λ
,
β

λ
, z

)
= A

(
α

λ
,
β

λ
, 0
)
ei 2π

λ

√
1−α2−β2z. (3.20)

Hence, the angular spectrum propagator has the form

ei 2π
λ

√
1−α2−β2z, (3.21)

and the propagated wave field U(x, y, z) can be expressed as

U(x, y, z) =
∫∫ ∞

−∞
A

(
α

λ
,
β

λ
, 0
)
ei 2π

λ

√
1−α2−β2ze2πi( α

λ
x+ β

λ
y)dα

λ
dβ
λ

(3.22)

= F−1
(

F(U(x, y, 0))ei 2π
λ

√
1−α2−β2z

)
. (3.23)

Applied to the propagation from the sample plane (transmission function t(x, y)) to the
detector plane in holography, this yields

Udet(X,Y ) = F−1
(

F(t(x, y))ei 2π
λ

√
1−α2−β2z

)
. (3.24)

Numerically, the angular spectrum propagator can be implemented as follows:
1 def PropagatorAngularSpec (ar , distance , wavelength , holin ):
2 delta0 = 1/ ar
3 (Nx ,Ny)= holin . shape [:2]
4 p=np. zeros ((Nx ,Ny), dtype = complex )
5 for ii in range (Nx):
6 for jj in range (Ny):
7 alpha =(ii -Nx /2)* wavelength * delta0
8 beta =(jj -Nx /2)* wavelength * delta0
9 if alpha **2+ beta **2 <=1:

10 p[ii ][ jj ]= np.exp (1j*2* np.pi* distance *
11 np.sqrt (1- alpha **2 - beta **2)/ wavelength )
12 return p
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As before, delta0 is the pixel size in Fourier space, calculated from the real space object
size ar. In line 7 and 8, α and β are sampled in Fourier space. distance denotes the
propagation distance.
With this definition, the hologram simulation and reconstruction for incident plane waves
can be implemented with the exact same code as for spherical waves if the spherical
propagator is replaced by the angular spectrum propagator:

1 Udet= IFT2D (FT2D(t)* PropagatorAngularSpec (area , z, Lambda , t))

As an example, the following code simulates an object consisting of three slices with
transmission functions t0, t1 and t2, respectively, at distances z0, z1 and z2 from the
source. One can assume that, since the object is small, the incident spherical wave can
be approximated by a plane wave over the extent of the object. This implies that the exit
wave after the interaction with the first slice can be represented by the corresponding
transmission function t0 since the remaining factors are constant and can hence be
dropped. Thus, as a first step, the slice characterized by the transmission function t0 is
propagated forward to the next slice with the help of the angular spectrum propagator,
which yields the incident wave for the z1-plane:

1 U1_in = IFT2D (FT2D(t_0)* PropagatorAngularSpec (area , z1 -z0 , Lambda , t_0))

The subsequent interaction with the transmission function t1 results in the exit wave of
the z1-plane

1 U1_exit = U1_in *t_1

These steps are then repeated, first U1_exit is propagated to the plane z2, then it
interacts with t2 to create the exit wave U2_exit:

1 U2_in = IFT2D (FT2D( U1_exit )* PropagatorAngularSpec (area , z2 -z1 , Lambda , U1_exit ))
2 U2_exit = U2_in *t_2

In the case of three slices considered here, U2_exit is the final exit wave which then
has to be propagated to the detector. For this, the spherical wave propagator is used:

1 U_det = IFT2D (FT2D( U2_exit )*np. conjugate ( Propagator (area , z2 , Lambda , U2_exit )))

Fig. 3.21a-d shows an example of non-overlapping disks in two different focal planes,
reconstructed from a hologram simulated with the multislice algorithm presented above.
The reconstruction has been carried out in the two focus planes using the iterative
reconstruction algorithm. The objects appear in the correct plane, respectively, while
the respective out-of-focus reconstruction of the other disk is also visible, albeit with
less sharp edges. The small imperfections in the reconstruction of the in-focus disk are
due to the contributions from the other slice. The imperfections in the reconstruction
decrease with smaller slice separation (Fig. 3.21a-d).
Fig. 3.21 also shows that the reconstructed amplitude and phase values of the out-of-focus
objects in a given slice are still close to the correct values for a slice separation range
of both 5 nm (Fig. 3.21a-b) and 10 nm (Fig. 3.21c-d), i. e. over the thickness of a single
protein. This is of relevance since the exact source-to-sample distance and thus the
correct reconstruction distance is in general not known in experimental imaging situations

97



Chapter 3. Phase reconstruction: Theory

f

z

x

y

10 nm

z

x

y

1 nm

z

x

y

5 nm

ba

c

e

d

Figure 3.21: Multislice algorithm: Non-overlapping and partially overlapping objects
a, b Iterative reconstruction a hologram simulated with the multislice algorithm of two non-
overlapping disks separated along the optical axis by 5 nm (shown on the right) in their respective
focus planes. Both disks have an absorption of α = 0.5 and a phase shift of φ = 0.5 and φ = −0.5,
respectively. In a, the disk on the right is in focus, in b, the disk on the left is in focus. c, d
Iterative reconstruction of a hologram generated by the multislice algorithm of the two disks
described in a and b, with an increased slice separation of 10 nm. In c, the focus plane of the
right disk is depicted, while d shows the focus plane of the left disk. e, f Iterative reconstruction
in the respective focus planes of a multislice-generated hologram of two overlapping disks with
the same specifications as in a. The slice separation is 1 nm. The respective object geometries
are sketched on the right.

and has to be retrieved by determining the focal plane of the object (see Chapter 1).
While the example of two non-overlapping disks demonstrates that the algorithm can
reconstruct the object in the correct z-plane and that the correct values of amplitude
and phase can be retrieved in the focus plane, it is of greater interest to apply the
multislice algorithm to objects that have (partially) overlapping parts in different slices,
which could be a model for an object with a spatially varying thickness. Fig. 3.21e-f
demonstrates that both phase and absorption values of the slices’ transmission function
are added in the multislice process. In the example presented in the figure, this results
in higher absorption and zero phase shift in the overlap region. Since multiple scattering
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becomes relevant in the low-energy electron imaging regime even for thin samples, the
accumulation of amplitude and phase by subsequent interaction with different parts of
the object is an important process to consider when interpreting experimental phase
data.
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Figure 3.22: Multislice algorithm: overlapping objects. a Iterative reconstruction of a
hologram simulated with the multislice algorithm from two identical disks with absorption α = 0.5
and phase φ = −0.5 rad separated along the optical axis by 1 nm; the geometry is sketched in e.
The amplitude, absorption and phase values of the slices are accumulated. The reconstruction
is shown in the focal plane of the top disk. b Iterative reconstruction of a hologram simulated
with the multislice algorithm from three identical disks with absorption α = 0.5 and phase
φ = −0.5 rad, separated along the optical axis by 1 nm; the corresponding geometry is sketched
in f. The reconstruction is shown in the focal plane of the top disk. c, d Iterative reconstruction
of a hologram generated by the multislice algorithm from an object consisting of three disks of
different radii, as depicted in g. c and d show the reconstructions in the focal planes of the
middle and the top disk, respectively. The slice separation is 1 nm. The outer two slices are
identical disks of radius 10 pixels and absorption α = 0.5 and phase φ = −0.5 rad, the middle
disk has a smaller radius of 5 pixels with absorption α = 0.5 and phase φ = +0.5 rad.

In figures 3.22 and 3.23, the case of fully overlapping objects in different slices is examined.
Overlapping identical disks, as shown in Fig. 3.22a-b yield the same result as a single
disk with the accumulated absorption and phase values, i. e. a hologram simulated from
two fully overlapping disks (Fig. 3.22e), with absorption α = 0.5 and phase φ = −0.5 rad
each, yields a reconstructed object of absorption α = 1 and phase φ = −1 rad (Fig. 3.22a).
The contributions of the two slices are not well-separable in the axial direction, i. e. the
two focal planes are hard to distinguish and, as a result, the reconstructions are slightly
noisier than what would be expected from a single-slice object. For fully overlapping,
non-identical objects in different planes, the amplitudes and phases also add up as
expected, but again, the different reconstruction planes cannot easily be distinguished,
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as shown in Fig. 3.22c-d, which shows the reconstruction of an object built up of 3 slices
with a slice separation of 1 nm as depicted in Fig. 3.22g. While the outer two slices
are identical disks of radius 10 pixels and absorption α = 0.5 and phase φ = −0.5 rad,
the middle disk has a smaller radius of 5 pixels with absorption α = 0.5 and phase
φ = +0.5 rad.
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Figure 3.23: Multislice algorithm: overlapping objects II Iterative reconstruction of an
object consisting of four different slices in the respective focal planes. The object geometry is
sketched on the right, shapes of the same colour are located in the same z-plane. In all planes, all
contributions are visible, but the sharpness of the edges allows the identification of the in-focus
parts: a a disk of radius 10 pixels and absorption α = 0.5 and phase φ = −0.5 rad is in focus
(red) b a disk of radius 5 pixels, absorption α = 0.5 and phase φ = +0.5 rad is in focus (blue) c a
disk of radius 10 pixels and absorption α = 0.5 and phase φ = −0.5 rad is in focus (yellow) d a
smaller disk (radius 4 pixels) and a square, whose centres are shifted away from the slice centre
(green), both with absorption α = 0.3 and phase φ = 0.7 rad, are in focus. The two identical
disks in a and c are hard to distinguish via the sharpness of the edges.

To examine how well the different focus planes in an object with laterally overlapping
parts in different z-planes can still be distinguished, Fig. 3.23 shows the reconstructed
amplitude, phase and absorption of an object consisting of four different slices with
overlapping content. The contributions of the different slices are a disk of radius 10
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pixels and absorption α = 0.5 and phase φ = −0.5 rad, followed by a disk of radius 5
pixels, absorption α = 0.5 and phase φ = +0.5 rad, followed by a disk identical to the
first one. The disks in all three slices are centred around the centre of the slice. The
last slice is characterized by two smaller objects, a disk and a square, whose centres are
shifted away from the slice centre, both with absorption α = 0.3 and phase φ = 0.7 rad.
For all reconstructed focal distances, all parts of the object are visible, the sharpness of
the edges in amplitude and absorption differs, however, and thus indicates which part
of the object actually is in focus. In the phase reconstruction, the planes are hard to
distinguish. Additionally, the two identical overlapping objects (i. e. the two disks of
radius 10 pixels in focus in Fig. 3.23a and c) are hard to distinguish via the sharpness of
edges as already demonstrated in Fig. 3.22a-b.

To apply the multislice algorithm to an object close to an experimental structure of a
protein, which will be discussed in the next chapter, a molecular model of the chaperone
protein GroEL is examined in Fig. 3.24. Starting from the pdb structure 5W0S [210],
the model can be divided into slices whose separation is calculated from the molecular
thickness and the chosen number of slices. The atoms in one slice are then projected into
one plane, these planes can subsequently be used as input for the multislice algorithm.
Fig. 3.24 compares the reconstruction from a hologram with all atoms projected into a
single plane (Fig. 3.24b) and that from a hologram generated by the multislice algorithm
from 5 slices with a slice separation of 3 nm (Fig. 3.24c). The 7-fold symmetry of the
molecule is present on the hologram level in both the single slice and the multislice
hologram. The iterative reconstruction obtained from the single-slice hologram accurately
retrieves the density variations mapped by the projection (Fig. 3.24d). The iterative
reconstruction calculated from the multislice hologram shows lower contrast than the
single-slice hologram reconstruction, but the three-dimensional information imprinted
upon the hologram by the multislice simulation can be partially retrieved, as can be
seen when comparing the iterative amplitude (Fig. 3.24f) and phase reconstructions
(Fig. 3.24g) in the respective z-planes to the slice projections in Fig. 3.24e. While the
individual slices are not fully recovered, structural details pertaining to the respective
slices are discernible. The fuzzier appearance of the reconstructions of the multislice
hologram as compared to the single-slice hologram can be attributed to the out-of-focus
contributions from the other slices.
Thus, multislice simulations are a way of incorporating three-dimensional information
into the hologram simulation process. Since the assumption that an object like a protein
can be described by a two-dimensional transmission function is quickly stretched to
its limits in an experimental context due to the presence of multiple scattering events,
multislice simulations can help creating more accurate models for protein holograms that
could be used for comparison with the experimental data.
Fig. 3.22 - Fig. 3.24 demonstrate that, as in the case of non-overlapping objects (Fig. 3.21),
out-of-focus phase and amplitude data also contribute to the reconstruction plane for
fully overlapping objects. While this hinders an accurate axial resolution, since it is more
difficult to ascertain which part of the objects belongs to which focal plane in cases of
significant lateral overlap, experimentally, this can be beneficial since the information is
not lost in cases in which the source-to-sample distance cannot be exactly determined.
Although the quantitative values will lose accuracy the further the distance from the focal

101



Chapter 3. Phase reconstruction: Theory

13.7 nm 14.6 nm

a

a.
 u

.

multislicec

d

t5

z5

z5

ra
d

t4

z4

z4

ra
d

t1

z1

z1

e

f

g

ra
d

t2

z2

z2

ra
d

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

a.
 u

.

ra
d

single sliceb

a.
 u

.

1.0

0.8

0.6

0.4

a.
 u

.

1.0

0.8

0.6

0.4

a.
 u

.

t3

z3

z3

ra
d

1.0

0.8

0.6

0.4

1.0

0.8

0.6

0.4

1.0

0.8

0.6

0.4

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

2

1

0

2

1

0

-1

2

1

0

2

1

0

1

0

1.2

1.0

0.8

0.6

1.2

1.0

0.8

0.6

0.0

0.4

0.8

0.2

0.6

1.0

0.0

0.4

0.8

0.2

0.6

1.0

0.4

0.7

0.9

0.6

0.8

1.0

0.5

a.
 u

.

Figure 3.24: Multislice algorithm: protein example a PDB structure 5W0S of GroEL [210]
both in top and side view. The projections used in d and e show the top view. b Hologram
simulated from a single-slice transmission function of the PDB structure 5W0S of the protein
GroEL [210], for which all the atoms in the PDB model have been projected into one plane (shown
in d). c Hologram simulated with the multislice algorithm from projections of the molecular
model into 5 slices (shown in e) with a slice separation of 3 nm to match the molecular thickness.
d Single-slice projection of the PDB model 5W0S used as input for the single-slice hologram in
b and the iterative phase and amplitude reconstruction after 100 iterations of the single-slice
hologram. e Projections of the PDB model 5W0S into 5 slices which are used as input for the
multislice algorithm. f Iterative amplitude reconstructions of the multislice hologram after 100
iterations in the respective z-planes. g Iterative phase reconstructions of the multislice hologram
after 100 iterations in the respective z-planes.

plane, the qualitative features are retained over an axial range of several nanometers.
Because of these additional contributions, however, the reconstruction algorithm employed
here is not perfectly suited to deal with objects described by three-dimensional trans-
mission functions. Ideally, such holograms would be reconstructed using an algorithm
that takes the inherently three-dimensional nature of the objects into account. Possible
approaches to this include multislice iterative phase retrieval [207] and deconvolution
approaches [211, 212], the latter will be discussed in Chapter 5.
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In general, the artefacts that can occur in the iterative phase reconstruction algorithm
for a single slice hologram can also occur during the iterative reconstruction of multislice
holograms since the reconstruction part is identical. Since the absorption values of the
transmission functions of each individual slice are added up, it is easy to create strongly
absorbing objects, hence in simulations, the absorption values need to be chosen carefully.

The multislice algorithm presented in this section can be considered as a model that
incorporates multiple scattering processes and information about an object’s three-
dimensional structure into the hologram simulation. There is one important difference,
however, to experimental multiple scattering processes: in the experiment, many multiple
scattering events will be inelastic, which in most cases means that they lose coherence
with respect to the reference wave. This implies that their contribution to the hologram
is not to the fringe pattern, but only towards the absorptive properties. The algorithm
discussed here, however, does not include inelastic effects, hence it implements elastic
multiple scattering processes.

3.3.2 Scattering algorithm

So far, the absorption and phase shift values in the transmission function have been
chosen such that they are suitable for test purposes, and the interaction of the incident
wave and the object has been described classically. Even in the case shown in Fig. 3.24,
where different absorption and phase shift values could in principle be assigned to atoms
of different elements, the assigned values are not based on the actual interaction of the
electrons with the atoms of the protein.
The scattering amplitudes and phase shifts of electrons interacting with atoms can be
calculated using partial waves [213, 214, 103], which allows a fully quantum mechanical
description of the interaction. With this approach, rather than using a transmission
function defined by a two-dimensional array with absorption and phase values assigned to
each pixel, the object can be built up atom by atom. The reference wave then interacts
with each atom individually, the scattered waves resulting from each interaction are
propagated to the screen and superimposed with the unaltered reference wave, which
creates a hologram.
In general, the time evolution of the wave function of a particle moving in a potential,
e. g. an electron in an atomic potential, can be described by stationary states of well-
defined energy E

Ψ(r, t) = ψ(r)e−i E
ℏ t, (3.25)

where ψ(r) are solutions of the time-independent Schrödinger equation, i. e. energy
eigenstates of the corresponding Hamiltonian [215].
Scattering processes can be delineated in terms of stationary scattering states that are
examined at temporal and spatial coordinates at which the particle can be considered as
asymptotically free. For large negative values of t, i. e. before the interaction with the
potential, the free particle can be represented as a plane wave eikz, whereas, at large
positive times t, when the particle has moved away from the potential after interacting,
the particle’s wave function can be described by a superposition of a transmitted and a
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scattered wave

ψk(r) r→∞∼ eikz + f(θ, ϕ)e
ikr

r
, (3.26)

where f(θ, ϕ) is the scattering amplitude that depends on the form of the potential
[215, 216].
In the case of a central potential, the orbital angular momentum L is conserved. Hence,
the Hamiltonian of a particle moving in a central potential has eigenstates with well-
defined angular momentum of the form

ψk,l,m(r) =

√
2k2

π
jl(kr)Y m

l (θ, ϕ), (3.27)

whose angular dependence is given by the spherical harmonics Y m
l (θ, ϕ) and whose radial

component is given by the spherical Bessel function jl(r) [215, 217]. These eigenstates
can be used as a basis in which to expand the incoming wave and thus to describe the
scattering interaction via the partial wave amplitude f(θ). Since the interaction with
the potential induces an additional, angular momentum-dependent phase shift δl, the
scattering amplitude and scattering cross section can be expressed as a function of these
phase shifts in a partial wave analysis [215].
An expression for the complex-valued partial wave amplitude f(θ) can be derived by
considering the scattering of an incoming plane wave eikz, with wave fronts perpendicular
to the z-axis, from a spherically symmetric potential V (r) = V (r).
Expanding the incoming plane wave in terms of the angular momentum eigenstates and
applying the spherical harmonic addition theorem [215, 217] yields

eikz = eikr cos θ =
∞∑

l=0
il
√

4π(2l + 1)jl(kr)Y 0
l (θ) (3.28)

=
∞∑

l=0
il(2l + 1)jl(kr)Pl(cos θ). (3.29)

Since eikz does not depend on ϕ, it is composed of angular momentum eigenstates with
m = 0. Pl is a Legendre polynomial of degree l, which is related to Y 0

l (θ) by

Y 0
l (θ) =

√
2l + 1

4π Pl(cos θ). (3.30)

Since the sum occurring in the expansion in eq. (3.29) includes all angular momenta up
to infinity, this does on first glance appear computationally costly. It is, however, often
sufficient to only include a small number of l up to a maximum angular momentum lmax

in the sum, especially at low energies. This can be heuristically understood in analogy
to the impact parameter b in classical scattering [217]. The angular momentum of an
incoming particle at a distance b from the axis on which the scattering target is placed
can be approximated by

ℏl ∼= ℏkb. (3.31)
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Hence, for a potential of finite range r0, particles with large angular momenta associated
with b > r0 do not interact with the potential (in the classical analogue, the particle
would miss the target). Hence a maximum angular momentum that contributes to the
scattering can be defined:

lmax = kbmax
∼= kr0. (3.32)

A rigorous derivation based on the properties of the angular momentum eigenstates yields
the quantum mechanical impact parameter analogue bl =

√
l(l+1)

k [215].
Considering the asymptotic case r → ∞, for which the scattering states take the form
discussed above, eq. (3.29) can be simplified by using the approximate form of the
spherical Bessel function for large r:

jl(kr)
r→∞→

sin(kr − lπ
2 )

kr
. (3.33)

The asymptotic case is valid when the distances between the scatterer and the points
where the wave is evaluated (the screen and the emitter) are much larger than the range
of the potential. For the scattering at an atomic potential, this is the case in an in-line
holography set-up.
Inserting this into eq. (3.29) and expressing the sine function in terms of exponentials by
Euler’s formula results in

eikz r→∞→ 1
2ik

∞∑
l=0

il(2l + 1)
[
ei(kr−l π

2 )

r
− e−i(kr−l π

2 )

r

]
Pl(cos θ) (3.34)

= 1
2ik

∞∑
l=0

(2l + 1)
[
eikr

r
− e−i(kr−lπ)

r

]
Pl(cos θ), (3.35)

where il = ei π
2 l has been used in the last step.

With this, the asymptotic form of the full wave function (eq. (3.26)) becomes

ψk(r) r→∞→ 1
2ik

∞∑
l=0

(2l + 1)
[
eikr

r
− e−i(kr−lπ)

r

]
Pl(cos θ) + f(θ)e

ikr

r
(3.36)

= − 1
2ik

∞∑
l=0

(2l + 1)e
−i(kr−lπ)

r
Pl(cos θ) + eikr

r

(
f(θ) + 1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)
)

(3.37)

In the last step, all terms proportional to eikr

r have been grouped together.
The wave function likely changes significantly during the interaction. Still, the radial
part at large distances r → ∞ can be approximated by a phase-shifted free-particle wave
function, again making use of the properties of the spherical Bessel function:

Rl(r) = Ul(r)
r

r→∞→ Al
sin(kr − lπ

2 + δl(k))
kr

, (3.38)
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where δl(k) is the phase shift induced by the potential. Thus, the wave function ψk(r)
can be expressed in terms of the radial basis as follows:

ψk(r) r→∞→
∞∑

l=0
Al

sin(kr − lπ
2 + δl(k))
kr

Pl(cos θ) (3.39)

= 1
2ik

∞∑
l=0

Al

[
ei(kr−l π

2 +δl)

r
− e−i(kr−l π

2 +δl)

r

]
Pl(cos θ). (3.40)

The coefficients Al can now be determined by comparison to eq. (3.37). Since the term
associated with the incoming plane wave remains unaltered by the scattering process,
the coefficients of the terms proportional to e−ikr have to match in equations (3.37) and
(3.40). This requirement directly yields an expression for Al:

Al = (2l + 1)eil π
2 eiδl (3.41)

Inserting this into eq. (3.40) and comparing the remaining terms in eq. (3.40) and
eq. (3.37) yields the partial wave amplitude f(θ):

f(θ) + 1
2ik

∞∑
l=0

(2l + 1)Pl(cos θ) = 1
2ik

∞∑
l=0

(2l + 1)e2iδlPl(cos θ) (3.42)

⇒ f(θ) = 1
2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ) (3.43)

= 1
k

∞∑
l=0

(2l + 1)eiδl sin(δl)Pl(cos θ). (3.44)

In the last step, the exponential term has been rewritten as

e2iδl − 1 = eiδl(eiδl − e−iδl) = eiδl2i sin(δl). (3.45)

From f(θ), expressions for the total scattering cross section σ and the differential cross
section dσ

dΩ can be obtained:

dσ
dΩ = |f(θ)|2 (3.46)

⇒ σ =
∫ dσ

dΩdΩ =
∫ 2π

0

∫ π

0
|f(θ)|2 sin θdθdϕ (3.47)

= 2π
k2

∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)ei(δl−δl′ ) sin(δl) sin(δl′)
∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ

(3.48)

With the orthogonality relation for Legendre polynomials [217],∫ π

0
Pl(cos θ)Pl′(cos θ) sin θdθ = 2

2l + 1δll′ , (3.49)

this results in

σ = 4π
k2

∞∑
l=0

(2l + 1) sin2(δl). (3.50)
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In the more general case of particles with spin, two scattering amplitudes have to be
considered: the direct scattering amplitude f(θ) and the spin-flip scattering amplitude
g(θ), which are of the form [218, 214, 213]

f(θ) = 1
2ik

∞∑
l=0

[
(l + 1)

(
e2iδ+

l − 1
)

+ l
(
e2iδ−

l − 1
)]
Pl(cos θ) (3.51)

and

g(θ) = 1
2ik

∞∑
l=0

(
e2iδ−

l − e2iδ+
l

)
P 1

l (cos θ), (3.52)

where Pl(cos θ) are the Legendre polynomials and P 1
l (cos θ) are the associated Legendre

polynomials.
For δ+

l = δ−
l , g(θ) = 0 and f(θ) reduces to the expression derived in eq. (3.44).

The NIST Electron Elastic-Scattering Cross-Section Database [218] provides the phase
shifts δ+

l and δ−
l and the associated cross sections for the elastic interaction of electrons

with energies between 50 eV and 300 keV and target atoms of atomic number Z, calculated
by a Dirac partial wave analysis. The potential used to model the interaction includes
the following terms [213]:

V (r) = Vst(r) + Vex(r) + Vcp(r) − iWabs(r). (3.53)

Vst(r) describes the electrostatic potential which is dominated by Coulomb interaction.
Vex(r) is the exchange potential representing the interaction of identical particles. The
correlation-polarization term Vcp(r) characterizes the polarization of the target charge
distribution due to the electric field of the electrons and the resulting effect of the induced
dipole on the incoming electrons. Wabs(r) describes the absorptive potential that accounts
for a partial loss of elastic electron flux due to inelastic effects. The last three terms are
especially relevant in the low-energy regime.

Since the phase shift for individual elements are known, holograms of objects built up
from individual atoms can be simulated based on the scattering amplitude f(θ). The
wave function at the detector then takes the form [103]

Udet(R) = Aref
eikR

R
+ f(θ)

N∑
j=1

eikrj

rj

eik|rj−R|

|rj − R|
, (3.54)

where R is a position on the screen (relative to the emitter position), rj is the position
of the jth atom in the sample, N is the number of atoms in the sample, and Aref is the
amplitude of the reference wave.
Numerically, this can be implemented with the help of the SciPy function legendre as
a representation of the Legendre polynomials. For an atom s within the molecule and an
incoming electron with wave vector k, the scattering amplitude is calculated as follows:

1 table = atomset . index (atom[s]) # select phase shift table for element
2 lgd=np. zeros (( pixel * pixel )) # initialise Legendre polynomials
3 f = lgd # initialise scattering amplitude
4 # Calculate scattering amplitude
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5 for l in range (0, lmax):
6 Pn= legendre (l)
7 lgd=Pn( cosTheta )
8 f=(2*l+1)*np.sin( phase [table ,l ,1])*np.exp (1j* phase [table ,l ,1])*lgd/k + f

In line 1, the correct phase shift table for the atomic species of the atom s is selected, in
the following two lines, the arrays for the Legendre polynomials lgd and the scattering
amplitude f are initialised. The for-loop then calculates the scattering amplitude
according to eq. (3.44), for angular momenta l from 0 to a maximum angular momentum
lmax. While theoretically, any value for lmax could be chosen, it is practically limited
by the availability of the corresponding phase shifts in the NIST data base. For light
elements such as carbon and nitrogen, phase shifts at low energies of 100 eV are available
up to l = 25. phase[table,l,1] denotes the phase shift corresponding to the correct
atomic number (as given by table) and the angular momentum l. Since the NIST
phase shifts tables include both δ+

l and δ−
l , the last argument of phase selects which

phase shift to use, 1 stands for δ+
l , -1 for δ−

l . Since δ+
l and δ−

l are almost identical for
most l (except at l = 0, where δ−

l is often 0) at the energies considered here, both phase
shifts could be chosen when implementing eq. (3.44), because of the discrepancy at l = 0,
δ+

l has been chosen here.
Alternatively, eq. (3.51) with both δ+

l and δ−
l can be implemented as

1 table = atomset . index (atom[s]) # select phase shift table for element
2 lgd=np. zeros (( pixel * pixel )) # initialise Legendre polynomials
3 f = lgd # initialise scattering amplitude
4 # Calculate scattering amplitude
5 for l in range (0, lmax):
6 Pn= legendre (l)
7 lgd=Pn( cosTheta )
8 f =1/(2*1 j*k)*(((l+1) *( np.exp (2*1j* phase [table ,l ,1]) -1)
9 +l*( np.exp (2*1j* phase [table ,l , -1]) -1))*lgd) + f

Because the differences between δ+
l and δ−

l are mostly small, the scattering amplitudes
also yield very similar values.
In both cases, the argument of the Legendre polynomials cosTheta has to be calculated
point by point for each scatterer. For a given scatterer and a given point on the screen,
the scattering angle θ is determined by the triangle spanned by the scatterer, the point
on the screen, and the direct projection of the scatterer to the screen. cos θ can then be
calculated by the law of cosines as

1 cosTheta =( directlength **2+ rss **2 - screenlength **2) /(2* directlength *rss)

where rss is the distance between the scatterer and the point on the screen, directlength
is the distance of the scatterer to its direct projection on the screen, and screenlength
is the distance between the point on the screen defined by rss and the point on the
screen corresponding to the direct projection of the scatterer.
Since cosTheta has to be calculated for each point on the screen for a given scatterer s,
the distances are most efficiently calculated by expressing the distance vectors in matrix
form and exploiting pre-compiled numpy.array functions to achieve acceptable running
times.
To check that the scattering amplitude is calculated correctly, the differential cross section
can be calculated from f(θ) and compared to the cross sections provided by the NIST
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data base. The cross sections match precisely, as shown in Fig. 3.25 for the examples of
oxygen and iron.
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Figure 3.25: Differential scattering cross sections: a Differential scattering cross section for
oxygen (O) at an electron energy of 100 eV, calculated with the code presented above (left) and
screenshot of the corresponding values taken from the NIST database [218] (right). b Differential
scattering cross section for iron (Fe) at an electron energy of 100 eV, calculated with the code
presented above (left) and screenshot of the corresponding values taken from the NIST database
[218] (right).

Once the scattering amplitude f(θ) is calculated, the complex wave field at the detector
can be simulated (Fig. 3.26a) by implementing eq. (3.54) as

1 Udet = p+ref

with the scattered wave
1 p = (a0/rse) * np.exp (1j*(k*rse+phi0))*( np.exp (1j*k*rss )/rss)*f + p

and the reference wave
1 ref = (a0/r) * np.exp (1j*(k*r + phi0))

where a0 and phi0 are the initial amplitude and phase of the reference wave, rse is
the distance between a given scatterer and the emitter and rss is the distance between
the scatterer and a given point of the screen, as above.
Since the amplitude of the reference wave is known, the hologram can be normalized by
division by the amplitude of the reference wave (Fig. 3.26b):

1 holoabs =abs(holo)
2 absref =abs(ref)
3 holobackdiv =( holoabs **2) /( absref **2)
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Figure 3.26: Scattering simulation for individual atoms: a Amplitude of the complex
wave field at the detector and b normalized hologram, simulated with the scattering algorithm
from the object reconstructed in c-f. c One step amplitude reconstruction and d one-step phase
reconstruction at z0 = 96 nm of the hologram shown in b. Despite z0 = 100 nm being the
simulated source-to-sample distance, the atoms appear in focus at z0 = 96 nm. The different
atomic species (labelled in e) appear at different contrast in both amplitude and phase. e-f
Iterative amplitude and phase reconstructions after 50 iterations of the hologram in b and
corresponding cross sections through the centre of the image.
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The hologram can then be reconstructed by employing the code presented in Chapter 1.
The reconstruction is in principle successful, since even the one-step algorithm yields
reconstructions in which different atomic species can be distinguished in both amplitude
and phase (see Fig. 3.26c-d). As expected, atoms with high atomic number scatter more
strongly than elements with low atomic number, as exemplified in Fig. 3.26c-d, where
the metal atoms Fe and Zn appear darker than the C and N atoms in both amplitude
and phase.
The iterative reconstruction algorithm can also be applied, while it does reduce the
fringes, it does not remove them completely as in the case of the holograms simulated
with the convolution-based algorithm (Fig. 3.26e-f). The reason for this could be the
conceptual difference between the two algorithms used for simulation (via scattering) and
reconstruction (via convolution). As a result of that, the constraints applied during the
iterative reconstruction are likely not ideal. This conceptual difference also complicates
the quantitative evaluation of the reconstruction: to compare the values reconstructed
by the convolution approach to the scattering amplitudes, one would need to calculate
a transmission function from the scattering amplitudes directly, i. e. not via simulation
and reconstruction of a hologram, which is not possible since the form of the wave
function used in the scattering approach is only valid for large distances from the object.
Additionally, in the convolution approach, a constant factor such as the initial reference
wave amplitude a0, does not qualitatively change the reconstruction. The relative
pixel values will thus remain the same even if the absolute values of the maximum and
minimum pixel intensities change. Hence, the hologram can be normalized without a
qualitative change in the reconstruction, which is of particular relevance for the iterative
reconstruction algorithm since some of the constraints are only applicable for certain
value ranges of the hologram.
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Figure 3.27: Scattering algorithm: focus a One-step amplitude and phase reconstruction of
the hologram shown in Fig. 3.26b at z0 = 97 nm. b Iterative amplitude and phase reconstruction
after 50 iterations of the hologram shown in Fig. 3.26b at z0 = 97 nm. While the relative phases
are similar, the sign of the phases is reversed in comparison to amplitude and phase reconstruction
of the hologram shown in Fig. 3.26d, f. c One-step amplitude and phase reconstruction of the
hologram shown in Fig. 3.26b at z0 = 100 nm. d Iterative amplitude and phase reconstructions
after 50 iterations of the hologram shown in Fig. 3.26b at z0 = 100 nm. While this should be the
focal plane corresponding to the distance between source and sample plane, the reconstruction
appears out of focus.
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Additionally, the focusing of the reconstruction is met with some difficulties. Since the
source-to-sample distance is in principle known (100 nm in the images presented here), the
focused image of an object consisting of atoms in one plane would be expected to appear
at the simulated source-to-sample distance. When applying the convolution approach
as described in Chapter 1 to the holograms simulated with the scattering algorithm,
however, the atoms appear in focus (in the sense in which a transmission function object
would be focused) at source-to-sample distances that differ from the expected value by
several nanometers. Fig. 3.27 shows the reconstruction of the same object shown at a
reconstruction distance of 96 nm in Fig. 3.26, an array of five atoms of four different
atomic species (N, Zn, Fe and C), for the reconstruction distances 97 nm and 100 nm.
While z0 = 100 nm would be the expected focus distance, the object appears in focus
at z0 = 96/97 nm (Fig. 3.26c-f, Fig. 3.27a-b). It is, however, not clear which of the two
distances should be considered as the focal plane. The amplitude reconstructions at
both distances are similar, but while the relative reconstructed phases are also similar
for the two distances, the absolute phases are not: at 96 nm, the reconstructed phases
are negative, at 97 nm, they are positive (Fig. 3.26d,f, Fig. 3.27a-b).
This indicates that a different reconstruction procedure might be necessary for recon-
structing holograms simulated with a scattering algorithm. The ambiguity in the focus of
the reconstruction, specifically, could be due to the fact that the paraxial approximation
cannot be applied in the scattering case, i. e. that the wave front at the detector is too
curved to be approximated by a flat screen.
To test this hypothesis, the Fresnel-Kirchhoff integral (eq. (1.58)) has been evaluated
directly:

1 for u in range (0, Dim):
2 pix=np. transpose (np. repeat (np. reshape ( recPlane [u ,:] ,(3 ,1)),
3 ScreenPixel * ScreenPixel , axis =1))
4 rpsi =( np.sum ((( pix - emitter ) -(screen - emitter ))**2 ,1)) **0.5
5 psi[u]=1j/ wavelen *np.sum(h*ref*np.exp (-1j*k*rpsi)/rpsi)

where pix is a pixel in the object plane, h is the normalized hologram and ref is the
reference wave.
The results of this reconstruction are shown in Fig. 3.28a-b. The focus of the reconstructed
object is indeed at 100 nm, however, a strong background pattern leads to errors in the
reconstruction, especially in the phase reconstruction (Fig. 3.28b). The phase background
can in part be removed by unwrapping the phase with the skimage.restoration
function unwrap_phase (Fig. 3.28c).
Shifting the values of the normalized hologram by subtracting 1 (i. e. h=holobackdiv-1
instead of h=holobackdiv), a normalization for example employed in references
[73, 219], removes the pattern in the amplitude reconstruction while also inverting
the contrast (Fig. 3.28d). The phase reconstruction, however, deteriorates when using
holograms with the shifted values (Fig. 3.28e-f). Additionally, the direct reconstruction
algorithm is computationally very costly, the reconstruction of a small image of 200 × 200
pixels takes approximately 600 s, while the convolution-based reconstruction of an image
of the same size takes 0.8 s.
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Figure 3.28: Direct integral reconstruction a Direct integral amplitude reconstruction of
the hologram shown in Fig. 3.26b at z0 = 100 nm and corresponding cross section through the
centre of the image. b Direct integral phase reconstruction of the hologram shown in Fig. 3.26b
at z0 = 100 nm. The slowly varying background contribution can be partially removed by phase
unwrapping as shown in c. d Direct integral amplitude reconstruction and corresponding cross
section through the centre of the image of the shifted hologram (holobackdiv-1) at z0 = 100 nm.
e-f Direct integral phase reconstruction of the shifted hologram at z0 = 100 nm, the directly
reconstructed phase is shown in e, the unwrapped phase in f.

Despite these ambiguities in the reconstruction, the code can be used to simulate the
interaction of the electron beam with molecules such as porphyrins or phtalocyanines
with metal centres that result in locally stronger scattering. The example of platinum
phtalocyanine (PtPc) is shown in Fig. 3.29, the stronger scattering by the metal centre
is evident in both amplitude and phase.
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Figure 3.29: Scattering algorithm: molecular example a Iterative amplitude reconstruction
after 50 iterations of a molecular model of PtPc at z0 = 96 nm. b Iterative phase reconstruction
after 50 iterations of a molecular model of PtPc at z0 = 96 nm.

This shows that the algorithm can be used to model the effect of locally different scattering
strengths and could be applied to produce simulations to compare to experimental data
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of molecules such as PtPc. Such a comparison would not only provide insights relevant
to understanding the origin of certain features in the phase reconstruction, but is also
of relevance to the imaging of biological systems, since similar structures to the one
simulated in Fig. 3.29 occur within biomolecules, for example in the form of heme
groups. So far, however, the experimental results for these types of molecules have
been ambiguous, mostly due to difficulties regarding sample preparation and insufficient
resolution.
While it is unlikely that, at the current resolution, effects of a local change in scattering
strength due to a single metal atom could be detected in large three-dimensional molecules
such as proteins, the results of this section could be extrapolated to the imaging of local
changes of potential on a scale larger than an individual atom.

In summary, this algorithm can be considered as an approximate model for the interaction
of the low-energy electrons employed in LEEH and can be used for a qualitative comparison
to experimental data.

1

2 34

5

b z0=96 nma z0=95 nm

c z0=97 nm d z0=98 nm

Figure 3.30: Scattering algorithm: 3D input Iterative amplitude, phase and absorption
reconstruction after 50 iterations of an object consisting of 5 Tb atoms distributed in 4 different
planes along the z-axis. Atom 1 is the closest to the emitter, atoms 2 and 3 are located in the same
plane, 1nm further towards the screen than atom 1, followed by atom 4 and 5, whose z-planes are
located 2 nm and 3 nm towards the detector with respect to atom 1. The reconstructions were
obtained for a z0 = 95 nm, b z0 = 96 nm c z0 = 97 nm, d z0 = 98 nm. As expected, the atoms
come into focus in the correct order. The cross sections are taken through the image centres and
show atom 5 transitioning from being out of focus in a to being in focus in d.
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3.3 Towards phase interpretation

While the simulation of flat molecules at atomic resolution has been demonstrated using
PtPc in Fig. 3.29, the algorithm can also handle three-dimensional data, as shown by a
simple three-dimensional object consisting of 5 atoms in four different planes in Fig. 3.30.
This algorithm, however, only allows the modelling of single scattering events since the
wave resulting from each scattering interaction is directly propagated to the detector.

Furthermore, while an inelastic term has been added to the potential used to calculate
the phase shifts in the NIST data base [218, 213], the interaction modelled here is still
primarily elastic, specifically, the scattering amplitude f(θ) has been derived for the case
of elastic scattering. In principle, inelastic contributions can be included in the scattering
amplitude. In the expression of the scattering amplitude given in eq. (3.43), the term
e2iδl can be associated with the scattering matrix for angular momentum l, Sl. In the
case of elastic scattering, no flux is lost, hence |Sl| = 1. If absorption and inelastic effects
are included, the number of elastically scattered particles is reduced, hence |Sl| ≤ 1.
Thus, Sl can be written as [217]

Sl = ηle
2iδl , (3.55)

with 0 ≤ η ≤ 1. With this, the scattering amplitude f(θ) takes the form

f(θ) = 1
2ik

∞∑
l=0

(2l + 1) (Sl − 1)Pl(cos θ) (3.56)

= 1
2ik

∞∑
l=0

(2l + 1)
(
ηle

2iδl − 1
)
Pl(cos θ) (3.57)

= 1
2ik

∞∑
l=0

(2l + 1) (ηl(cos(2δl) + i sin(2δl)) − 1)Pl(cos θ) (3.58)

= 1
2k

∞∑
l=0

(2l + 1) (ηl sin(2δl) + i(1 − ηl cos(2δl)))Pl(cos θ). (3.59)

The corresponding total elastic cross section is

σel = π

k2

∞∑
l=0

(2l + 1)
(
1 + η2

l − 2ηl cos(2δl)
)
. (3.60)

Thus, even in the case of full absorption, ηl = 0, an elastic scattering contribution
remains, which is of interest especially when considering complex and three-dimensional
molecules like proteins, which could behave like strongly absorbing objects in the context
of LEEH. Adding absorptive properties to the scattering cross section would be relevant
in a simulation of an entire protein consisting of thousands of atoms; while this is in
principle possible, it is computationally very costly, since the interaction with each
scatterer has to be calculated separately.
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4 Phase reconstruction: Applica-
tion to experimental data

The interaction of low-energy electrons with biological matter, such as proteins, will in
general result in changes to both the amplitude and the phase of the incoming electron
wave. The phase maps the elastic part of the scattering interaction, whereas the changes
in amplitude are related to the inelastic scattering events [62, 49, 220]. Thus, while
amplitude images retrieved from experimental holograms can yield a variety of insights
regarding the structure and conformational variability of proteins, as discussed in Chapter
2, the application of the iterative phase retrieval algorithm presented in Chapter 3 to
experimental data is of great interest as this could reveal additional information about
the imaged molecules.
So far, it has been demonstrated that iterative phase retrieval algorithms like the one
discussed in the previous chapter can be applied to experimentally acquired optical
holograms [193] and to low-energy electron holograms of charged adsorbates [221]. This
chapter focuses on the phase reconstruction of low-energy electron holograms of proteins.
It will be shown that the phase retrieval algorithm described in Chapter 3 can be em-
ployed to iteratively calculate the amplitude and phase distributions of a wide range of
LEEH-imaged proteins with different sizes and characteristics. A selection of phase recon-
structions of different proteins, ranging from small proteins (myoglobin and hemoglobin)
to large proteins (β-Galactosidase) is shown in Fig. 4.1. All phase reconstructions in
Fig. 4.1 feature a uniform background, indicating that the iterative phase retrieval algo-
rithm has succeeded in removing the background modulations due to the contributions
of the twin image. Moreover, the phase images in Fig. 4.1 show distinct features of
strong contrast that cannot immediately be interpreted. In order to evaluate the phase
reconstructions, the phase information needs to be carefully compared to amplitude data
as well as additional information that can, for example, be inferred from the holograms
themselves, or by comparison with molecular models of the proteins derived from other
imaging methods, such as X-ray crystallography or cryo-EM.

Before turning to the interpretation of the retrieved phase distributions, the image
processing workflow employed for the phase reconstruction of experimentally acquired
holograms is discussed. Following that, possible interpretations of the phase images
and their features are proposed, building on the concepts of molecular thickness and
density as well as variations in the scattering potential that were explored in Chapter
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Figure 4.1: Phase reconstruction of proteins: a Myoglobin (mass: 17 kDa) b Hemoglobin
(mass: 64 kDa) c Transferrin (mass: 80 kDa) d ADH (mass: 150 kDa) e Herceptin (mass: 150 kDa)
f β-Galactosidase (mass: 465 kDa).

3. For this, amplitude and phase data of a variety of proteins will be evaluated. The
examined proteins have a large size range, from cytochrome C (cyt C, 12 kDa) to GroEL
(812 kDa). Some of the proteins have characteristic structural features, while others have
a globular shape. In some cases, metal atoms occur as part of the protein structure,
both in the form of individual ions (e. g. ADH, transferrin) and embedded in a porphyrin
cofactor known as a heme group (e. g. cyt C, myoglobin, hemoglobin). All these types of
characteristics will be taken into account in the interpretation of the phase. Additionally,
phase features induced by charging effects will be examined.

4.1 Image processing for phase reconstruction
The one-step amplitude reconstruction routine, which has been described in Chapter 1
and applied to protein data in Chapter 2, can be directly applied to the photographs of the
holograms featuring the full detector area; while the sharp edge of the detector can cause
edge artefacts, this can be remedied by applying an apodization filter to the hologram
before reconstruction (see section 1.1.3). In the case of phase reconstruction, however,
the sharp detector edge induces a large phase shift that dominates the reconstructed
image, hence an efficient and high-contrast reconstruction of the object phase requires
the hologram to be cropped, featuring all observable fringes, but as little of the detector
edge (or other high-contrast features, such as impurities) as possible. While it is helpful
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Figure 4.2: Hologram processing for phase reconstruction: a Hologram, iterative amplitude
reconstruction after 100 iterations and iterative phase reconstruction after 100 iterations of a
LEEH hologram of a transferrin molecule. The hologram has been cropped, but no further
image processing steps have been performed. The non-uniform background results in severe edge
artefacts. b Hologram, iterative amplitude reconstruction after 100 iterations and iterative phase
reconstruction after 100 iterations of the hologram in a after an additional polynomial background
subtraction with a polynomial of order 5 has been performed. This processing step leads to a
removal of the artefacts in the reconstruction. c Hologram, iterative amplitude reconstruction
after 100 iterations and iterative phase reconstruction after 100 iterations of the hologram in b
with high-frequency noise removed in Fourier space by the procedure depicted in Fig. 4.3.

to crop additional molecules and other features, this should not be done at the expense
of cutting off fringes since this would affect the resolution as well as the visibility of some
structural features of the reconstructed images. To achieve this, and in order not to
cut off fringes when applying apodization filters to the holograms, the hologram of the
molecule should ideally be located at the centre of the cropped image.
Simply cropping the hologram of the molecule to be reconstructed, however, is not
sufficient for achieving an artefact-free reconstruction. For this, an additional, impor-
tant step is the subtraction of a polynomial background in order to obtain a uniform
background intensity over the whole of the hologram. Without background subtraction,
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the differences in background intensity can lead to severe artefacts in the reconstruction,
which impede a high contrast reconstruction of the phase, as demonstrated in Fig. 4.2a.
The cropping of the holograms as well as the polynomial background subtraction can be
performed by a variety of programs, the holograms used for the reconstructions shown
here have been processed using the program Gwyddion [222]. In general, the order of the
polynomials used for the background removal should be chosen such that the background
intensities are uniform, while avoiding a change in intensity in the area of the molecule.
As a rule of thumb, polynomials of order 3 to 5 seem to fit this requirement for LEEH
holograms measured with our set-up. As demonstrated in Fig. 4.2b, the background
subtraction step removes the artefacts present in Fig. 4.2a.
The quality of the reconstruction can be increased by removing high-frequency noise in
the hologram, which results in more pronounced fringes, as shown in Fig. 4.2c. This leads
to a smoother amplitude reconstruction and a higher contrast in amplitude and phase
due to the lower noise level and higher hologram contrast. One possibility to remove
high-frequency noise is to cut off high frequencies in Fourier space. Noise removal in
Fourier space has the advantage that periodic signals, such as the one created by the
pixels of the detector, can simultaneously be eliminated.
The noise removal process used in this chapter is depicted in Fig. 4.3. As a first step, the
2D Fourier transform of the background-subtracted hologram (Fig. 4.2b) is calculated
(Fig. 4.3a) using the 2D FFT filtering function in Gwyddion. With the same Gwyddion
tool, a Fourier space mask can be created to determine which Fourier components should
be retained. For this, at first the part of Fourier space to be retained is selected by the
function Add an ellipse to the Fourier mask (Fig. 4.3b). Subsequently, periodic signal
contributions, which appear in Fourier space in the form of diffraction spots (marked by
red arrows in Fig. 4.3), can be removed by using the Subtract an ellipse from the FFT
mask (Fig. 4.3c). Fig. 4.3d and e demonstrate the effect of the Fourier filtering step:
compared to the unfiltered hologram (Fig. 4.3d), the fringes are more pronounced and
high-frequency noise is reduced in the filtered hologram (Fig. 4.3e).
While FFT filtering usually improves quality of the reconstruction and can accentuate
details that are not discernible in the reconstruction from the unfiltered hologram, the
smoothing that results from the FFT filtering step can also blur small spatial features
if the cutoff frequency is chosen too low, hence a comparison of the reconstructions
obtained from filtered and unfiltered holograms, respectively, can help elucidating further
structural detail.
The processed hologram is used as the input for the iterative phase reconstruction routine
(see section 3.1.2). In order to avoid artefacts, it is important to save the filtered hologram
as a 16-bit greyscale image that does not include any additional features such as scale
bars. To deal with remaining edge artefacts, an apodization filter in which the values
outside the masked region are set to the mean value of the hologram can be applied
to the hologram, which further contributes to a uniform background intensity at the
hologram edges. If only small deviations from a uniform background are present at the
edges of the image, applying an apodization filter is not necessary, but for holograms
with features at the edge, this is an efficient method for suppressing artefacts. It is,
however, important to choose the inner radius of the apodization filter mask such that
no fringes are obscured since this can significantly affect the reconstructed image due to
the loss of information contained in the outer fringes.
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4.1 Image processing for phase reconstruction

a b c

d e

Figure 4.3: Hologram FFT filtering: a 2D FFT of the hologram in d, calculated with the
Gwyddion [222] function 2FFT filtering. b Creation of the FFT filter mask, which selects the
Fourier components of the image to be kept. c Periodic signal contributions can be removed from
the Fourier filter mask. d Hologram before Fourier filtering and the corresponding cross section
along the red line. e Hologram after Fourier filtering and the corresponding cross section along
the red line. Fourier filtering reduces the noise in the hologram and increases the discriminability
of the fringes.

As a last step before the iterative reconstruction process can be initialized, the hologram
has to be divided by its mean so that the range of intensity values in the hologram
matches the value range that the constraints in the iterative reconstruction routine
apply to. Physically, this step corresponds to a hologram normalization by division
with the background intensity, i. e. the intensity of the reference wave. Since an empty
beam measurement is not feasible experimentally, as the performance and brightness of
the electron source can change significantly between measurements, this normalization
process is approximated by a division by the mean value of the image via the NumPy
function np.mean.
In summary, the following image processing steps are taken on the hologram level to
generate suitable input for the iterative phase retrieval algorithm from experimentally
acquired holograms: Firstly, the hologram of the molecules has to be cropped such that
all of the resolvable fringes are retained while as many additional features (such as the
detector edge or other molecules) as possible are removed. Ideally, the hologram is
centred in the cropped image. As a second step, a polynomial background subtraction is
performed, with typical polynomial orders in the range of 3 to 5. Subsequently, a Fourier
filter is applied to remove high-frequency noise and to enhance the contrast of the fringes.
An apodization filter can be applied to suppress remaining edge artefacts. In a final step,
the hologram is normalized by division by its mean. A hologram prepared by this routine
can then be reconstructed by the algorithm presented in Chapter 3.

121



Chapter 4. Phase reconstruction: Application to experimental data

4.2 Test of algorithm performance for experimental holo-
grams

The analysis and characterization of the algorithm in Chapter 3 has shown that the
algorithm can retrieve the correct phases independently of the input phase and that
artefacts due to the algorithm are limited to specific cases. This characterization carries
over to the reconstruction of experimental holograms. In the case of experimental
holograms, however, the amplitude and phase distributions of the object are unknown,
i. e., no direct comparison is possible to ascertain the correctness of the reconstruction.
Moreover, experimental holograms differ from simulated holograms in features like noise
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Figure 4.4: Independence of input phase, experimental holograms: a One-step amplitude
reconstruction, iterative amplitude reconstruction and iterative phase reconstruction of an
experimentally acquired hologram of a transferrin molecule with an initial phase distribution
given by an array of zeros. The hologram has been processed as described in section 4.1 before
reconstruction. b One-step amplitude reconstruction, iterative amplitude reconstruction and
iterative phase reconstruction of the same hologram as in a with an initial phase distribution
given by an array of uniformly distributed random numbers created by the NumPy function
np.random.rand. c One-step amplitude reconstruction, iterative amplitude reconstruction and
iterative phase reconstruction of the same hologram as in a with an initial phase distribution
given by an array of normally distributed random numbers created by the NumPy function
np.random.randn.
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4.2 Test of algorithm performance for experimental holograms

level and background uniformity, hence it is worth ensuring that the algorithm retains
these characteristics when applied to experimental data.
To ascertain that experimental holograms, as their simulated counterparts, yield the
same iterative reconstruction independent of the initial input phase, an experimentally
acquired hologram of a transferrin molecule was processed as described in section 4.1 and
reconstructed with three different initial phase distributions: an array of zeros (Fig. 4.4a),
an array of uniformly distributed random numbers (Fig. 4.4b) and an array of normally
distributed random numbers (Fig. 4.4c). Fig. 4.4 demonstrates that while the one-step
reconstructions for these three cases differ strongly, the iterative reconstructions are
identical (shown here for 100 iterations). Since in all three cases, the algorithm converges
to the same reconstructed amplitude and phase images, using an initial input phase array
of zeros as default for the iterative reconstruction routine is justified.
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Figure 4.5: Relevance of phase constraint, experimental holograms: a Iterative amplitude
and phase reconstruction after 100 iterations of an experimentally acquired hologram of a
hemoglobin molecule. Both amplitude and phase have been constrained in every iteration step
as described in Chapter 3. b Iterative amplitude and phase reconstruction after 100 iterations
of the same hologram as in a. Only the amplitude has been constrained during the iterative
process. c One-step amplitude and phase reconstruction of the same hologram as in a. d Iterative
amplitude and phase reconstruction after 100 iterations of an experimentally acquired hologram
of a transferrin molecule. Both amplitude and phase have been constrained in every iteration step
as described in Chapter 3. e Iterative amplitude and phase reconstruction after 100 iterations of
the same hologram as in d. Only the amplitude has been constrained during the iterative process.
f One-step amplitude and phase reconstruction of the same hologram as in d.

The analysis of the constraints enforced during the iterative reconstruction process (section
3.1.1) demonstrated that constraining the phase along with the amplitude significantly
improves the quality of the iterative reconstruction for simulated holograms. Because of
the importance of this step, it is relevant to test the behaviour of experimental holograms
under these constraints. Fig. 4.5 explores this with two examples of experimentally
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acquired protein holograms, one of a hemoglobin molecule (Fig. 4.5a-c) and one of a
transferrin molecule (Fig. 4.5d-f). Fig. 4.5 shows that the reconstructions performed
with the phase constraint applied (Fig. 4.5a, d) differ strongly from the reconstructions
retrieved without enforcing the phase constraint (Fig. 4.5b, e). Specifically, without
the phase constraint, the phase reconstructions remain close to the one-step phase
reconstructions (Fig. 4.5c, f).
Analogously to the simulated case, the algorithm without the phase constraint is much less
robust towards random initial phase inputs than the algorithm with the phase constraint
when applied to experimental data. As in the simulated case, the reconstructions differ
significantly depending on the initial phase input, and the noise induced via a random
initial phase input cannot be removed by the iterative steps, as opposed to the case of a
reconstruction with the phase constraint (Fig. 4.4).
In general, it thus appears to be beneficial to employ the constraints on both absorption
and phase in the case of experimental holograms as well, as expected from the results
on simulated data presented in the previous chapter. As mentioned in Chapter 3, if
negative absorption values occur within the molecule, applying the phase constraint
could in principle lead to pixel-wise artefacts. Indeed, this type of artefact occasionally
occurs in the reconstruction of experimental holograms, but is usually not very severe.
A more detailed discussion of this, alongside other artefacts observed in the iterative
reconstruction of experimentally acquired holograms, is carried out in section 4.6.

4.3 Interpretation of experimental phase data
The one-step reconstruction introduced in Chapter 1 and the iterative reconstruction
routine presented in Chapter 3 yield reconstructions of the one-step amplitude, the
iterated amplitude and the iterated phase; all three contain relevant information about
the imaged molecules.
In general, the contours of the molecules are more pronounced in the amplitude recon-
structions than in the phase reconstructions (see for example Fig. 4.6 and Fig. 4.12).
Specifically, phase reconstructions often feature low-contrast envelopes that trace the
outline of the molecule and usually have a phase contribution of opposite sign as compared
to the phase shift induced by the inner part of the molecule (see e. g. Fig.4.1b-e, Fig. 4.6,
Fig. 4.12c). Because of the less clear contours in the phase reconstructions, it is often
difficult to determine the source-to-sample distance z0 for which a molecule appears in
focus from the phase images. Hence, the amplitude reconstructions should be used to
identify the appropriate source-to-sample distances.
While phase reconstructions may not feature clear contours, they can help identifying
structural features within the molecules that are not discernible in the amplitude re-
construction. Fig. 4.6 shows two examples where the substructure of the imaged object
is much more clearly recognizable in the phase reconstruction than in the amplitude
reconstruction. Fig. 4.6a shows a hemoglobin molecule, a protein consisting of four
subunits. The subunits are not distinguishable in either of the amplitude reconstructions,
but they are discernible in the phase reconstruction. Similarly, in Fig. 4.6b, which depicts
the reconstruction of a dimer consisting of two cytochrome C molecules, the two molecules
are clearly distinguishable in the phase, but not in the amplitude.
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Figure 4.6: Phase features: subunit identification. a One-step amplitude reconstruction,
iterated amplitude reconstruction after 100 iterations and phase reconstruction after 100 iterations
of a single hemoglobin molecule. The phase reconstruction reveals the substructure of the molecule.
The inset in the phase reconstruction shows a model of a hemoglobin molecule (PDB: 1FSX [223]).
b One-step amplitude reconstruction, iterated amplitude reconstruction after 100 iterations and
phase reconstruction after 100 iterations of two cytochrome C molecules. The molecules are
more clearly distinguishable in the phase reconstruction than in the amplitude reconstruction.
The feature in the bottom right corner is an additional charge, possibly due to a defect in the
graphene. The inset in the phase reconstruction shows a model of two cytochrome C molecules
(PDB: 1HRC [224]).

As shown in Fig. 4.1, a variety of different phase features, from large regions of constant
phase to small localised areas of rapidly changing phase, can occur in the phase reconstruc-
tion of a protein. In order to be able to interpret these features, one important aspect is
to ascertain whether these features are robust with respect to a change in reconstruction
distance, corresponding to reconstructions in different focal planes. The results from
the simulations and reconstructions of three-dimensional objects performed in section
3.3.1 suggest that a phase feature should be observable over a z-range spanning tens of
nanometers around the focal plane. This could imply that phase features that remain
similar over the range of in-focus distances determined from the amplitude reconstruction
are related to structural features of the molecule.
Fig. 4.7 depicts the phase reconstruction of an ADH molecule at four different source-
to-sample distances. The amplitude reconstruction yields a focus distance of around
z0 = 390 − 400 nm. The four prominent phase features, appearing in the reconstructions
as localised red areas, are present over the range of focal distances shown in the figure,
indicating that those are stable phase features. The symmetry present in both amplitude
and phase reconstructions suggests that these phase features are related to the molecule’s
four-subunit structure. Additionally, the behaviour of phase features over different focal
distances is of relevance since a rapid change in the phase with z0 could be indicative of
artefacts. Especially around the edge of a molecule, the phase can change significantly
for different reconstruction distances.
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z0=380 nm z0=390 nm z0=400 nm z0=410 nma b c d

Figure 4.7: Phase features: z-focus. a-d: Phase reconstruction of a single ADH molecule for
different focal distances from z0 = 380 nm to z0 = 410 nm. Four distinctive phase features are
present over the whole z0-range depicted here and change very little between the two in-focus
distances (z0 = 390 − 400 nm). The insets show a model of an ADH molecule (PDB: 7KCQ [225]).

Before turning towards exploring different interpretations of the phase features, such as
the molecular density and thickness (section 4.4) as well as changes in the scattering
strength due to the presence of metal atoms (section 4.5) and charges (section 4.5.4), a
few general aspects of phase features are discussed in the following.
Unlike the amplitude, the phase can assume both positive and negative values, hence
features that involve a change in the sign of the phase are especially prominent. On the
one hand, this can help identifying structural features that are hard to discern in the
amplitude reconstructions, on the other hand, quantitatively small changes of phase that
result in a change of sign could be interpreted as more significant than they actually are.
The phase shift induced by a molecule and reconstructed by an iterative reconstruction
routine cannot only take both positive and negative values, it is also cyclic, i. e. the
reconstructed phase is mapped on the interval [−π, π] rad, thus a phase value slightly
above +π rad will be represented as a negative value close to −π rad. To account for
this, the phase reconstructions are depicted using a cyclic colormap, hence values of high
positive and negative phase appear in the same colour (dark purple in the colormap used
here). While the use of a cyclic colormap avoids some of the ambiguities related to the
π/− π-identity, a full quantitative phase analysis is not possible since the projection on
[−π, π] rad does not allow a distinction of phase shift values outside this interval and
the corresponding value within the interval. Preliminary tests with phase unwrapping
algorithms were unsuccessful, most likely because these algorithms are developed for
data with strong background phase modulations due to continuous phase wrapping, a
type of feature that does not appear in the reconstructed phase data discussed here.
In our data, areas of localised phase change often seem to be correlated with a change
in sign and thus the appearance of high phase values, hence it is worth examining the
behaviour of the phase values in these regions in more detail. Fig. 4.8 shows the phase
reconstruction of an ADH molecule featuring four regions of localised phase change. By
taking the cross section of the image at four different pixel values (indicated by the black
lines, the respective pixel value is given as a number at the right side of each image),
chosen such that each of the four distinct phase features is crossed, the progression of
the phase values across the localised areas of phase change can be studied.
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Figure 4.8: Phase features: areas of localised phase change. a-d: Phase reconstruction
of an ADH molecule and corresponding line profiles along the lines indicated in black, crossing
each of the four phase features, respectively. While the phase appears to exhibit discontinuous
behaviour, the majority of the features in the line profiles can be explained by continuous changes
in phase. The insets show a projection of an ADH molecule (PDB: 7KCQ [225]) matching the
orientation of the molecule shown here.

Two types of behaviour that lead to a change in sign can be identified: in the first type of
progression, the phase starts out as positive (negative), increases (decreases) towards π
(−π) rad, then crosses over the π/− π threshold and decreases (increases) towards zero,
as in the left peak in Fig. 4.8b (positive to negative) and in the right peak in Fig. 4.8c
(negative to positive). Such behaviour could be interpreted as a continuous increase or
decrease of phase shift values that at some point crosses the π/− π threshold. The peak
in Fig. 4.8a and the right peak in Fig. 4.8b exhibit a similar behaviour, although the
progression towards the π/ − π threshold happens more rapidly. The second type of
behaviour is represented by the peaks on the left of Fig. 4.8c and d. Once the π/− π
threshold is reached, the phase briefly crosses it and thus changes sign, but then crosses
back immediately. This can be interpreted as an increasing (decreasing) phase shift that
increases (decreases) slightly above π rad (below −π rad) and then decreases (increases)
again. In both types of phase behaviour, multiple rapid crossings of the π/− π threshold
are possible.
While, especially in the line profiles, it may look as if the phase is jumping when the
π/ − π threshold crossings happen, it seems that the behaviour described above can
be explained by continuous changes of phase. This indicates that the majority of the
observed local phase changes can be attributed to a continuous phase behaviour, yet,
the existence of discontinuous phase jumps cannot be fully ruled out. There is evidence
that rapid changes in phase can happen without the involvement of a π/− π threshold
crossing, see for example the phase change in Fig. 4.8d from approximately +3 rad to
−1 rad at x ≈ 130 pixels (indicated by the green arrow in Fig. 4.8d).
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4.4 Molecular density
In high-energy electron imaging, for example in TEM, the phase shift induced by the
imaged object is directly related to the mean inner potential of the object, which is
defined as Vmean = 1

Ω
∫

Ω V (r)d3r, where V (r) is the electric potential of the object
[56, 49]. If the scattering potential of all atoms in the object is similar, this implies a
direct connection between the induced phase shift and the object’s molecular density,
or in case of a uniform density, the molecular thickness. In imaging processes that use
low-energy electrons, however, additional contributions to the potential can arise, which
make the interpretation of the phase data less straightforward. Specifically, contributions
to the potential due to exchange interaction [56, 213] and polarization effects [213] become
relevant at low energies. Additionally, inelastic scattering and absorption effects are not
negligible in this energy range [56, 213]. Thus, molecular density and the thickness of the
molecule should, at least to some extent, be mapped by both the amplitude and phase
distribution of the object. To interpret the data retrieved from experimental holograms,
it is hence of interest to study both the amplitude and phase reconstructions, as well as
their interrelation.

4.4.1 Absorption

Since strongly absorbing objects can induce artefacts in the phase reconstruction, as
discussed for simulated objects in section 3.2.2, it is important to check whether the
molecules studied here, specifically the larger proteins, would fall into the category
of strong absorbers. The two largest proteins imaged by LEEH on our set-up are
β-Galactosidase (465 kDa, ca. 18 nm × 14 nm × 8.7 nm [226]) and GroEL (∼ 800 kDa,
diameter: 13.5 nm, height: 14.5 nm [227]). One can calculate the transmission through
such an object with the help of the Lambert-Beer law, which relates the ratio of trans-
mitted to incident intensity I

I0
to the ratio of the object’s thickness d and the inelastic

mean free path λi [220],

ln
(
I

I0

)
= − d

λi
. (4.1)

The inelastic mean free path of an electron depends on its energy E and can be calculated
as follows [228]:

λi = A

E2 +B
√
E, (4.2)

where A and B are material-dependent constants. According to ref. [228], appropriate
values for organic compounds are A = 31 and B = 0.087, the corresponding plot of the
inelastic mean free path as a function of energy is depicted in Fig. 4.9a. For an electron
energy of 100 eV, a typical energy value used for acquiring experimental holograms by
LEEH, this yields an inelastic mean free path of slightly below 1 nm. The values for the
inelastic mean free path calculated here match the values reported elsewhere in literature
[57].
With this, the transmission through a protein of known thickness can be estimated ac-
cording to eq. 4.1, as shown in Fig. 4.9b for electron energies in the range of 50 − 250 eV.
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a b

Figure 4.9: Inelastic mean free path and Lambert-Beer law: a Energy-dependent inelastic
mean free path in nm for electrons in organic matter, calculated according to eq. (4.2) [228].
b Lambert-Beer law: transmission of electrons of energies in the range of 50 − 250 eV through
an organic component as a function of the object’s thickness (eq. (4.1)). The dashed black line
marks the transmission value below which artefacts occurred in the case of simulated objects.

Section 3.2.2 showed that for transmission values below 10−5, artefacts can occur in the
phase reconstruction of simulated objects. According to Fig. 4.9b, large proteins of the
dimensions of GroEL and β-Galactosidase should hence be in the strongly absorbing
regime. Despite that, the experimental evidence suggests that a reconstruction free of
the type of artefacts observed for the simulated strongly absorbing objects is possible for
these molecules. On the one hand, LEEH imaging of large proteins produces high contrast
holograms that present the same symmetry as holograms simulated from the molecular
structure (Fig. 4.10), indicating that the scattered amplitude is large enough to generate
sufficient contrast in the holograms. This does not necessarily imply that there is a strong
transmitted part of the wave, since diffraction at the edge of the molecule alone could
result in an interference pattern of similar symmetry, but hints at the fact that even if the
object is strongly absorbing, the hologram and thus the reconstruction contains relevant
structural information. Even in the case of zero transmission, the reconstruction of such
a hologram should yield the overall shape of the molecule, although inner structure would
likely be lost. On the other hand, both the amplitude and phase reconstructions feature
inner structure and intensity modulation, as shown in the phase reconstructions of a
β-Galactosidase molecule and a GroEL molecule presented in Fig. 4.10e and j, respectively,
suggesting that there is indeed a significant transmitted part. Additionally, the phase
reconstructions obtained from experimental holograms do not suffer from noise-like arte-
facts as the phase reconstructions of the strongly absorbing simulated objects (Fig. 3.12e,
f). In general, this suggests that the transmitted intensity is higher than expected from
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a b c d

f g h i

β-Galactosidase

GroEL
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j

Figure 4.10: Simulated and experimental holograms of large proteins: a Hologram of a
β-Galactosidase molecule simulated from the PDB structure 6CVM [229]. All atoms have been
projected into one plane to create a transmission function. b-d Examples of experimentally
obtained holograms of β-Galactosidase molecules. The symmetry of the experimental holograms
matches the one observable in the simulated hologram. e Phase reconstruction of a β-Galactosidase
molecule with a projection of the molecular model in the inset. Some inner substructure of the
molecule is resolved. The blue feature on the right is due to a charge. Since the presence of
the charge partially obscures the symmetry in the hologram, the hologram corresponding to
the reconstruction in e is not presented here. f Hologram of a GroEL molecule simulated from
the PDB structure 5W0S [210]. g-i Examples of experimentally obtained holograms of GroEL
molecules. The symmetry of the experimental holograms is similar to the one observable in the
simulated hologram. j Phase reconstruction of a GroEL molecule from the hologram in h with
a projection of the molecular model in the inset. Some inner substructure of the molecule is
resolved.

the Lambert-Beer plot in Fig. 4.9b. This could be due to an inexact assumption of the
values of A and B used for the calculation, since the generic values for organic compounds
found by low-energy electron diffraction might have to be adjusted for large proteins,
or due to the fact that objects such as large proteins do not feature a uniform density
distribution over the whole molecular thickness. Parts of lower density would decrease
the effective thickness of the protein that is used as a parameter in the Lambert-Beer
calculation, thus leading to a higher transmission than calculated in Fig. 4.9b for these
types of objects.

4.4.2 Relation between amplitude and phase reconstruction

While the experimental evidence shows that large proteins can be imaged by LEEH in
an artefact-free manner and that the reconstructions can reveal substructure, it is still
possible that areas of high absorption, and thus of low amplitude, can result in artefacts
in the phase. Hence, it is important to illuminate the interrelation between amplitude
and phase data, specifically the correlation between low amplitude and distinctive phase
features such as π/−π threshold crossings, which could indicate the presence of artefacts.
The relation between amplitude and phase is examined with the help of several visualiza-
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tion tools presented in Fig. 4.11, applied to the example of three different molecules: a
transferrin molecule in Fig. 4.11a-h, an antibody molecule (Herceptin) in Fig. 4.11i-p,
and a hemoglobin molecule in Fig. 4.11q-x.
Since it is of interest to compare both the iterated and the non-iterated amplitude data
to the phase data, panels a, i and q depict the non-iterated amplitude reconstruction
(labelled Amp0), the iterated amplitude reconstruction after 100 iterations (labelled
Amp99) and the corresponding phase reconstruction after 100 iterations for the respective
examples. A direct comparison of Amp0 and Amp99 shows that the iterative phase
retrieval algorithm effectively reduces the contributions from the twin image since the
background modulations are less pronounced in the iterated amplitude reconstruction.
Specifically, the constraint on the absorption leads to the removal of very high background
intensity values, which yields an overall background intensity of the iterated amplitude
image close to 1.
The effect of the twin image removal on the value distribution in object and background
can also be observed in amplitude-vs.-phase plots. In panels b, c, j, k, r and s, the
phase values are plotted against the amplitude values for the non-iterated amplitude
(Amp0, panels b, j, r) and the iterated amplitude (Amp99, panels c, k, s) for each
pixel. The colour of each point in the scatter plot represents the magnitude of the phase
gradient at this pixel. This type of plot directly shows the distribution of the phase and
amplitude values. The comparison of the plots for iterated and non-iterated amplitude
suggests that the value distribution in the case of the iterated amplitude is more levelled,
specifically, the background amplitude value distribution is much narrower in the iterated
reconstructions. Regions of low non-iterated amplitude correlate strongly with regions of
high phase, whereas low iterated amplitude values appear to coincide with a larger range
of phase values. In both cases, the phase gradient is highest for regions of high phase,
matching the observations gleaned from the phase gradient plots (Fig. 4.11d, l, t).
Panels d, l and t show the magnitude of the gradient of the phase reconstructions in a, i
and q, respectively, calculated as the square root of the sum of the squared gradients
along the x- and y-directions. This is of relevance, since some of the distinct phase
features are associated with rapid changes in phase and thus with a large phase gradient.
The regions of high phase gradient in Fig. 4.11d, l, t correlate with regions of high phase
close to π and −π rad in Fig. 4.11a, i, q. This is not surprising since for these phase
values, even small changes in phase can result in a crossing of the π/−π threshold, which
appears as a sudden jump from π to −π rad (see Fig. 4.8) and thus corresponds to high
phase gradients.
While the amplitude-vs.-phase plots reveal the general distribution and correlation of
amplitude and phase values, the spatial component, i. e. the location of each pixel within
the molecule, is lost, hence it is of interest to additionally create correlation plots that
retain the spatial component while focusing on specific phase and amplitude value ranges.
Panels e-h, m-p, and u-x, respectively, depict two different types of correlation plots
that are based on spatial information. In the first type of plot, located in the respective
upper rows, areas of low amplitude values smaller than 0.05 (red) are plotted on top of
areas of high phase (yellow) with absolute phase values above 3, i. e. close to π rad, for
the non-iterated amplitude (Amp0, panels e, m, u) and the iterated amplitude (Amp99,
panels f, n, v), respectively. Pixels for which both conditions hold, i. e. amplitude < 0.05
and |phase| > 3 rad, are depicted in black. The second type of correlation plot shown here
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Figure 4.11: Amplitude vs. phase: a Left to right: one-step amplitude reconstruction (Amp0),
iterative amplitude reconstruction after 100 iterations (Amp99) and phase reconstruction after 100
iterations of a transferrin molecule. b Scatter plot of the phase vs. Amp0. c Scatter plot of phase
vs. Amp99. d Magnitude of the gradient of the phase image in a. e Correlation plot of areas of low
non-iterated amplitude (Amp0 < 0.05) and high phase (|phase| > 3). f Correlation plot of areas
of low iterated amplitude (Amp99 < 0.05) and high phase (|phase| > 3). g Correlation plot of the
full range of phase values and areas of low non-iterated amplitude (Amp0 < 0.05). h Correlation
plot of the full range of phase values and areas of low iterated amplitude (Amp99 < 0.05). i Left
to right: Amp0, Amp99 and phase of a Herceptin molecule. j Scatter plot of the phase vs. Amp0.
k Scatter plot of the phase vs. Amp99. l Magnitude of the gradient of the phase image in i. m
Correlation plot of areas of low Amp0 and high phase. n Correlation plot of areas of low Amp99
and high phase. o Correlation plot of the full range of phase values and areas of low Amp0. p
Correlation plot of the full range of phase values and areas of low Amp99. q Left to right: Amp0,
Amp99 and phase of a hemoglobin molecule. r Scatter plot of the phase vs. Amp0. s Scatter plot
of the phase vs. Amp99. t Magnitude of the gradient of the phase image in q. u Correlation plot
of areas of low Amp0 and high phase. v Correlation plot of areas of low Amp99 and high phase.
w Correlation plot of the full range of phase values and areas of low Amp0. x Correlation plot of
the full range of phase values and areas of low Amp99.
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features the superposition of the full range of the absolute phase values, which can take
values between 0 and π rad and the areas of low amplitude for which amplitude < 0.05
holds. This is achieved by adding the value 1 to the phase value of every pixel that
satisfies the low amplitude condition. The colormap used for these plots has been adjusted
such that values above 3, i. e. pixels for which the phase is high and the amplitude is
low, are easily visible by a change in colour. The areas coloured in orange to yellow
hence correspond to the areas where absolute phase values above 2 rad coincide with low
amplitude values.
These spatial correlation plots are especially interesting regarding the question of whether
areas of low amplitude can result in artefacts in the phase, as indicated by some of the
simulated examples discussed in section 3.2.2. To ascertain that localised phase signals
can be attributed to properties of the molecule rather than to low-amplitude-related
artefacts, we need to check that there is no pixel-wise correlation between areas of low
amplitude and localised phase features such as π/−π threshold crossings. The correlation
plots in Fig. 4.11 show that for all three molecules, areas of low amplitude and high
phase are correlated, i. e. they occur in the same parts of the molecule, but they are
not pixel-wise identical, which suggests that the localised phase signals, as for example
observable in Fig. 4.11a, are in general not artefacts due to pixels with low amplitude
values.
Overall, the non-iterated amplitude (Amp0) appears to feature more and larger areas of
low amplitude values, hence the correlation between low amplitude and high phase is
stronger for the non-iterated amplitude than for the iterated amplitude. However, not
all areas of low amplitude correspond to regions of high phase and vice versa. Fig. 4.11f
features extensive areas of high phase, but almost none of low amplitude, the same is
true for Fig. 4.11e, the corresponding correlation plot for the non-iterated amplitude,
where one area of low amplitude is present and correlates with high phase values, but
the vast majority of high phase regions are still independent of low amplitude values.
In Fig. 4.11m and Fig. 4.11u and v, low amplitude areas exist that are not correlated
with high phase regions. In Fig. 4.11m, two areas of low amplitude are present, but only
one is correlated with a high phase region, the region at the top of the molecule, while
appearing dark in Amp0 in Fig. 4.11i, does not show up as a feature in the corresponding
Amp99 and phase reconstructions. The region of high phase in Fig. 4.11i, corresponding
to the lower dark area in the Amp0 reconstruction, is likely not the result of a structural
feature of the molecule, but is an artefact stemming from the fringes created by the
upper part of the hologram, which modulate the intensity in the part of the hologram
corresponding to the lower subunit. This contribution is visible both on the hologram
level and in the non-iterative reconstruction. In the latter, it appears as a dark ring
around the upper part of the molecule (marked by green arrows) that intersects the lower
subunit and thus leads to a reduced amplitude value in the intersection area. While
this feature was removed from the amplitude during the iterative reconstruction, it was
retained in the phase reconstruction. This shows that, regarding the interpretation of
the structural features revealed in the amplitude and phase reconstructions, all three
types of reconstruction data, the non-iterated amplitude, the iterated amplitude and the
phase, contain valuable information and that all three, together, should be used to gain
an understanding of what can be concluded from the data.
The comparison of all three types of reconstruction also yields insights into the ways in
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which the iterative reconstruction can improve the retrieved data as well as into which
kind of artefacts can occur. The latter is discussed in more detail in section 4.6.
In summary, regions of low amplitude and high phase are often correlated, but can also
occur independently of one another. This implies that localised areas of high phase, often
associated with a change in sign of the phase, are not artefacts due to low amplitude,
but can likely be attributed to continuous phase changes crossing the π/− π threshold.

4.4.3 Density projections

The Lambert-Beer calculation shown in Fig. 4.9 and the results of the multislice simula-
tions performed in section 3.3.1 suggest that molecular density and molecular thickness
should affect both the amplitude and the phase reconstructions. A comparison of the
reconstructions obtained from experimental holograms of proteins with molecular models
of the imaged molecules can provide insights into both structural details and into the
connection between molecular density and reconstructed phase. In order to explore
this, two different types of projections of the molecular models are used in the following
discussion. Both types of projections start from a PDB model of the imaged molecule.
For the first type of projection, referred to as molecular projection in the following and
depicted in a greyscale colour scale, all atoms of the PDB model are projected into one
plane with each atom represented by a small disk with adjustable radius and contrast.
Changing the radius represents adjusting the resolution, while the atom contrast, i. e. the
greyscale colour of a single atom, determines the scattering amplitude. The changes
in colour over the projection hence are a measure of density, since regions with larger
numbers of atoms appear darker. For large molecules with a high number of atoms, it
is thus important to set a low atom contrast in order to observe the molecule’s inner
substructure given by the density variations. This is specifically relevant for determining
which molecular projection fits the orientation of the experimentally imaged molecule.
To facilitate the comparison to different molecular projections, a script has been set up
that can be directly run in PyMOL [231]. As a molecular visualization tool, PyMOL
allows the rotation of the molecular structure, and promising orientations that could fit
the reconstructions of the experimental data can then directly be turned into molecular
projections.
Fig. 4.12 shows examples of the amplitude and phase reconstructions of several experi-
mentally acquired protein holograms and a matching molecular projection obtained from
the respective PDB structure. Firstly, this comparison shows that molecular orientations
can be found that fit the experimental data very well, both in size and overall shape. In
many cases, additional substructure is visible, both in the reconstructions and in the
molecular projections, indicating that the molecules remain intact during ES-IBD sample
preparation and LEEH imaging.
Fig. 4.12a and b depict two β-Galactosidase molecules in different orientations. In both
cases, the projections match the reconstructions in shape and size. In Fig. 4.12b, the sub-
structure of the molecule is well-resolved and fits the substructure visible in the molecular
projection. These observations are in accordance with the results of an ES-IBD/cryo-EM
study of β-Galactosidase molecules [232]. The dark spot in the non-iterated amplitude of
Fig. 4.12b, corresponding to the blue spot in the phase reconstruction, can be attributed
to a charge on the molecule.
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Figure 4.12: Molecular projections: a Left to right: one-step amplitude reconstruction (Ampli-
tude0), iterated amplitude reconstruction after 100 iterations (Amplitude99), phase reconstruction
after 100 iterations and corresponding molecular projection (PDB: 6CVM [229]) of a hologram of
a β-Galactosidase molecule. b Left to right: Amplitude0, Amplitude99, phase reconstruction
and corresponding molecular projection (PDB: 6CVM [229]) of a hologram of a different β-
Galactosidase molecule. As seen in both the reconstructions and the projection, this molecule was
captured in a different orientation than the one in a. c Left to right: Amplitude0, Amplitude99,
phase reconstruction and corresponding molecular projection (PDB: 7KCQ [225]) of a hologram
of an ADH molecule. d Left to right: Amplitude0, Amplitude99, phase reconstruction and
corresponding molecular projection (PDB: 4X1B [230]) of a hologram of two transferrin molecules.
By comparing the molecular projections to the reconstruction, it becomes clear that this is a
dimer of two molecules in different orientations. e Left to right: Amplitude0, Amplitude99, phase
reconstruction and corresponding molecular projection (PDB: 5W0S [210]) of a hologram of a
GroEL molecule.
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The molecular projection of the ADH molecule in Fig. 4.12c does not only match the
triangular shape and size of the molecule, additionally, the darker regions in the recon-
structions correspond to the area of higher density in the molecular projection.
Fig. 4.12d shows two transferrin molecules in different orientations, one in a streched-out
and one in a compact shape, as shown by the molecular projections on the right. In
terms of overall shape, these reconstructions could have been interpreted as a single
molecule, but the comparison with the projections clearly identifies two molecules. The
conformation of the molecule on the left is especially interesting, since it corresponds to
an open configuration of the left lobe of the molecule. The subunits of transferrin, an
iron-transporting protein, assume different conformations depending on whether an iron
atom is bound or not. The observation of this open configuration thus indicates that
no iron atom is present and demonstrates that LEEH imaging can not only distinguish
different protein orientations, but also different conformations, if the change in conforma-
tion results in a structural change on a length scale that is resolvable by LEEH.
In the case of GroEL, depicted in Fig. 4.12e, which is the largest protein analysed with
our ES-IBD/LEEH set-up, finding the right molecular projections has proven to be more
difficult than for other proteins. In many cases, the reconstructions of the experimental
hologram appear smaller in size than the projections obtained from the molecular model.
While cryo-EM studies of ES-IBD-deposited GroEL [232] show that GroEL can remain
intact during the gas phase flight, ion mobility studies suggest that a partial collapse of
the molecular structure in the gas phase could occur [233], similarly to the gas phase
collapse described for antibody molecules in Chapter 2. The latter phenomenon could
explain the size differences observed between the LEEH reconstructions and the molecular
model.

Next to the molecular projections, a second type of projection, that will be referred
to as density projection and depicted in a green colour scale, is used in the following.
Density projections are generated in a similar way as the molecular projections, by finding
the correct orientation in PyMOL and subsequently creating a projection. While the
molecular projection treats each atom as a small disk, the density projection creates a
grid of adjustable resolution and calculates a histogram assigning density values according
to how many atoms contribute to each histogram cell. This has the advantage that the
resulting projections can be quantitatively compared to one another by comparing the
calculated density values.
A comparison of density values and phase shift values is of interest for exploring the
connection between molecular density and phase shift. Since the reconstructed phase
shift values are projected onto the interval [−π, π] rad, a direct quantitative comparison
is not possible. While higher density, in general, leads to higher phase shifts, the cyclic
nature of the phase shifts could result in a large absolute phase shift appearing as a small
phase shift value. Since the experimental evidence shows that both smaller and larger
proteins exhibit phase shifts covering the whole [−π, π] rad interval, it is likely that the
total phase shift induced by a larger molecule is in the range of several multiples of π rad.
Still, the comparison of proteins in different orientations that correspond to different
densities or molecular thicknesses can yield valuable insights into the connection between
phase and molecular density.
Since other factors likely play a role in this, as mentioned at the beginning of section
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4.4, it is best to use molecules of the same sample for this kind of comparison, ideally
molecules that are located in close proximity to one another since this will ensure identical
imaging conditions.
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Figure 4.13: Direct comparison of molecular thickness: dimers of β-Galactosidase: a
Dimer of two β-Galactosidase molecules in two different orientations. The molecular projections
(PDB: 6CVM [229]) semi-transparently overlay the iterated amplitude reconstruction and have
been coloured green and blue to facilitate the distinction of the two molecules. b Density
projections for each molecule, the left (right) molecule is depicted on the left (right). c Dimer of
two β-Galactosidase molecules in two very similar orientations. The molecular projections (PDB:
6CVM [229]) semi-transparently overlay the iterated amplitude reconstruction and have been
coloured green and blue to facilitate the distinction of the two molecules. d Density projections
for each molecule, the left (right) molecule is depicted on the left (right). c Dimer of two
β-Galactosidase molecules in similar orientations. The molecular projections (PDB: 6CVM [229])
semi-transparently overlay the iterated amplitude reconstruction and have been coloured green
and blue to facilitate the distinction of the two molecules. f Density projections for each molecule,
the left (right) molecule is depicted on the left (right). While the general orientation of the two
molecules appears similar, the maximum density is larger for the molecule on the right.

Fig. 4.13 shows three examples of β-Galactosidase dimers. In Fig. 4.13a, c and e, the non-
iterated amplitude (Amplitude0), the iterated amplitude (Amplitude99) and the phase
reconstructions are shown. Fig. 4.13b, d and f depict the density projections corresponding
to the two molecules in each image, respectively. Semi-transparent molecular projections,
coloured in green and blue to make them easy to distinguish, overlay the iterated amplitude
reconstructions. In Fig. 4.13a, the dimer consists of two molecules in different orientations.
The molecule on the left has a lower maximum density value of approximately 40 atoms
per pixel and features large areas of low density, while the molecule on the right has a
higher overall density as well as a higher maximum density value of approximately 50
atoms per pixel (Fig. 4.13b). The pixel size refers to the size of the cells of the histogram
that is used to create the density projections, in the examples presented here, the side
length of the cells was chosen to be 4Å. The difference in density is clearly reflected in
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the phase reconstruction: the phase shift in the area of the lower-density molecule on
the left is much lower than the phase shift induced by the molecule on the right.
The two molecules in Fig. 4.13c are in similar orientations that result in similar density
values and distributions (Fig. 4.13d). The phase reconstruction reproduces this, the
phase shifts induced by both molecules are almost identical. Fig. 4.13e features two
molecules of similar shape, however, the density projections reveal a locally increased
density in the molecule on the right (maximum density value of 70 atoms per pixel vs. 50
atoms per pixel in the molecule on the left, see Fig. 4.13f). Although the phase contrast
is not as obvious as in Fig. 4.13a, this difference in density correlates with higher phase
values in the molecule on the right.
This suggests that the phase shift induced by a molecule is indeed related to the molecular
density. To some extent, a similar relationship can also be observed in the amplitude
reconstruction, where areas of high density appear to be correlated with areas of lower
amplitude. The contrast in the phase images, however, is higher, which facilitates the
distinction of areas of different density.

A similar observation can be made when comparing transferrin molecules in different
orientations. As shown in Fig. 4.14, compact orientations, corresponding to higher
molecular density (Fig. 4.14a, c, maximum density values: 20-25 atoms per pixel, see
Fig. 4.14c, f), exhibit a higher overall phase shift over the whole extent of the molecule
than less compact orientations (Fig. 4.14g, j, maximum density values: 14-16 atoms per
pixel, see Fig. 4.14i, l). While the compact orientations exhibit phase shift values close to
π rad over almost the whole area of the molecule, the phase shift values reconstructed in
the case of the more extended molecular conformations are lower and only reach values
close to π rad in the regions in which the sign of the phase shift changes. Hence, despite
not knowing how these phase values quantitatively compare, since we can only determine
them modulo 2π, the qualitative difference in the phase reconstructions supports the
conclusion that molecular density and induced phase shift are directly related.
In order to pursue this analysis quantitatively, a test system with a defined molecular
thickness and density would be required. An ideal test sample would be a system of
uniform density that can be produced with varying molecular thicknesses. A possibility
for creating such a system could be DNA origami since with this technique, structures
with well-defined properties can be tailor-made to fit the requirements of the experiment
[235]. Since it is possible to create flat patches of DNA-origami of uniform thickness and
defined shape, stacking several of those patches could yield a test system that allows for
a quantification of the relation between molecular density and phase shift if they can be
prepared on graphene in a way suitable for LEEH imaging.

In summary, comparing both the molecular projections and the density projections to
the reconstructed data yields several important insights: Firstly, we can find molecular
orientations for which size, shape and, if resolved, inner structure fit the experimentally
acquired data, indicating that the molecules are intact and that LEEH imaging can
distinguish different molecular orientations on the single-molecule level. Furthermore,
important structural information is contained in both amplitude and phase reconstruction,
hence both are important to consider when interpreting the experimental data. Secondly,
the comparison of density projections to the data implies a connection between molecular
density and induced phase shift.
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Figure 4.14: Direct comparison of molecular thickness: Transferrin: a-f One-step
amplitude reconstruction (Amplitude0), iterated amplitude reconstruction after 100 iterations
(Amplitude99), phase reconstruction after 100 iterations (a, d), molecular projections of each
molecule (b, e) and corresponding density projections (c, f, PDB: 1JNF [234]) of holograms of
two different transferrin molecules in a compact conformation associated with higher molecular
density. The size of the molecular projection has been adjusted to the scale of the reconstructions,
while the density projections are depicted at a slightly larger size to facilitate the identification
of density variations. g-l One-step amplitude reconstruction (Amplitude0), iterated amplitude
reconstruction after 100 iterations (Amplitude99), phase reconstruction after 100 iterations (g, j),
molecular projections of each molecule (h, k) and corresponding density projection (PDB: 4X1B
[230] (i) and 1JNF [234] (l)) of holograms of two different transferrin molecules in an extended
conformation associated with lower molecular density. The size of the molecular projection has
been adjusted to the scale of the reconstructions, while the density projections are depicted at
a slightly larger size to facilitate the identification of density variations. There is a qualitative
difference in the phase shift values between the high-density and the low-density molecules.

4.5 Local changes in scattering strength/potential
In section 3.3.2, the interaction between the electron beam and the molecule was modelled
by a partial wave approach taking into account the element-dependent scattering strengths
and phase shifts for each atom in the simulated molecule. These simulations demonstrate
that local differences in potential or scattering strength should be observable, at least
for the flat geometries explored in the simulations, given sufficient resolution. This
implies that special characteristics of the molecule that could be associated with stronger
scattering or local changes in potential, such as the presence of metal ions in a biomolecule
that otherwise consists of light atoms, could lead to distinct phase signatures.
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While proteins are mostly composed of carbon, nitrogen, oxygen and hydrogen atoms,
many proteins contain ions and their relative metal-binding sites, which are often closely
associated with the protein’s biological function; as an example, the iron in a heme
group plays a crucial role in both oxygen transport (hemoglobin) and oxygen storage
(myoglobin).
Although it is unlikely that a contribution by a single metal is resolvable, especially in
large proteins consisting of thousands of non-metal atoms, it is still of interest to explore
the concept of phase features related to changes in scattering strength and in potential.
Specifically, the metals occurring within proteins are ions with an associated charge
bound to a ligand of opposite charge.
In the following sections, the phase reconstructions of proteins involving metals will be
studied for the case of individual metal ions within a protein (section 4.5.1), paying
specific attention to the behaviour of metalloproteins containing a heme group (section
4.5.2). Following that, the presence of metals in small molecules will be discussed via
the examples of the heme group itself (hemin) and phosphotungstic acid (PTA) (section
4.5.3) and the influence of charges on the phase reconstruction will be explored (section
4.5.4).

4.5.1 Metalloproteins: Alcohol dehydrogenase and Transferrin

While a metal atom in principle leads to a stronger scattering contribution than an
element with low atomic number, such as carbon or nitrogen (see section 3.3.2), the
differences in phase shift observed in the simulations are likely not large enough to be
observable against the contributions of the large number of non-metal atoms within a
protein. The data resulting from the reconstruction of experimentally acquired holograms
of Alcohol dehydrogenase (ADH) and transferrin molecules, both of which contain a
small number of individual metal ions, substantiate this expectation.
Each of the four subunits of ADH contains two zinc ions, one of which plays a critical
role in the catalytic process carried out by this enzyme [236]. Fig. 4.15 shows two
examples of reconstructions of ADH molecules in different orientations (a, c), with the
corresponding molecular projections depicted in b and d. The locations of the metal
atoms are marked by orange dots surrounded by red circles for better visibility. In
the case of the molecule shown in Fig. 4.15a, no correlation between the structural
features in the reconstructed images and the location of the metal atoms is observable.
The iterated amplitude reconstruction (Amplitude99) is in good agreement with the
molecular projection, including the central area of lower density, but no additional
features in the amplitude indicate a resolvable contribution from the metal ions. The
phase reconstruction only shows one localised feature and is otherwise uniform. While
the localised phase feature on the right does approximately coincide with the location of
three of the zinc ions, no corresponding feature is visible for the identical arrangement of
zinc ions on the left side of the projection. Hence it is unlikely that this phase feature
can be attributed to the presence of the metal ions.
In the molecule depicted in Fig. 4.15c, a four-fold symmetry, corresponding to the four
subunits of the molecule, is visible both in the amplitude and in the phase reconstruction.
The phase reconstruction exhibits four localised features, one per subunit. The location
of the metal ions partially overlaps with the localised phase features, especially on the
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left side of the molecule.
Thus, although at least in the case of the molecule in Fig. 4.15c, the location of the
metals correlates to some extent with the phase features, there is no one-to-one mapping
that would clearly indicate a relationship between the phase features and the metal ions.
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Figure 4.15: ADH a Left to right: one-step amplitude reconstruction, iterative amplitude
reconstruction after 100 iterations and phase reconstruction after 100 iterations of an ADH
molecule. b Molecular projection of an ADH molecule (PDB: 7KCQ [225]) in an orientation
matching the molecule in the reconstructed images in a. The projection is scaled to the same
scale as the reconstructed images. The 8 zinc ions are marked by orange dots, which are circled
in red for better visibility. c Left to right: one-step amplitude reconstruction, iterative amplitude
reconstruction after 100 iterations and phase reconstruction after 100 iterations of a different
ADH molecule. b Molecular projection of an ADH molecule (PDB: 7KCQ [225]) corresponding
to the orientation of the molecule in the reconstructed images in c. The projection is scaled to
the same scale as the reconstructed images. The 8 zinc ions are marked by orange dots, which
are circled in red for better visibility.

Another interesting molecule for studying whether the presence of single metal ions
within a protein can be detected in the reconstructed phase is transferrin. Since its
biological function is the transport of iron in the blood plasma, it can both bind and
release iron atoms, and thus exist both in holo form, i. e. with iron atoms bound, and
in apo form, i. e. without iron. Comparing these two different forms will hence provide
insights into the question whether features occurring in the phase reconstruction can be
attributed to the presence of individual metal ions.
Transferrin has two iron-binding sites, hence a transferrin molecule in holo form could have
either one or two iron atoms bound. The binding process is related to a conformational
change of the subunit from an open form (apo) to a closed form (holo) [237, 238, 239].
Thus, differences in the phase reconstructions between the two molecular forms could also
be due to structural differences. The overall structure of the molecule remains similar, and
in many molecular orientations, the molecular projections made from PDB structures in
both holo and apo form are almost indistinguishable (see for example Fig. 4.16f, i and j).
Hence, while open subunit conformations have been observed (Fig. 4.12d, left molecule)
in LEEH imaging, these orientations appear to be rare and transferrin molecules in holo
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and apo form are in most cases hard to distinguish in terms of molecular shape.
Fig. 4.16 shows the reconstructions and corresponding molecular and density projections
of five transferrin molecules, four in holo and one in apo form. While the molecules
exhibit different features in the respective phase reconstructions, there are no features
that would mark a clear distinction between the apo and holo forms.
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Figure 4.16: Transferrin: holo vs. apo a-d Left to right: one-step amplitude reconstruction
(Amplitude0), iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase
reconstruction after 100 iterations of four different transferrin molecules in holo form. e Left
to right: one-step amplitude reconstruction (Amplitude0), iterative amplitude reconstruction
(Amplitude99) after 100 iterations and phase reconstruction after 100 iterations of a transferrin
molecule in apo form. f-i Molecular projections of a transferrin molecule in holo form (PDB:
1JNF [234]) in orientations matching the orientations of the molecules shown in a-d, respectively.
The projections are scaled to the respective scale bars of the corresponding reconstructed images.
In each projection, the two iron atoms are marked by orange dots, which are circled in red for
better visibility. j Molecular projection of a transferrin molecule in apo form (PDB: 1RYX [240])
in an orientation matching the orientation of the molecule shown in e. The projection is scaled to
the scale bar of the corresponding reconstructed image. k-n Density projections of the respective
models in f-i. o Density projection of the model in j.
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The molecules shown in Fig. 4.16a, d (holo) and e (apo) have very similar conformations.
Their density projections also closely resemble one another; despite the maximum density
values differing slightly, the mean density over the extent of the molecule appears to be
approximately the same in all three cases. The lack of differences between the density
projections of transferrin molecules in holo and apo form is not surprising, since in a
protein consisting of several thousands of atoms, the presence or absence of a single atom
should not noticeably affect the density projection. Localised features of high phase also
do not seem to be a distinguishing characteristic of the molecules in holo form, since
the holo-form molecule in Fig. 4.16a exhibits them, while the holo-form molecule in
Fig. 4.16d as well as the apo-form molecule in Fig. 4.16e do not. The localised phase
features in Fig. 4.16a correlate with the location of the metal ions in the molecule in
the sense that there is one feature per subunit, but since the reconstructed molecule
appears slightly more extended than the corresponding projection, it is hard to determine
whether there is an actual overlap of the phase feature locations and the iron binding
sites. In general, for both molecules in holo and in apo form in orientations similar to the
ones shown in Fig. 4.16f, i and j, the overall sizes of the reconstructed molecules appear
slightly larger than the projected sizes, while the sizes of the individual subunits match
in reconstruction and projection.
Regarding localised phase features, both Fig. 4.16b and c prominently feature areas
in which the phase changes sign. In Fig. 4.16b, two such features occur; while they
approximately match the location of the metal atoms, they extend over a significant part
of each subunit, thus making it unlikely that these contributions are associated with
a single metal atom. The phase reconstruction of the molecule in Fig. 4.16c exhibits
four similar, albeit smaller, phase features. Given that a transferrin molecule can only
bind two iron atoms, these features cannot be attributed to the presence of metal atoms.
When comparing the location of the phase features to the projected molecular structure
and density, one can see that these phase features are associated with larger structural
components and the corresponding densities, which further supports the conclusion that
phase and density are related.
In conclusion, there is no indication that the presence of single metal atoms produces
an observable contribution to the phase reconstruction of a protein consisting of several
thousands of atoms.

4.5.2 Heme-bearing metalloproteins

Metal ions represent some of the simplest cofactors for proteins, but more elaborate
molecular structures featuring the presence of metals often appear as prosthetic and
coenzyme groups. One of the most prominent example of such a structure is the heme
group, a porphyrin-derivative with a central iron ion, that plays a crucial role in oxygen
transport and storage. As opposed to the individual metals discussed in the previous
section, the heme-bearing metalloproteins exhibit a conjugated π-system along with
the presence of the iron. Additionally, the examples of proteins with heme groups
discussed in this section are smaller than the proteins that are subject of the previous
sections. The heme group itself has a diameter of approximately 1 nm [223], hence it
takes up a significant amount of space within the protein for the examples discussed here
(see e. g. Fig. 4.19d for the case of cytochrome C, which has a molecular diameter of
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approximately 2.5 nm [224]). Thus, the heme group could contribute significant features
to the phase reconstruction if it interacts differently with the electron beam than the
rest of the protein.
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Figure 4.17: Hemoglobin: a, c Left to right: one-step amplitude reconstruction (Amplitude0),
iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction
after 100 iterations of two different hemoglobin molecules. b, d Molecular projections of a
hemoglobin molecule (PDB: 1FSX [223]) matching the orientations in a and c, respectively. In
each projection, the 4 iron ions in the heme groups are marked by orange dots, which are circled
in red for better visibility.

Fig. 4.17a and c shows the amplitude and phase reconstructions of two hemoglobin
molecules in different orientations and the corresponding molecular projections (Fig. 4.17b,
d). Hemoglobin consists of four subunits, each of which contains a heme group. The
locations of the iron ions in the heme groups have been marked by orange dots encircled
in red in the molecular projections in Fig. 4.17b, d. In the case of the molecule shown in
Fig. 4.17a, several structural features are discernible both in the amplitude and phase
reconstructions, including the four subunits and the area of low density at the centre of
the molecule. The four localised features visible in the phase reconstruction match the
location of the metal ions, i. e. the heme groups, very well.
The case of the molecule in Fig. 4.17c is less clear. While the phase reconstruction also
exhibits four localised features, the exact orientation of the molecule is hard to determine,
especially since the iterated amplitude (Amplitude99) does not feature a well-resolved
inner structure. Fig. 4.17d depicts two possible projections which fit the molecular
structure, although neither perfectly reproduces the two narrow bright areas in between
the subunits (indicated by red arrows) in the non-iterated amplitude (Amplitude0). The
upper projection fits the structure in Amplitude0 slightly better, but the phase features
do not match the locations of the heme groups. Although only marginally different in
terms of overall shape, the lower projection features an arrangement of heme groups that
coincides with the localised phase features. While orientations can be found in which the
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locations of the heme groups fit the phase features, some ambiguity remains due to the
globular nature of the protein.
The statistical evaluation of the sample is complicated by this ambiguity in orientation
since cases like the molecule in Fig. 4.17a, for which the orientation can be determined
with a high degree of accuracy, are rare. Furthermore, many of the iterated amplitude
reconstructions suffer from a lack of inner structure as in Fig. 4.17c. As shall be discussed
in section 4.6, this could affect the phase reconstruction, and introduces a further degree
of uncertainty into the interpretation of the reconstructed images.

While hemoglobin is still a relatively large molecule (molar mass 64 kDa, molecular
diameter approx. 5 nm [223]), the two other molecules to be discussed in this section are
much smaller. The first one, myoglobin, an oxygen-storing protein, has a mass of 17 kDa
and a diameter of approximately 3 nm [241] and thus roughly corresponds to one of the
subunits of hemoglobin. A myoglobin molecule contains a single heme group.
Fig. 4.18a and c depict the amplitude and phase reconstructions of two different myoglobin
molecules alongside possible molecular projections in Fig. 4.18b, d. The location of the
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Figure 4.18: Myoglobin: a, c Left to right: one-step amplitude reconstruction (Amplitude0),
iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction
after 100 iterations of two different myoglobin molecules. b, d Molecular projections of a
myoglobin molecule (PDB: 5ZZE [241]) matching the orientations in a and c, respectively. In
each projection, the iron atom in the heme group is marked by an orange dot and circled in red
for better visibility. e Left to right: one-step amplitude reconstruction (Amplitude0), iterative
amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction after 100
iterations of two apo-myoglobin molecules. f Molecular projections of a myoglobin molecule
(PDB: 5ZZE [241]) matching the orientations in e.
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iron ion in the heme group is again marked by an orange dot surrounded by a red circle.
Both molecules exhibit a localised phase feature, which corresponds to a dark feature
in the amplitude reconstructions, respectively. Orientations for which the location of
the heme group in the molecular projection matches the localised phase feature can be
found, but the protein is structurally highly unspecific, hence it is hard to find criteria
for identifying the correct orientation.
Like transferrin, myoglobin can also exist in an apo form, i. e. without the heme group.
Although being slightly more disordered, the overall structure of apomyoglobin remains
similar to myoglobin [242]. Fig. 4.18e shows the amplitude and phase reconstructions
of two apomyoglobin molecules. Molecular projections obtained from the same PDB
structure as in Fig. 4.18b, d depict possible orientations. In contrast to the myoglobin
molecules in Fig. 4.18a, c, no localised phase features occur within the molecules. This
difference might point towards a contribution from the heme group that is visible in the
phase reconstruction. However, because the molecules are small and appear to be mobile
on the graphene surface during the landing process, many objects observed in LEEH
on both the myoglobin and apomyoglobin samples are dimers or clusters, or suffer from
artefacts such as charging, possibly due to the molecules adsorbing at defects on the SLG
surface, which exacerbates the interpretation.
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Figure 4.19: Cytochrome C: a Left to right: one-step amplitude reconstruction (Amplitude0),
iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction
after 100 iterations of a single cytochrome C molecule. b Left to right: one-step amplitude
reconstruction (Amplitude0), iterative amplitude reconstruction (Amplitude99) after 100 iterations
and phase reconstruction after 100 iterations of a dimer of cytochrome C molecules. c Molecular
projection of a cytochrome C molecule (PDB: 1HRC [224]) matching the orientation in a. The
location of the iron in the heme group is marked. d Ribbon-sytle molecular model of cytochrome
C. The heme group is shown in red. e Molecular projections of two cytochrome C molecules
(PDB: 1HRC [224]) matching the orientations in b. The location of the iron in the heme group is
marked.

The situation is similar with respect to cytochrome C, which is even smaller than
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myoglobin (12 kDa, molecular diameter 2.5 nm [224]) and also contains one heme group.
An even higher percentage of the molecules appears in clusters.
Fig. 4.19 shows the amplitude and phase reconstructions of a single cytochrome C molecule
(Fig. 4.19a) and of a dimer consisting of two cytochrome C molecules (Fig. 4.19b) alongside
the corresponding projections with the location of the iron ion marked in orange and
encircled in red (Fig. 4.19c, e). A ribbon molecular model [224] is depicted in Fig. 4.19d
to illustrate the size of the heme group in relation to the size of the molecule. As in
the case of myoglobin, orientations can be found for which the position of the heme
group matches that of the phase feature. The iterated amplitude reconstruction of the
single molecule, however, lacks inner structure, the relatively large phase feature in the
corresponding phase reconstruction could be influenced by that.
In conclusion, there is some indication that the positions of localised phase features can
be correlated with the positions of heme groups within the molecules discussed in this
section. However, the globular nature of the proteins in question often does not allow
a clear identification of the molecular orientation of the imaged molecules. In general,
due to the high number of clusters on the sample and the artefacts occurring in the
reconstructions, the statistical analysis of these samples is difficult to interpret.

4.5.3 Small metal-containing molecules

Possible contributions to the phase signal from metal ions within a protein are difficult to
clearly identify due to the large number of non-metal atoms in proteins and the resulting
three-dimensional nature of the molecules. A possibility to gain a better understanding
of the effect that the presence of metals has on the phase reconstructions of experimental
holograms, as well as of the interpretation of reconstructed phase features in general,
could be to measure holograms of small and flat molecules involving a small number of
metal ions. As shown in section 3.3.2, holograms of molecules like phtalocyanines and
porphyrins with metal centres can be simulated on the atomic level using a scattering
algorithm, thus providing a comparison to possible experimental data. Hence, a molecule
of similar size and structure would work well as a test system.
However, sample preparation for LEEH imaging for these kinds of molecules has proven
to be difficult. Ideally, a sample for a LEEH measurement would feature single porphyrin
or phtalocyanine molecules on SLG that are neither themselves charged nor sit on the
site of a charged defect.
As discussed in section 1.2.3, the protein samples used in the LEEH experiments pre-
sented in this thesis have been prepared by native ES-IBD. Ionizing porphyrins and
phtalocyanines non-destructively using ESI is in general not practical because solvents
suitable for these molecules are not compatible with ESI.
The only porphyrin system that we could deposit onto SLG via ES-IBD is hemin, which
is a heme group with a chlorine atom attached to the iron core of the porphyrin structure.
During the ESI process, the chlorine atom is removed, thus creating a heme cation that is
then deposited on the surface. The molecule will be referred to as hemin in the following,
even though the chlorine atom is not present in the molecules observed on the surface.
Fig. 4.20 shows two examples of Hemin molecule clusters reconstructed from LEEH
measurements. Since the molecules are mobile on the graphene upon landing, no iso-
lated hemin molecules have been observed on the sample. In some cases, the number
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Figure 4.20: Hemin: a, b Left to right: one-step amplitude reconstruction (Amplitude0),
iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction
after 100 iterations of two clusters of 5 Hemin molecules, respectively. The positions of the
individual molecules are indicated by the red arrows in the non-iterated amplitude reconstruction.
c Molecular structure of an individual heme group.

of molecules within a cluster of hemin molecules can be determined. The positions
of the individual molecules are marked by red arrows in the non-iterated amplitude
(Amplitude0) reconstruction images in Fig. 4.20a and b. The molecules are especially
well-distinguishable in the non-iterated amplitude reconstruction shown in Fig. 4.20b.
In our data set, the hemin molecules all exhibit very high amplitude contrast, i. e. ap-
pear very dark, even though no strong absorptive behaviour is expected for small, flat
molecules.
The phase reconstructions are harder to interpret. It could be argued that the positions of
the molecules as identified in the Amplitude0 image in Fig. 4.20b coincide with extrema
in the phase reconstruction, represented by a dark red colour in the corresponding phase
reconstruction and marked by green arrows, although these phase features are not clearly
localised. The phase reconstruction in Fig. 4.20a exhibits four features with clearer
boundaries; however, despite the individual molecules not being as easily distinguishable
as in Fig. 4.20b, the size of the cluster indicates that it likely consists of 5 molecules.
While there is some indication that an individual molecule can be associated with a
phase feature within a cluster, the resolution is not sufficient to be able to attribute these
features to the iron atom within the molecules.
As a further test system, we tried to evaporate platinum phtalocyanine (PtPc) on SLG.
After evaporating for 90 minutes, molecules were visible on the surface, many of them
were, however, charged, likely because the molecules are mobile on the SLG surface and
thus settle on charged defect sites. While in general, it can be possible to reconstruct
objects in the presence of charges (see section 4.5.4), this was not the case for this sample.
The reconstruction process was severely hampered by the charges, hence it was not
possible to determine the size of the clusters or infer further structural detail.

Given the aforementioned problems with sample preparation for porphyrin and phtalo-
cyanine systems, another small molecule including metals, phosphotungstic acid (PTA),
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for which sample preparation by ES-IBD had been demonstrated [243], was used as
a further test system. While PTA is of a similar size as a porphyrin [243], instead of
a single metal ion, PTA contains 12 tungsten atoms, which should result in strongly
absorbing properties and thus, high contrast, despite the small size.
Fig. 4.21 shows two examples of PTA clusters observed on the surface, with 2-3 molecules
in the cluster in Fig. 4.20a and at least 5 molecules in the cluster in Fig. 4.20b. While
the molecules are at least to some extent distinguishable in the non-iterated amplitude,
this does not translate to a corresponding phase feature in all cases. Amplitude and
phase contrast appear to be overall similar, i. e. darker features in the amplitude are
associated with darker features in the phase.
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Figure 4.21: PTA: a, b Left to right: one-step amplitude reconstruction (Amplitude0), iterative
amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction after 100
iterations of two clusters of PTA molecules. The cluster in a likely consists of 2-3 molecules, the
one in b of at least 5 molecules. c Molecular structure of a PTA molecule.

In both cases of the molecules presented here, the resolution is not sufficient to determine
whether the phase contributions can be associated with the presence of individual metal
atoms. Additionally, while the iterative phase reconstruction shows interesting features,
the iterated amplitude reconstructions of all molecules analysed on these samples lacked
inner structure to varying degrees. The origin of this behaviour is not fully clear and
will be discussed in more detail in section 4.6.
Since sample preparation has been a major limiting factor in the study of small molecular
systems, it seems that a necessary next step would be to find test systems that can be
prepared either by ES-IBD, possibly by deposition on a cold substrate, or by dropcasting.

4.5.4 Charge

As mentioned in the previous section, charges on or close to the molecules can severely
hinder the reconstruction process or alter the appearance of the molecule. This is,
however, not always the case, and depends on the sign of the charge, the amount of
charge and the location of the charges relative to the molecule.
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In general, studying the effects of charge in the framework of phase reconstruction is of
interest since the presence of a charge changes the electron trajectories, the resulting
path difference then induces a phase shift [244]. Neglecting exchange interaction and
polarization effects, the reconstructed phase shift distribution can be related to the
projected electric potential of the charge [221, 49]. Gaining an understanding of how to
interpret charges in the context of phase reconstruction could be a first step towards
imaging local electric potentials within a molecule.

Fig. 4.22 shows examples of charges on or near molecules. While these charges hinder
the reconstruction to various degrees, the charges converge in the same focal range as
the molecules. If this is the case, a reconstruction of the molecule is often possible with
only minor artefacts, if the charges do not fully converge, the artefacts are more severe
and a high-quality reconstruction of the molecule is not possible.
Fig. 4.22a depicts a β-Galactosidase molecule with a charge, appearing as a black spot
in the amplitude reconstruction on one end of the molecule, the corresponding hologram
is shown in Fig. 4.22b. The position of the charge is marked by red arrows both in the
non-iterated amplitude reconstruction and in the hologram. In the phase reconstruction,
the charge clearly is the dominating feature, it appears as a blue spot. While the charge
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Figure 4.22: Charge: a Left to right: one-step amplitude reconstruction (Amplitude0), iterative
amplitude reconstruction (Amplitude99) after 100 iterations and phase reconstruction after 100
iterations of a β-Galactosidase molecule with a charge on one end of the molecule. b Hologram
corresponding to the reconstructions in a. The location of the charge has been marked with red
arrows in both a and b. c Left to right: Amplitude0, Amplitude99 and phase reconstruction of a
β-Galactosidase molecule with a charge on one end of the molecule. d Hologram corresponding
to the reconstructions in c. The location of the charge has been marked with red arrows in both
c and d. e Left to right: Amplitude0, Amplitude99 and phase reconstruction of an antibody
molecule with a charged hinge region. f Hologram corresponding to the reconstructions in e. The
location of the charges has been marked with red arrows in both e and f.
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dominates both the amplitude and the phase reconstruction in terms of contrast, the
inner structure of the molecule is still observable in both the amplitude and the phase
reconstruction (see Fig. 4.12b for a comparison to the PDB structure). Without the
charge, the contrast of the inner structure of the molecule would be higher, but the
presence of the charge does not severely hinder the reconstruction.
In contrast to that, the charge in Fig. 4.22c clearly dominates the phase reconstruction.
The phase shift due to the charge is much stronger than the phase shift due to the
molecule, which results in the phase shift due to the molecule appearing at values similar
to the background intensity. In the amplitude reconstructions, the charge is also the
dominant feature, but the shape of the molecule is still reconstructed with sufficient
contrast. The dominance of the charge in these images is already visible in the hologram
(Fig. 4.22d), where the hologram of the molecule is almost fully obscured by the hologram
of the charge. In comparison to the example in Fig. 4.22a, b, it seems likely that the
amount of charge present in Fig. 4.22c, d is larger than in Fig. 4.22a, b.
The example in Fig. 4.22e, f shows two lobes of an antibody molecule with a charged
hinge region in between. Given both the shape of the hologram (Fig. 4.22f) and the
two features visible in the amplitude reconstructions in between the two subunits, it
seems likely that there are two charged sites, as indicated by the red arrows. The phase
reconstruction of this molecule-charge system is particularly interesting: while in the
two examples in Fig. 4.22a and c, the feature produced by the charge in the amplitude
reconstruction was enhanced in the phase reconstruction, but appeared in the same
position and shape, in Fig. 4.22e the phase reconstruction shows a new feature occupying
the whole of the space in between the subunits. This feature could be interpreted as the
potential due to the charge distribution.

In summary, the phase reconstruction is sensitive to charges. Although this can in
some cases lead to a decreased quality of the reconstruction, in other cases, additional
information about the local charge distribution can be gleaned from the features in the
phase reconstruction.

4.6 Artefacts
As discussed at different points throughout this chapter, many different factors can
induce artefacts, such as sharp edges (section 4.1), modulations due to fringes of nearby
molecules (section 4.4.2) and charges (section 4.5.4). While they usually lead to a
deterioration of the quality of the reconstruction, these types of artefacts are easy to
recognize and understand. In this section, two further types of artefacts will be discussed
that have been observed in the reconstructions of experimental holograms, but not in
the reconstructions of simulated holograms (see Chapter 3).
The first of the two, which shall in the following be referred to as negative absorption
spot artefact, only occurs very rarely and is in most cases not severe. It is directly related
to the phase constraint employed during the iterative reconstruction steps, and thus easy
to understand. The second type of artefact, whose hallmark is a loss of inner structure
in the iterated amplitude, occurs more frequently, at least for certain types of molecules,
and will be called hollow object artefact in the following. Several examples of this type of
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artefact can be seen in Figs. 4.17-4.21. Its origins are, however, not yet fully understood.

Negative absorption spot artefacts

As shown in Fig. 4.23a, b, the negative absorption spot artefact is an artefact that affects
individual pixels. They occur as discontinuous black pixels in the iterated amplitude
reconstruction and as discontinuous white pixels in the phase. Negative absorption spot
artefacts can occur both in small numbers, i. e. only a few pixels are affected, and in
large quantities as in Fig. 4.23a, b. Large numbers of negative absorption spot artefacts
often occur in conjunction with the hollow object artefact.
The origin of the negative absorption spot artefact is the additional phase constraint
that has been introduced in section 3.1.1 and which sets the phase value of every pixel
with negative absorption values to zero in each step of the iteration. In general, negative
absorption values mostly occur in the image background due to contributions by the
twin image (see sections 1.1.1 and 3.1.1). Since the background phase shift should be
zero, applying the constraint in these cases yields the correct phase value.
Negative absorption spot artefacts occur if pixels with negative absorption exist within the
molecule. The phase values within the molecule are in general not zero, thus repeatedly
setting the phase values of the negative absorption pixels to zero can result in pixel-wise
artefacts. That this is indeed the origin of the artefacts can be tested by reconstructing
the same hologram iteratively without applying the phase constraint. The result is
shown in Fig. 4.23c, d. The negative absorption spot artefacts are removed, however, the
phase reconstruction in Fig. 4.23d differs from the phase reconstruction in Fig. 4.23b as
expected due to the discrepancy in the applied constraints. It has been shown for both
simulated (section 3.1.1) and experimental examples (section 4.2) that enforcing the phase
constraint leads to a higher-quality phase reconstruction. Thus, it is preferable to apply
the constraint despite it potentially inducing negative absorption spot artefacts, especially
since the artefacts rarely occur and if they do, then usually in conjunction with either
charges or hollow object artefacts. Possible ways of avoiding negative absorption spot
artefacts could be restricting the application of the phase constraint to the background,
e. g. by an additional support constraint, or only applying the phase constraint for the
first few iterations until the background phase has been stabilized.

Hollow object artefacts

The potentially most severe artefact so far encountered in the iterative reconstruction of
experimentally acquired LEEH holograms are hollow object artefacts. These artefacts
are characterized by a loss of inner structure in the amplitude reconstruction during
the iterative process, resulting in a molecular shape with a thin, dark border and a
bright, often completely structureless centre of amplitude 1, i. e. matching the background
amplitude.
For certain classes of molecules, hollow object artefacts are a common occurrence: almost
all analysed Hemin and PTA molecules featured hollow object artefacts (see Fig. 4.20,
Fig. 4.21). Small proteins (hemoglobin, myoglobin, cytochrome C) also appear to be
prone to hollow object artefacts, while this type of artefact is exceedingly rare in the
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Figure 4.23: Negative absorption spot artefact: a Iterative amplitude reconstruction of a
Hemin molecule after 100 iterations with both the absorption and the phase constraints applied.
The black spots within the molecule correspond to the negative absorption spot artefacts. b
Phase reconstruction of a Hemin molecule after 100 iterations with both the absorption and
the phase constraints applied. The white spots within the molecule correspond to the negative
absorption spot artefacts. c Iterative amplitude reconstruction of the same Hemin molecule after
100 iterations with only the absorption constraint applied. In this case, no negative absorption
spot artefacts occur. d Phase reconstruction of the same Hemin molecule after 100 iterations
with only the absorption constraint applied. The artefacts are removed, but the overall phase
reconstruction also differs.

reconstructions of larger proteins.
Independently of the imaged molecule, hollow object artefacts are in most cases correlated
with extended dark areas in the non-iterated amplitude, i. e. areas of low non-iterated
amplitude with little to no amplitude variation. Dark areas are in general associated
with strongly absorbing properties, however, strong absorption is unlikely to be the origin
of these artefacts. If strong absorption would be the source of hollow object artefacts,
one would expect these artefacts to mainly occur within large proteins. However, the
opposite is the case, small proteins are disproportionately more affected by hollow object
artefacts than large proteins, and the smallest molecules studied in this thesis, hemin
and PTA, most consistently exhibit hollow object artefacts. While PTA, containing 12
tungsten atoms, could be a strong absorber, hemin should only very weakly absorb, given
the discussion regarding electron penetration depth (section 4.4.1).
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Despite the correlation between hollow object artefacts and very dark non-iterated
amplitude appearances, there might not be a physical reason for this type of artefact,
i. e. the artefact could be due to properties of the algorithm. The fact that the amplitude
value in the inner part of the hollow objects matches the background amplitude suggests
that this artefact is related to the amplitude constraint, which sets large amplitude values
above 1 to 1. It is, however, unclear, how this fits with the dark amplitude appearances.
Another possibility for explaining the hollow object artefact in terms of the algorithm
is to compare it to an artefact we have encountered during the discussion of simulated
objects that is at least similar in its general appearance. In section 3.2.4, the dependence
of the quality of the reconstruction on object size was explored. If a certain ratio of
(dark) object size to illuminated area was exceeded, artefacts resulting in an amplitude
modulation occurred, which in many cases lead to a brighter appearance of the object’s
centre.
To check whether the hollow object artefacts are related to the area ratio between object
size and illuminated area, the dependence of the occurrence of hollow object artefacts
on the hologram size has to be tested. Fig. 4.24 explores this size-dependence for the
example of a hemoglobin molecule (Fig. 4.24a, b) and a cluster of hemin molecules
(Fig. 4.24c, d). In the case of hemoglobin, a larger hologram size makes a difference:
the iterated amplitude in Fig. 4.24b is no longer hollow, however, as a result, the phase
reconstruction changes drastically, too. In the phase reconstruction in Fig. 4.24a, the
background is uniform, implying that contributions due to the twin image have been
removed and the phase contrast in the centre of the molecule is higher than at the edges.
In the phase reconstruction in Fig. 4.24b, on the other hand, twin image contributions
in the form of fringes are retained in the background and the phase contrast of the
molecule compared to the background is low. Additionally, the edge of the molecule
features prominently in the phase in Fig. 4.24b, not unlike the edge of the molecule
in the hollow object iterated amplitude reconstruction in Fig. 4.24a. In general, both
the iterated amplitude and phase reconstructions shown in Fig. 4.24b are quite similar
to the corresponding non-iterated amplitude and phase reconstructions. It thus seems
that the iterated amplitude in Fig. 4.24b and the phase in Fig. 4.24a should represent
the molecular structure more closely than their respective counterparts, the question
is whether these two reconstructions can appear together as the result of an iterative
reconstruction. Tests with different-sized holograms as well as changes in the other
parameters such as the radius of the apodization filter have stably led to one of the two
behaviours depicted in Fig. 4.24a and b, respectively. Either the iterated amplitude is
hollow while the phase exhibits localised, high-contrast features, or the iterated amplitude
is not hollow while the phase features are lost, but the non-hollow iterated amplitude
and the high-contrast phase never occur together.
In contrast to that, changing the hologram size does not make any difference in the case
of the hemin molecule cluster, the reconstructions look almost identical (Fig. 4.24c, d).

Since no feature of the algorithm could be clearly identified to be responsible for the
hollow object artefacts, possible physical explanations need to be taken into account.
The overall very dark appearance of the flat hemin molecules could be related to the
molecule’s electronic structure and its interaction with the graphene substrate, which
could potentially stabilize a charge state and thereby affect the molecule’s scattering

154



4.6 Artefacts

a
Hemoglobin

1000x1000 px

b
Hemoglobin

1200x1200 px

d

Hemin

1700x1700 px

c
Hemin

700x700 px

Amplitude0 Amplitude99 Phase

Amplitude0

Amplitude0

Amplitude0

Amplitude99

Amplitude99

Amplitude99

Phase

Phase

Phase

2

0

-2

1

-1

-3

3

ra
d

2

0

-2

1

-1

-3

3

ra
d

0.4

0

-0.4

0.2

-0.2

ra
d

a.
 u

.

1.0

0.8

0.6

0.4

0.2

a.
 u

.

1.0

0.8

0.6

0.4

a.
 u

.

1.0

0.8

0.6

0.4

0.2

a.
 u

.

1.0

0.8

0.6

0.4

0.2

a.
 u

.

0.6

1.0

0.2

1.4

a.
 u

.

0.6

1.0

0.2

1.4
a.

 u
.

0.4

0.8

0.0

1.2

a.
 u

.

0.4

0.8

0.0

1.2

2

0

-2

1

-1

-3

3

ra
d

Figure 4.24: Hollow object artefact: a Left to right: one-step amplitude reconstruction
(Amplitude0), iterative amplitude reconstruction (Amplitude99) after 100 iterations and phase
reconstruction after 100 iterations of a hologram of a hemoglobin molecule cropped to a size of
1000 × 1000 pixels. b Left to right: Amplitude0, Amplitude99 and phase reconstruction after
100 iterations of the same hologram as in a, cropped to 1200 × 1200 pixels. c Left to right:
Amplitude0, Amplitude99 and phase reconstruction after 100 iterations of a hologram of a cluster
of Hemin molecules, cropped to 700 × 700 pixels. d Left to right: Amplitude0, Amplitude99 and
phase reconstruction after 100 iterations of the same hologram as in c, cropped to 1700 × 1700
pixels.

properties. The presence of a high number of metal atoms within a small molecular
volume in PTA could result both in strong scattering or in strong absorption. Since
larger molecules only very rarely suffer from hollow object artefacts, it is unclear which
physical properties of the smaller proteins could make them more prone to these types of
artefact.
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In summary, the origin of the hollow object artefact is still unclear. While in some
examples, a size-dependence is observed, indicating a possible connection to artefacts
observed in simulated examples, there appears to be no size-dependent behaviour in
other examples. Furthermore, in the simulated case, both amplitude and phase featured
similar size-related types of artefacts, whereas in the hollow object case, mainly the
amplitude appears to be affected.
Given that mostly smaller molecules are affected by hollow object artefacts, the appearance
of this type of artefact could be related to physical properties of these classes of molecules.
However, it might also be possible that the imaging conditions play a role in the occurrence
of such artefacts.
Overall, this discussion indicates that a further refinement of the phase retrieval algorithm
as well as a better understanding of all the contributions to the amplitude and phase
reconstructions are necessary for interpreting the experimental data.
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5 Towards three-dimensional recon-
struction

Large molecules, such as proteins, are inherently three-dimensional (3D) objects. The
correct tertiary structure of a protein, which describes its three-dimensional folding
structure, is often crucial for the protein to perform its biological function. Thus, many
questions concerning protein structure that are relevant in a biological or biomedical
context are related to 3D structural features. A full protein structure determination by
LEEH would hence require a reconstruction of the imaged molecule in three dimensions,
whereas the algorithms discussed in the previous sections have only provided reconstruc-
tions of two-dimensional (2D) planes.
In general, two different approaches towards retrieving 3D information in LEEH are
possible: single-hologram and multi-hologram techniques. In single-hologram techniques,
the input for the 3D reconstruction is an individual hologram, i. e. the same type of
input as used for the reconstruction of two-dimensional images, as discussed in Chapters
1-4. In this case, the reconstruction needs to be improved in such a way that object
parts located at different distances along the optical axis are assigned to the correct
z-coordinate, while removing the respective out-of-focus contributions from each slice.
Alternatively, one can draw upon multiple-hologram imaging of an individual molecule
by recording a series of holograms that encode additional structural information, such
as for example different orientations of the same molecule, by imaging it from different
angles.

In the following, first steps towards a 3D reconstruction from LEEH holograms will be
explored by discussing three-dimensional deconvolution, a single-hologram method, and
tomography, which uses a series of holograms measured at different tilt angles of the
samples as input. While the former method does not require changes to the experimental
set-up and workflow, the latter can be implemented experimentally by mounting the
sample holder on a rotation piezo, which allows the rotation of the sample around one of
the axes in the same plane.
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5.1 Three-dimensional deconvolution
In principle, a hologram contains three-dimensional information about the object from
which it was generated. A three-dimensional volume can be reconstructed by stacking
two-dimensional images, reconstructed at different distances along the optical axis. In
simulated objects consisting of several laterally non-overlapping or partially overlapping
two-dimensional objects located in different planes along the optical axis, the respective
focal planes are distinguishable within such stacks even for small axial separations, as
discussed in Fig. 3.21 in the context of multislice hologram simulation. However, as
is apparent even in the case of objects with a large axial separation (Fig. 3.21c, d),
the out-of-focus parts of the reconstructed wave field significantly contribute to each
reconstruction plane.
This is exacerbated for objects with high degrees of lateral overlap and with small axial
separation distances; in these cases, distinguishing the respective focal planes becomes
more difficult (see Figures 3.22 - 3.24).
While the simulated examples of three-dimensional molecules consisted of object parts
confined to two-dimensional slices that are in focus in exactly one plane, a protein has
to be considered as a “continuous” object with slice separations on the order of atomic
dimensions and a strong lateral overlap of the contributions from each slice. This is
reflected by the fact that for reconstructions from experimental holograms, no singular
focus plane can be determined, rather, the molecules appear in focus for a range of
z0-values. Thus, separating the contributions from the different parts of the molecule
and assigning the correct value distributions to each slice is crucial for reconstructing the
3D properties of the object.
In order to do this, we need to know the impulse response of the LEEH imaging system,
which is given by the point spread function (PSF). The point spread function describes
the response of the imaging system to a point object, i. e. it maps how a point object is
represented as a result of the imaging process. It is defined as the function PSF(r) that
maps a points scatterer, described by a δ-distribution, to the corresponding distribution
in the detector plane Up(r):

Up(r) = δ(r) ∗ PSF(r) ≡ PSF(r), (5.1)

where * denotes a convolution. Since holography is a two-step process, consisting of
hologram generation and reconstruction, the PSF in holography is given by the stack of
reconstructed 2D images along the optical axis.
Fig. 5.1 shows the hologram of a point object generated in an in-line holography set-up by
plane waves (Fig. 5.1a) and by spherical waves (Fig. 5.1d), along with the corresponding
cuts through the reconstructed volume along the optical axis (z-axis), see Fig. 5.1b, e for
a wider and c, f for a narrower z-range around the focus, respectively. While the profiles
shown in Fig. 5.1b, e differ at z-values away from the focal plane, reflecting the different
types of illumination, the z-range around the focus is similar in both cases (Fig. 5.1c, f).
The profiles in Fig. 5.1b-c and e-f show that a point scatterer, while well-focused laterally,
creates a significant contribution along a range of axial values that by far exceeds the
width of the focal plane. The shape of the PSF thus directly limits the resolution in both
lateral and axial directions [95].
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Figure 5.1: Point spread function in LEEH: a Hologram of a point scatterer simulated with
incident plane waves using an angular spectrum propagator (see section 3.3.1). b Cut along the
z-axis through a stack of 2D reconstructions obtained from the hologram in a. c Zoom into the
inner region of the profile shown in b. d Hologram of a point scatterer simulated with incident
spherical waves using a Fresnel-Kirchhoff propagator (see section 1.1.2). e Cut along the z-axis
through a stack of 2D reconstructions obtained from the hologram in d. f Zoom into the inner
region of the profile shown in e.

In analogy to the definition of the point spread function in eq. (5.1), the imaging of
an object can also be described by a convolution with the point spread function of an
imaging system. Assuming that an object O(r) can be described as a sum of point
scatterers (condition of linearity),

O(r) =
∫
O(s)δ(r − s)ds, (5.2)

i. e. when multiple scattering can be neglected, and that each individual scatterer is
treated in the same way during the imaging process (condition of shift invariance), the
output of the imaging process can be described as [211, 245]

Uo(r) =
∫
O(s)PSF(r − s)ds, (5.3)

which takes the form of a convolution

Uo(r) = O(r) ∗ PSF(r) = O(r) ∗ Up(r). (5.4)

Thus, a deconvolution of the image output with the PSF yields the object distribution.
Deconvolution is an established technique in optical microscopy [211, 246, 247]. In
the following, three-dimensional deconvolution in an in-line holography set-up will be
discussed based on the algorithms proposed in refs. [211, 212].
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The most obvious way in which eq. (5.4) can be solved for the object distribution is to
rewrite it as a product of Fourier transforms by applying the convolution theorem (see
section 1.1.2):

F(Uo(r)) = F(O(r))F(Up(r)), (5.5)

where F denotes the three-dimensional Fourier transform.
This yields an expression for the three-dimensional object distribution:

O(r) = F−1
(

F(Uo(r))
F(Up(r))

)
. (5.6)

When inserting the appropriate expressions for the Fourier transforms of the complex
wave fields Uo(r) and Up(r) into eq. (5.6), however, the z-dependent components will
cancel out in the direct division [211]. Thus eq. (5.6) cannot directly be used to retrieve
the three-dimensional object distribution.
This problem can be avoided in two ways. If one considers the intensities |Uo(r)|2 and
|Up(r)|2 instead of the complex wave fields Uo(r) and Up(r) as the measured signal, a
direct division approach as in eq. (5.6) can be retained without loss of the z-dependent
components. The object distribution is then calculated as

O(r) = F−1
(

F(|Uo(r)|2)
F(|Up(r)|2) + β

)
, (5.7)

where β is a small constant to avoid division by zero.
Because intensities rather than complex wave fields are used, however, the linearity
condition, upon which the derivation of the convolution formulation was based, is only
fulfilled for a sample consisting of isolated, point-like objects. In such cases, the intensity-
based direct deconvolution approach is applicable in the context of in-line holography, as
demonstrated in ref. [211] for incident plane waves.
When considering extended objects, eq. (5.4) needs to be solved iteratively. Since they
operate on the level of complex wave fields, iterative deconvolution methods are applica-
ble to a wide range of objects [212]. Because we are ultimately interested in applying
deconvolution methods to holograms of extended molecules such as proteins, we will
focus on the iterative deconvolution methods here.
Given that iterative deconvolution methods are widespread in optical microscopy, the
iterative steps of one such method, the Gold algorithm [248], can be adapted for hologra-
phy [211, 212]. The Gold algorithm consists of the following iterative steps:
The object distribution is initialized by the output distribution of the imaging process,

O(0)(r) = Uo(r), (5.8)

where Uo(r) is the initially reconstructed stack of 2D images from the hologram. In the
nth iteration step, U (n)

o (r) is calculated as the convolution of the nth object distribution
O(n)(r) and the point spread function Up(r),

U (n)
o (r) = O(n)(r) ∗ Up(r). (5.9)
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Subsequently, the updated object distribution O(n+1)(r) is calculated as

O(n+1)(r) = O(n)(r) Uo(r)
U

(n)
o (r)

. (5.10)

The algorithm can hence be summarized as

O(0)(r) = Uo(r) (5.11)
(i) U (n)

o (r) = O(n)(r) ∗ Up(r) (5.12)

(ii) O(n+1)(r) = O(n)(r) Uo(r)
U

(n)
o (r)

(5.13)

(iii) n = n+ 1 (5.14)

The convolution in (i) can be evaluated via the convolution theorem. The division
in (ii) can be calculated in the same way as the division step in the intensity-based
deconvolution [211, 212]:

O(n+1)(r) = O(n)(r)
Uo(r)

(
U

(n)
o (r)

)∗

|U (n)
o (r)|2 + β

, (5.15)

where * denotes the complex conjugate and β ≪ |U (n)
o (r)|2.

Additionally, to ensure that U (n)
o (r) has the same value range as Uo(r), U (n)

o (r) has to be
normalized after step (i) [212]:

U (n)
o (r) =

(
U

(n)
o (r) − min

[
U

(n)
o (r)

] )(
max [Uo(r)] − min [Uo(r)]

)
(

max
[
U

(n)
o (r)

]
− min

[
U

(n)
o (r)

] ) + min [Uo(r)]

(5.16)

In the following, the performance of the algorithm will be tested by applying it to a
range of different objects. To facilitate a comparison to literature, the discussion will
mostly focus on simulation and reconstruction with plane waves.
Fig. 5.2a shows an object built up from four point scatterers in different planes along
the z-axis with a z-separation of 10 mm between the focus planes and a distance of
70 mm between the detector and the sample plane closest to the detector. This geometry
reproduces the geometry of the examples of three-dimensional deconvolution discussed
in ref. [211]. The point scatterers are centred at the pixels (75, 75), (75, 125), (125, 75),
and (125, 125) in the x − y-plane; each point scatterer is simulated as a central pixel
of intensity 1, surrounded by two rings of intensity 0.75 and 0.25, respectively. The
hologram has been simulated from the four slices via the multislice algorithm presented
in section 3.3.1 with plane waves of wavelength 500 nm.
Fig. 5.2b depicts the one-step 2D reconstructions from the hologram in the respective
focus planes of the point scatterers, labelled by the respective distance to the detector.
The x − y-location of the reconstructed objects is correctly retrieved and their shape
matches that of the simulated point object. Each scatterer appears in focus in the correct
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Figure 5.2: Iterative deconvolution: point objects a Sketch of the object, consisting of four
point objects located in four different planes along the z-axis, separated by 10 mm, respectively.
b 2D reconstructions (Uo) in the respective z-planes. c Reconstructions (O(n)) of the z-planes
in which the objects are located after iterative deconvolution (25 iterations). d x− z and y − z
cuts through the corresponding object planes. e 3D plot of the reconstructed object O(n) after
deconvolution. f Projections along the x-, y- and z-axes of the 3D plot shown in e. For better
visibility, the reconstructed signals are highlighted by red circles.

plane. However, out-of-focus contributions from the other point scatterers are present
in each of the images. Fig. 5.2c shows the corresponding 2D slices through the focal
planes of the point scatterers after 25 iterations of the three-dimensional deconvolution
algorithm. The point scatterers still appear in the correct x − y-positions, but their
shape differs from the shape reconstructed in Fig. 5.2b, they only appear as a single pixel.
Contributions from the other scatterers have been removed by the deconvolution step.
The effectiveness of the iterative deconvolution in removing out-of-focus contributions
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5.1 Three-dimensional deconvolution

along the z-axis is also demonstrated in Fig. 5.2d, which shows the x−z and y−z-profiles
through the x, y = 75 and x, y = 125 planes. While the point scatterers are not reduced
to a single point in the axial direction, they only contribute to a few pixels around their
z-location as opposed to the contribution over the full z-range shown in the PSF in
Fig. 5.1b.
Fig. 5.2e shows a 3D representation of the reconstructed object O(n), the corresponding
projections of the 3D plot along the x-, y, and z-axes are shown in Fig. 5.2f, summarizing
the results of Fig. 5.2c-d.
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Figure 5.3: Iterative deconvolution: small disks Object of the same geometry as in Fig. 5.2
with small disks of radius 3 pixels instead of point objects. a x− z-cuts through the reconstructed
object volume before deconvolution at y = 125 and y = 75 pixels. b x − z-cuts through the
reconstructed object volume after deconvolution (25 iterations) at y = 125 and y = 75 pixels. c
Reconstructions (O(n)) of the z-planes in which the objects are located after iterative deconvolution
(25 iterations). d 3D plot of the reconstructed object O(n) after deconvolution. e Projections
along the x-, y- and z-axes of the 3D plot shown in d. For better visibility, the reconstructed
signals are highlighted by red circles.

Fig. 5.3 shows the analogous object to Fig. 5.2 with small extended objects (disks
of radius 3 pixels) instead of point objects. Fig. 5.3a and b depict the x − z-profiles
through the objects before (Fig. 5.3a) and after (Fig. 5.3b) 25 iterations of the iterative
deconvolution algorithm. The deconvolution step reduces the z-extension significantly. In
the corresponding z-focus slices for each of the four objects (Fig. 5.3c), only the in-focus
object can be seen, contributions from the other planes have been removed. The shape
of the disks, however, is not fully recovered, the strongest part of the signal appears
to come from the edge of the objects. In the 3D plot of the iterative reconstruction
(Fig. 5.3d), each of the objects appears as a double sphere, which is also reflected in the
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corresponding projections in Fig. 5.3e (marked by green arrows), the double signal could
be associated with the objects’ sharp edges as opposed to the smooth edges of the point
objects discussed in Fig. 5.2.
This double signal appears to be a general feature of the reconstruction of extended
objects with sharp edges by iterative three-dimensional deconvolution.
In order to discuss the case of extended objects in more detail, Fig. 5.4 shows the results
of the reconstruction of a hologram of a single disk of radius 5 pixels, located in the
plane z = 80 mm.
Fig. 5.4a and b show the x− z-profile through the object along the optical axis and the
reconstruction in the focus plane, respectively. The reconstruction of the object plane
contains some contributions from the twin image. Fig. 5.4c, d shows the corresponding
images after 10 iterations of the deconvolution algorithm. The x− z-profile is reduced to
its inner part. In the focal plane (Fig. 5.4d), the twin image contributions are eliminated,
but the object shape is not recovered as well as in Fig. 5.4b. The strongest signal appears
to come from the edge of the object. It is also interesting to note the difference in
the amplitude value range between Fig. 5.4a, b and Fig. 5.4 c, d, respectively. The
higher maximum amplitudes at the object edge in Fig. 5.4d, which might be due to an
amplification of errors at the object edge during the iteration steps, could explain the
loss of contrast in the inner part of the object; the amplitude values in the inner part of
the object in Fig. 5.4d seem to match those in Fig. 5.4b.
The double-signal structure already observed in Fig. 5.3 reappears in Fig. 5.4e. The
larger separation of the signals as compared to Fig. 5.3d supports the attribution of this
phenomenon to the object’s edges since the object in Fig. 5.4 has a larger radius than
the objects in Fig. 5.3.
Fig. 5.4g-l shows that the situation can to some extent be remedied by the application of
spatial filters that set values outside a masked region in the inner part of the 3D volume
to zero. The filter is applied to the reconstructed object O(n) at the end of each iteration
step. By choosing a tight mask along the axial direction, the double-signal structure can
be partially suppressed (Fig. 5.4k, l). Strong contributions from the object’s edge remain,
however, as can be seen in the x− z-profile and the reconstruction of the focal plane in
Fig. 5.4i and j, respectively.
Fig. 5.4 shows that the iterative deconvolution algorithm can in general handle extended
objects and that edge artefacts can be to some degree eliminated with with spatial filters.
In Fig. 5.5, a different type of artefact is discussed, namely a strong contribution along
the optical axis. The object depicted in Fig. 5.5 is a ring with inner radius 10 pixels
and outer radius 15 pixels, the x − z-profile and the focal plane of the reconstruction
before deconvolution are shown in Fig. 5.5a, b. As demonstrated in Fig. 5.5d, the
object itself is accurately recovered in its focal plane, although there again appear to be
excessive contributions from the object’s edge. In the x − z-profile of the object after
deconvolution (Fig. 5.5c), however, contributions along the optical axis away from the
object’s focal plane dominate. This is also reflected in the 3D plot in Fig. 5.5e as well as
in the corresponding projections in Fig. 5.5f, where the dominance of this artefact in the
z-projection renders the ring itself almost invisible. Since these strong axial contributions
do not coincide with the location of the object, they can be removed by applying a
spatial filter, which sets the values away from the centre of the 3D volume to zero in
each iteration step (Fig. 5.5g, h.). Alternatively, smoothing the reconstruction with a
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Figure 5.4: Iterative deconvolution: extended objects Reconstruction by iterative deconvo-
lution of the hologram of a disk of radius 5 pixels located at z = 80 mm with (g-l) and without
(a-f) the application of spatial filters. a x− z-cut through the reconstructed object volume before
deconvolution at y = 100 pixels. b 2D reconstruction (Uo) of the object in the plane corresponding
to z = 80 mm. c x − z-cut through the reconstructed object volume after deconvolution (10
iterations) at y = 100 pixels. d Reconstruction of the object (O(n)) after deconvolution (10
iterations) in the plane corresponding to z = 80 mm. e 3D plot of the reconstructed object O(n)

after deconvolution. f Projections along the x-, y- and z-axes of the 3D plot shown in e. g
x− z-cut through the reconstructed object volume before deconvolution at y = 100 pixels. h 2D
reconstruction (Uo) of the object in the plane corresponding to z = 80 mm. i x− z-cut through
the reconstructed object volume after deconvolution (10 iterations) with the application of a
spatial filter in each iteration, at y = 100 pixels. j Reconstruction of the object (O(n)) in the
plane corresponding to z = 80 mm after deconvolution (10 iterations) and spatial filtering in each
iteration. k 3D plot of the reconstructed object O(n) after deconvolution with spatial filtering. l
Projections along the x-, y- and z-axes of the 3D plot shown in k.

Gaussian filter during the iterative process, as suggested in refs. [211, 212], could help
suppress these types of artefacts.
Finally, while Fig. 5.4 and Fig. 5.5 involve laterally extended objects, it is of interest
to study extended objects that include an extension along the axial direction. Fig. 5.6
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shows two disks of radius 5 pixels located in the z-planes z = 70 mm and z = 80 mm.
Laterally, they are shifted by 10 pixels in both the x- and y-direction, respectively, hence
they do not overlap.
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Figure 5.5: Iterative deconvolution: extended objects II Reconstruction by iterative
deconvolution of the hologram of a ring of outer radius 15 pixels and inner radius 10 pixels located
at z = 80 mm with (g-h) and without (e-f) the application of spatial filters. a x− z-cut through
the reconstructed object volume before deconvolution at y = 100 pixels. b 2D reconstruction (Uo)
of the object in the plane corresponding to z = 80 mm. c x− z-cut through the reconstructed
object volume after deconvolution (25 iterations) at y = 100 pixels. d Reconstruction of the
object (O(n)) after deconvolution (25 iterations) in the plane corresponding to z = 80 mm. e 3D
plot of the reconstructed object O(n) after deconvolution (25 iterations) without the application
of spatial filters. f Projections along the x-, y- and z-axes of the 3D plot shown in e. g 3D
plot of the reconstructed object O(n) after deconvolution (25 iterations) with the application of
spatial filters. The artefacts along the optical axis are removed. h Projections along the x-, y-
and z-axes of the 3D plot shown in g.

While the z-extent is significantly reduced, as in the previous examples (Fig. 5.6a, b),
a contribution of the out-of-focus object remains after the deconvolution (Fig. 5.6d),
although only by the object itself, other out-of-focus artefacts, such as fringes, are
removed when compared to the reconstruction before the deconvolution (Fig. 5.6c). In
the 3D plot and the corresponding projections (Fig. 5.6e, f), both objects appear as a
double-signal like the single disk in Fig. 5.4. Increasing the number of iterations from 10
to 25 seems to increase the resolution in z, the two signals corresponding to each disks are
narrower and better separated, as shown in Fig. 5.6g, h. However, the lateral dimensions
also seem to decrease, as can be seen when comparing the z-projections in Fig. 5.6f and
h. This apparent decrease could be due to the extreme increase in maximum amplitude
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5.1 Three-dimensional deconvolution

value which could induce a change in contrast rendering the smaller amplitude values
indiscernible from the background. Thus, it appears that amplitude spikes can occur
during deconvolution and can be aggravated by a higher number of iterations.
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Figure 5.6: Iterative deconvolution: extended objects III Reconstruction by iterative
deconvolution of the hologram of two disks of radius 5 pixels located at z = 70 mm and z = 80 mm.
a x − z-cuts through the reconstructed object volume before deconvolution at y = 90 and
y = 110 pixels. b x − z-cuts through the reconstructed object volume after deconvolution (10
iterations) at y = 90 and y = 110 pixels. c 2D reconstructions (Uo) in the respective focal
planes of the two disks. d Reconstructions (O(n)) after iterative deconvolution (10 iterations) of
the z-planes in which the objects are located. e 3D plot of the reconstructed object O(n) after
deconvolution (10 iterations). f Projections along the x-, y- and z-axes of the 3D plot shown in
e. g 3D plot of the reconstructed object O(n) after deconvolution (25 iterations). h Projections
along the x-, y- and z-axes of the 3D plot shown in g.

A similar dependence on the number of iterations is also apparent in the case of two
laterally overlapping disks as shown in Fig. 5.7. The disks are identical to the ones in
Fig. 5.6, as are their locations in the axial direction, but they have been moved closer
to the centre of the image to allow a degree of overlap. When performing the iterative
deconvolution with 10 iterations, the z-planes of the two objects can be distinguished
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Chapter 5. Towards three-dimensional reconstruction

(Fig. 5.7d), even though the overlap region provides the strongest signal. After 25
iterations, however, only the overlap region is visible (Fig. 5.7g).
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Figure 5.7: Iterative deconvolution: overlapping objects Reconstruction by iterative
deconvolution of the hologram of two disks of radius 5 pixels located at z = 70 mm and z =
80 mm with slight lateral overlap. a x− z-cuts through the reconstructed object volume before
deconvolution at y = 98 and y = 102 pixels. b x− z-cuts through the reconstructed object volume
after deconvolution (10 iterations) at y = 98 and y = 102 pixels. c 2D reconstructions (Uo) in the
respective focal planes of the two disks. d Reconstructions (O(n)) after iterative deconvolution
(10 iterations) of the z-planes in which the objects are located. e 3D plot of the reconstructed
object O(n) after deconvolution (10 iterations). f Projections along the x-, y- and z-axes of the
3D plot shown in e. g Reconstructions (O(n)) after iterative deconvolution (25 iterations) of the
z-planes in which the objects are located. h x− z-cuts through the reconstructed object volume
after deconvolution (25 iterations) at y = 98 and y = 102 pixels. i 3D plot of the reconstructed
object O(n) after deconvolution (25 iterations). j Projections along the x-, y- and z-axes of the
3D plot shown in i.
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5.1 Three-dimensional deconvolution

Since large molecules, such as proteins, in general feature a high degree of lateral overlap,
it is of interest to study two objects in different z-planes that fully overlap laterally.
Fig. 5.8 shows the example of two disks of radius 5 pixels, located at z = 70 mm and
z = 80 mm while fully overlapping laterally. While the x− z-profile after deconvolution
shows two signals that can be attributed to the two disks, the signal is the strongest
in between the two contributions from the disks (Fig. 5.8c). This is also reflected by
the darker part in the centre of the 3D plot in Fig. 5.8e. Hence, although the two
reconstructed z-planes show one disk each, it is hard to tell whether this is in fact only
the contribution of the respective focal plane. The results from partially overlapping
objects in Fig. 5.7 seem to suggest that a contribution from the out-of-focus plane
remains.
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Figure 5.8: Iterative deconvolution: overlapping objects II Reconstruction by iterative
deconvolution of the hologram of two disks of radius 5 pixels located at z = 70 mm and z = 80 mm
with full lateral overlap. a x−z-cut through the reconstructed object volume before deconvolution
at y = 100 pixels. b 2D reconstructions (Uo) in the respective focal planes of the two disks. c x−z-
cut through the reconstructed object volume after deconvolution (10 iterations) at y = 100 pixels.
d Reconstructions (O(n)) after iterative deconvolution (10 iterations) of the z-planes in which the
objects are located. e 3D plot of the reconstructed object O(n) after deconvolution (10 iterations).
f Projections along the x-, y- and z-axes of the 3D plot shown in e.

The previous examples have all been simulated and reconstructed using a plane wave
propagator for simplicity and to facilitate the comparison to the existing literature
[211, 207]. The experimental set-up, however, operates with incident spherical waves.
Hence, in order to assess whether the algorithm is applicable to experimentally acquired
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Chapter 5. Towards three-dimensional reconstruction

holograms, the performance of the algorithm for spherical incident waves has to be
evaluated.
Fig. 5.9 shows an example analogous to the one in Fig. 5.7, with two partially overlapping
disks of radius 3 pixels. The parameters have been chosen such that they map a realistic
imaging situation for our experimental setup: a source-to-sample distance of 290 nm and
300 nm for the respective object planes, a sample-to-detector distance of 11.5 cm, an
object size of 70 nm, corresponding to the side length of the slice, and a wavelength of
1 Å.
The general performance of the algorithm is very similar when comparing between input
generated from incident plane and spherical waves. The differences in performance can
likely be attributed to the fact that the objects are closer together axially in the spherical
waves example. In both cases, the extent of the axial contributions is reduced significantly
by the deconvolution process (Fig. 5.9b). The z-planes in which the two objects are in
focus are identifiable (Fig. 5.9d), however, the object’s shape is not fully recovered. As
in the plane wave examples, the object’s edge appears to contribute disproportionately,
although the double-signal structure is less pronounced in the spherical case.
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Figure 5.9: Iterative deconvolution: spherical waves Reconstruction by iterative decon-
volution of the hologram of two disks of radius 3 pixels located at z = 290 nm and z = 300 nm
with partial lateral overlap. The hologram has been simulated and reconstructed using a Fresnel-
Kirchhoff propagator for spherical waves. a x− z-cuts through the reconstructed object volume
before deconvolution at y = 50 and y = 48 pixels. b x− z-cuts through the reconstructed object
volume after deconvolution (7 iterations) at y = 50 and y = 48 pixels. c 2D reconstructions
(Uo) in the respective focal planes of the two disks. d Reconstructions (O(n)) after iterative
deconvolution (7 iterations) of the z-planes in which the objects are located. e 3D plot of the
reconstructed object O(n) after deconvolution (7 iterations). f Projections along the x-, y- and
z-axes of the 3D plot shown in e.
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5.2 Outlook: towards LEEH tomography

While this discussion of three-dimensional deconvolution as a method for retrieving 3D
information from single holograms is by no means exhaustive, some conclusions can be
drawn. The iterative three-dimensional deconvolution algorithm accurately retrieves the
z-positions of isolated objects, such as point objects and small disks, contributions from
other object planes are removed. The recovery of the correct lateral shapes is, however,
less accurate, evidence from the simulations suggests that this could be due to strong
edge artefacts that appear during the iterative process and can be exacerbated by larger
numbers of iterations. It has been demonstrated that the addition of filters during the
iteration can to some degree counteract the appearance of these artefacts. Comparison
to literature [211, 212] suggests that optimizing filters and the number of iterations can
further improve the reconstruction and reduce artefacts.
The z-position of laterally overlapping objects is more difficult to recover. Thus, it
appears that three-dimensional deconvolution might not be the method of choice for
the 3D-reconstruction of large, extended objects such as proteins. One reason for this
could be that the condition of linearity that describes the independence of the scatterers
and was one of the assumptions from which the deconvolution algorithm was derived,
might not be valid in the case of proteins given that multiple scattering processes are
likely to occur. Furthermore, the algorithm, as presented here, does not include phase
information. To include this, the algorithm would have to be adapted, possibly by first
reconstructing the complex wave field along the z-axis, as described in Chapter 3, and
then using this as input for the deconvolution step.
Additionally, deconvolution is computationally costly, especially when using high-resolution
data, i. e. a large number of pixels, which is necessary for experimental data.
In practice, three-dimensional deconvolution appears to be more suitable in experimental
contexts involving small, isolated objects, such as in particle tracking [249], than in the
3D-reconstruction of large, extended molecules.

5.2 Outlook: towards LEEH tomography
The previous considerations suggest that the information stored in a single hologram is
not sufficient for a full 3D reconstruction of an extended molecule such as a protein. To
overcome this, the data from several holograms encoding different spatial information
has to be combined.
A widely applied technique for retrieving three-dimensional information is tomography,
which extracts the three-dimensional structure of an object from a series of projections
obtained by imaging the object at different angles [250, 251]. In holography, this can be
implemented by rotating the sample around an axis, producing a tilt series.
A projection can be defined as a set of integrated values of an object parameter, such as
density or beam attenuation, along a straight line through the object [251]. Mathemati-
cally, this can be represented by the line integral

Pθ =
∫

l(θ,t)
o(x, y)ds, (5.17)

where o(x, y) denotes the object distribution and the integral is evaluated along the line
l(θ, t) defined by the line equation x cos θ+ y sin θ = t. The integral given in eq. (5.17) is
referred to as the Radon transform [252].
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Most commonly, a projection is generated from a set of line integrals along parallel
rays (parallel beam geometry). This case is also the most straightforward regarding the
reconstruction of the object distributions from the projections since the Radon transform
can be directly related to slices in two-dimensional Fourier space. This relationship is
described by the Fourier Slice theorem [251], which states that the n − 1-dimensional
Fourier transform of a parallel projection Pθ(t) of an n-dimensional object corresponds to
a (n− 1)-dimensional slice through the n-dimensional Fourier transform of the object
distribution defined by the angle θ with the Fourier coordinate axes. This relation allows
the Fourier transform of the object to be generated slice by slice from the measured
projections, which in turn allows the retrieval of the object distribution by inverse
Fourier transform. This conceptually simple reconstruction scheme is, however, met
with difficulties in the numerical implementation since the Fourier slices are defined in
a polar coordinate system, while the Fast Fourier transform (FFT) used for numerical
evaluation is defined in a rectangular coordinate system. To circumvent the problems
caused by that, the Fourier space contributions can be weighted by the introduction of
a frequency filter in the Fourier domain before the inversion step. This reconstruction
routine is called filtered backprojection and is very commonly employed in tomographic
reconstruction [251, 253, 254] and can also be employed in conjuction with holographic
tomography [255].
In the case of low-energy electron holography with spherical waves, there are two reasons
why the filtered backprojection cannot be directly applied: on the one hand, due to the
incident spherical waves, the experimental set-up corresponds to a cone beam geometry
rather than a parallel beam geometry. Solutions to this have been suggested in [256, 257].
On the other hand, the imaged objects are of the same lengths scale as the wavelength
of the probing beam, hence diffraction effects cannot be neglected. Since diffraction
dominates in this regime, the ray optical considerations employed in the derivation of
projections via line integrals are not valid [251]. Thus, for a tomographic reconstruction,
the equivalent to the projections in non-diffractive tomography has to be generated based
on the diffracted wave field [251, 254]. With this, an analogue to the Fourier Slice theorem,
the Fourier Diffraction theorem, can be employed in the tomographic reconstruction
[251, 258]. Since the wave equation for propagation through a medium can in general
not be solved exactly, approximations such as the Born or the Rytov approximations,
which are valid under different conditions, have to be applied [251, 258, 254].
Several studies have shown that optical diffraction tomography can successfully be used
to image biological matter, especially when using the Rytov approximation [259, 260,
261, 262], and can be combined with holographic imaging [260, 262]. Although further
adjustments will have to be made to account for the use of an electron beam, this could
be a promising approach to tomography with LEEH.
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6 Conclusion and Outlook

The results presented in this thesis show that low-energy electron holography can be
employed to image a wide range of proteins on the single-molecule level at sub-nanometer
resolution, from small proteins (cytochrome C, 12 kDa) to large protein complexes
(GroEL, ca. 800 kDa). Structural features, such as subunits, can be identified and
different molecular orientations and conformations of the proteins can be distinguished in
the reconstructed images retrieved from the low-energy electron holograms. Comparisons
with molecular models from the Protein Data Bank show that molecular sizes and shapes
determined by LEEH imaging are in accordance with those of the models, implying that
the proteins in general remain intact during the sample preparation and imaging process
of LEEH.
Single-molecule imaging by LEEH allows the mapping of the conformational variability
of intrinsically flexible proteins as exemplarily shown in a study of the monoclonal
antibody Herceptin. A detailed statistical analysis revealed that the molecules observed
on the surface can be classified into two categories: extended conformations related to
the solution structure and compact conformations related to the gas-phase structure.
The recovery of the extended structures occurs during the landing process and strongly
depends on the landing energy.

While one-step amplitude reconstructions with a Fresnel-Kirchhoff propagator yield
insights into structural details as well as molecular shapes and sizes, proteins in general
exhibit both absorptive and phase-shifting properties when interacting with electron
waves. Hence, reconstructing the phase shift distribution in the object plane is of rele-
vance for retrieving the full information about the imaged protein that is encoded in the
hologram.
An iterative phase retrieval algorithm based on ref. [193] has been presented, charac-
terized in detail and applied to a wide range of simulated and experimentally acquired
holograms. Multislice and scattering simulations as well as extensive data analysis have
been performed to propose possible interpretations of the phase results, which point
towards a connection between the molecular density and the induced phase shift.

First steps towards a three-dimensional reconstruction have been explored, both in the
form of a deconvolution-based reconstruction from a single hologram and a tomographic
reconstruction from holograms obtained from a series of tilt angles.
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Chapter 6. Conclusion and Outlook

Although low-energy electron holography has only recently emerged as a method for
single-molecule protein imaging, the results presented in this thesis show that it can
provide relevant structural information and be considered as a complementary approach
to other biomolecular imaging techniques. Yet, the method is still being developed, which
requires further investigation and improvement both on the experimental and on the
theoretical side.

Outlook

Structural analysis of proteins

Having established that LEEH can image both rigid and flexible proteins and can map
conformational changes on the larger structural level, the next step is to apply the method
to relevant biological questions. Such questions could for example pertain to the binding
behaviour and associated structural changes of certain classes of molecules.
Structural changes in the gas phase, such as a partial collapse of the three-dimensional
protein structure, which has been observed in the case of antibodies, are also a topic
for further study with proteins of different mechanical properties. LEEH imaging of
samples prepared by ES-IBD allows the direct imaging of gas phase-related structures
on the surface, which could yield insights into the capabilities of LEEH as a structural
biology technique as well as complement the structural information obtained by gas
phase analysis methods.
Dosing water onto a protein sample in situ would also be of interest since it would allow
for the possibility of observing the interaction with a solvent. LEEH imaging could
reveal whether this induces structural changes in the proteins, giving insights into the
differences between the native protein structures and the structures observed in UHV.
Furthermore, water dosing could be a tool for exploring changes in the protein surface,
which could potentially be observable in the phase reconstruction.

Interpreting phase data

Due to the high level of complexity of proteins, the interpretation of the reconstructed
phase data from protein holograms is not straightforward. Despite the strong indication
of a relation between phase shift and molecular density, a degree of ambiguity remains
since other factors such as charges, changes in electric potential and changes in scattering
strength likely also contribute.
Thus, test systems to separately explore the different possible contributions to the phase
need to be defined and investigated. Since small metal-bearing molecules like porphyrins
proved to be difficult in terms of sample preparation, custom-made structures like DNA
origami could be a promising next step. By engineering certain molecular properties such
as molecular thickness or the incorporation of metal atoms, different phase contributions
could become separable.
In simple molecular systems, where the effect of a single metal centre should be visible, one
might have to take an additional phase contribution due to spin into account, especially,
when imaging magnetic centres at very low emission voltages.
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The interpretation of phase data could also be advanced by improving the phase retrieval
algorithm. So far, phase retrieval has been done iteratively from a single hologram, as a
comparison, other phase retrieval techniques such as near-field ptychography [263, 79]
could be employed. Ptychography can also be combined with multislice approaches
[264, 265, 266] and with tomography [267] to retrieve three-dimensional information
about the imaged objects.

3D analysis

For large, extended objects, multi-image approaches such as tomography are necessary
for retrieving three-dimensional structural information from the measured data. Our
current LEEH microscope head features a piezo rotation stage that allows the rotation
of the sample around one axis by ±20°.
In addition to the development of a tomographic reconstruction algorithm compatible
with LEEH imaging, the corresponding tomographic measurement technique needs to
be established. The latter involves devising a calibration for the piezo rotation stage,
since the tilt angle of each image needs to be known for reconstruction, and developing a
scheme for keeping the imaged molecule at the centre of the illuminated spot during the
rotation in order to be able to align the holograms for reconstruction.

Improvements of the experimental set-up

An increased resolution of the reconstructed images will be central for tackling all the
challenges mentioned above, thus, the experimental set-up needs to be continuously
improved. To improve the resolution, the cooling of tip and sample seems to be the most
promising step. The cooling of the tip increases the coherence of the emitted electrons,
which is directly related to the achievable resolution, while the cooling of the sample
reduces molecular motion, vibrations of the graphene substrate as well as radiation
damage, which all have adverse effects of the resolution.
A cryostat has recently been added to the LEEH set-up, which allows the cooling of tip
and sample to temperatures of approximately 50 K. In preliminary tests, the resolution
of molecules imaged at room temperature and low temperature was comparable. To
optimize the measuring at low temperatures, cooling shields need to be added to avoid
contamination of the sample.

Another step in improving the experimental set-up to increase the quality of the measured
holograms is to implement magnetic shielding since stray magnetic fields can create
distortions. Such magnetic shielding could be achieved by placing a µ-metal foil around
tip and sample, which would be able to mitigate the effects from both external fields,
such as the earth’s magnetic field, and from local, spatially non-uniform magnetic fields
that can arise due to magnetized components of the chamber.
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