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Abstract

In the last three decades, two-dimensional arti�cial lattices have served as a promising
testbed for studying quantum states of matter [1–4]. They have the advantage of controlling
the microscopic degrees of freedom and tailoring interactions between their constituents.
Such lattices have been experimentally realized in various setups, including optical lattices
[5], self-assembled atomic/molecular lattices [6–8], quantum dots [9–11], trapped ions [12],
and very recently in superconducting circuits [13], and patterned devices [14]. Among
these platforms, the self-assembled atomic/molecular lattices and surface-supported struc-
tures are natural choices to characterize new quantum states, owing to their tunability
and simple in situ preparation routines. On this account, low-temperature scanning probe
methods (SPM) are versatile tools for their imaging and spectroscopic capabilities and their
atomic-scale manipulation to create and characterize such structures. These capabilities
have placed the SPM as the major experimental technique that combines unprecedented
spatial and energy resolutions to reveal the detail of the state of matter that emerges under
harsh physical conditions, namely the strongly correlated electron systems, that have been
far beyond the reach of other techniques.

The strongly correlated electron systems, especially those con�ned in two dimensions, are
an integral part of modern condensed matter physics. Their ground states are predomi-
nantly governed by the repulsive electron-electron interaction, in contrast to many simple
materials such as gold, silver, and silicon, whose properties are roughly intact by the inter-
action. These materials generally possess exceptional properties, and transitions between
distinct, competing states with remarkably di�erent electronic and magnetic orders [15].
In this regard, this thesis is devoted to studying the strongly correlated electron systems
manifested in two-dimensional arti�cial lattices and also in the van der Waals layered ma-
terials. We are mainly concerned with understanding the role of a single spin and also its
ensemble in the ground state of a system.

The Kondo e�ect is an archetype for the strong interaction that, even after more than half a
century since its realization, condensed matter physicists use its observation as a gateway,
or a starting point, to understand the underlying physics of a very complicated system.
Ubiquitous in this research, the Kondo e�ect appears in both single-ion and lattice form.
In our �rst project, we study NTCDA molecule, which is a π-conjugated spin−1/2 system
[16, 17]. It forms a 2D Kondo lattice, developed by the self-assembly of molecules on the
surface of Ag(111) metal. In this work, we aim to understand the elementary excitations
of the lattice and their real-space manifestation, particularly the quasiparticle excitations,
and follow their fate upon quantum phase transition. In our second project, we revisit the
Kondo e�ect afresh: this time in a superconducting tunnel junction and disguised in par-
tially spin screened Yu-Shiba-Rusinov bound states. In this work, we study CoPc molecule,
a spin−1/2 system, adsorbed on the surface of the 2D superconductor 2H-NbSe2. As we will
show, this system captures a subtle angle-dependent interplay between the Kondo e�ect,
superconductivity, and Dzyaloshinskii Moriya interaction.

Keywords: arti�cial lattice, self-assembled molecular/atomic lattices, spin structures, van
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der Waals layered materials, scanning probe methods, strongly correlated electron sys-
tem, electron-electron interaction, Kondo e�ect, Kondo lattice, NTCDA molecule, quantum
phase transition, CoPc molecule, 2D superconductor, 2H-NbSe2, Dzyaloshinskii Moriya in-
teraction

Structure of the thesis

• In chapter 1, we provide the detail of the experimental setup in The Max Planck
Institute for Solid State Research, Precision Laboratory, Nanoscale Science De-
partment, where the author of this thesis takes the measurements and also present
an introduction to the scanning tunneling microscopy with a theory toolbox to read
and analyze measurements in a tunneling junction.

• In chapter 2, we provide an introduction to the self-assembled NTCDA/Ag(111) sys-
tem, where we attempt to review past works on this topic performed by our collab-
orators in The Jülich Research Center, RWTH Aachen University, and others, plus
presenting some of our new results.

• In chapter 3, we review some of the primary models in the strongly correlated electron
physics and discuss the historical example of the quantum phase transition in the
Kondo lattice, which we later realize in our measurements. Subsequently, we present
some of our high-resolution spectroscopic images at low and high energies of the
NTCDA Kondo lattice and compare them with our modeling.

• In chapter 4, we provide a collection of real-space portrays of the quasiparticle inter-
ference patterns of the Kondo lattice, which we imaged under di�erent conditions.
One of them is presented as an instance in chapter 3.

• In chapter 5, we develop a tight-binding model in great detail to simulate the general
properties of the interference patterns presented in chapter 4 and further supplement
it with a scripted python code.

• In chapter 6, we provide a comprehensive review of our published work on the inter-
play of molecular magnetism and superconductivity in 2D materials (CoPc/NbSe2).
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Scanning tunneling microscopy
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1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Scanning tunnelingmicroscopy (STM) is a non-optical imaging technique with
ultra-high resolution images at the atomic scale invented based on the quantum
tunneling phenomenon. Historically, STM was developed by Binnig, Rohrer, and
Gerber in 1982 for which the �rst two were awarded the Nobel prize in physics
[18]. Instrumentally, STM is a tunneling junction comprised of a sharp conducting
tip which is scanned over a �at conducting sample, while a bias voltage is applied
between them to allow electrons to tunnel across the insulating vacuum barrier
in close proximity (< 1 nm gap). The measurement of this minuscule tunneling
current is at the heart of the STM technique. In this chapter, I discuss the basic
principles of STM from both experiment and theory standpoints. The experiment
section outlines the setup under which the measurements are taken, and the the-
ory section reviews the standard derivation of the formulas used to interpret the
STM results. The derivations are presented in great detail, and therefore, an ad-
vanced reader can skip this section as only the �nal well-known formulas will be
referred to later in the thesis.
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Chapter 1

1.1 Experimental setup

The experimental setup, Fig.(1.1), incorporates a combined scanning tunneling and atomic
force microscope (STM/AFM) with an in-situ sample preparation in an ultra-high vacuum
(UHV) chamber. The measurements are taken in the STM head, installed at the bottom of a
helium cryostat with 100 hours holding time and 4.2 K temperature, which can be further
reduced to 1.2 K in a Joule-Thompson cycle. The head is encircled by a superconducting
magnet, creating vertical magnetic �elds up to 14 T.

1.1.1 Ultra high-vacuum system

The UHV chamber is divided into two parts separated by a UHV-gate-valve. One part
is used for the preparation of the sample (left side of Fig.(1.1a), while the other one, the
STM chamber, contains the sample stage and cryostat. A horizontal manipulator is used to
transfer the sample between the two chambers. The STM chamber is also connected to the
loadlock (backside of Fig.(1.1a), which allows transferring the sample to outside without
venting the chamber. To keep the base pressure in the lower 10−10 mbar range, a combi-
nation of scroll pump, turbo molecular pumps, ion getter pumps, and titanium sublimation
pump are used.

Figure 1.1: Scanning probe microscope setup. a, Image of the custom-built ultra high-
vacuum sub-Kelvin scanning probe microscope in MPI, Stuttgart. b, Schematic view of the
acoustic box hosting the STM setup, �xed on 100 tons of concrete and air springs.

1.1.2 Noise isolation and instabilities

In order to reach sub-angstrom precision in STM measurements, the setup must be isolated
from low- and high-frequency environmental and instrumental noises. The sub-Kelvin STM
machine is located inside an acoustic box (�oating room) which is set on 100 tons of concrete
block and active air spring suspensions, Fig.(1.1b), providing an exceptional shielding1 from

1 60 dB attenuation
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Scanning tunneling microscopy

the environment. Moreover, all mechanical pumps are placed in a separate room, and the
pumping lines are �xed in the heavy concrete wall to isolate the box from vibrations of the
pumps. Despite these e�orts, the 50 Hz noise and the noise due to liquid helium boiling
are always present in the current channel of the junction. The latter is the major drawback
arising from the large cryostat. Besides, having a tuning fork induces further instability to
the current channel.

1.1.3 STM head

A signi�cant advantage of the STM junction over other designs is the sub-angstrom control
over distances in all directions (x, y, z), promoting it from an imaging technique to a local
probe for transport measurements. The junction is housed inside the STM head, Fig.(1.2a),
constituting a sample and tip, which is stationed above a piezo tube for lateral scanning,
and six piezo stacks for the coarse approach [19]. The tip is mounted on the free prong
of a tuning fork with an extra contact to simultaneously read the current and force signal
[20]. Practically, the very sharp STM tip moves laterally and vertically by applying voltages
to a calibrated xyz−piezo tube and recording the tunneling current signal. The tunneling
current, which is exponentially dependent on the vacuum gap width, requires an ampli�-
cation circuit that converts the current into a voltage signal and subsequently feeds it into
a closed feedback loop and records the z−height, Fig.(1.2c).

Figure 1.2: Scanning probe microscope head. a, Image of the home-built STM/AFM
head of the subK machine in MPI, Stuttgart (image by courtesy of Tobias Herden & Markus
Ternes). b, Pt/Ir STM tip of 25 micron diameter mounted on the free prong of a qPlus
sensor. c, Schematic diagram of STM circuit including the junction, feedback loop, and
data acquisition.
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1.1.4 Operational modes

STM has two standard modes of operation: The constant-current mode and the constant-
height mode. In the constant-current mode, the feedback loop is controlled such that the
tunnelling current is constant over time, whilst the height signal is recorded as the topog-
raphy of the sample. The STM scan control unit actuates the xy−piezos and raster the tip
laterally over the sample at constant bias. The resulting image is topographic map of the
sample surface. It is worth mentioning that the recorded height pro�le does not necessarily
equal to the true topography of the sample. Since the tunneling current is used to control
the z−height, the height signal is in fact a surface of constant conductivity. Alternatively,
in the constant-height mode, the feedback loop is open, and therefore, the scanner moves
the tip only in-plane at constant-height and bias. For this mode to be used it is crucial to
have a �at surface to avoid tip-sample crash.

1.2 Quantum theory of STM

Intuitively, the single-particle properties of a many-body system are encoded in how a par-
ticle propagates in the system. In quantum mechanics, the particle propagation is the pro-
cess of annihilation of the particle in a state (∣ψν⟩) and creation in another one (∣ψµ⟩),
i.e., terms like tνµc†νcµ, where tνµ gives the amplitude of the process. Conceptually, such a
process can be realized as the insertion and ejection of particles into a state. Experimen-
tally, there are two generic methods to probe the single-particle properties; by subjecting
the system to a �ow of either photons or electrons. The former is realized in optical and
photoemission spectroscopy measurements, where an electron is ejected from an occupied
state by absorbing a photon and subsequently re�lling it by another electron, and the latter
in tunneling junctions. The formalism of this section closely follows the approach
developed in reference [21], and occasionally uses reference [22, 23]. Historically, it
is based on Bardeen’s approach where he applied time-dependent perturbation theory to
two weakly coupled electrodes [24]; and here, it is re-derived in second-quantization using
linear response theory.

1.2.1 Tunneling spectroscopy

The simplest tunneling junction consists of two metallic leads and an insulating gap (vac-
uum) in between, wherein close proximity, an electron can tunnel from one lead to the
other. The two conducting leads are described by Hamiltonian H1 and H2,

H1 =∑
ν

ξ1,νc
†
1,νc1,ν , H2 =∑

µ

ξ2,µc
†
2,µc2,µ ,

with (c†1ν , c1ν) and (c†1µ, c1µ) being the creation/annihilation operators of the electrons
in lead 1 and 2 with ν and µ denoting the complete set of their quantum numbers, e.g.,

8
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ν = (k, σ). The dispersion relations of the leads are given as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ξ1,ν = ε1,ν − eV1

ξ2,µ = ε1,µ − eV2

, (1.1)

which are subject to voltages V1 and V2.
The tunneling between the two electrodes across the junction is realized by a �nite overlap
of the wave functions of each system, resulting in the following hybridization Hamiltonian

HT =∑
νµ

(Tνµc
†
1,νc2,µ + T

∗
νµc

†
2,µc1,ν) . (1.2)

Therefore, the full Hamiltonian of the junction reads

H = H1 +H2 +HT .

The tunnelling matrix element is de�ned as

Tνµ = ⟨ψν ∣H ∣ψµ⟩ = ⟨ψν ∣H1 ∣ψµ⟩ = ⟨ψν ∣H (∫ dr ∣r⟩ ⟨r∣) ∣ψµ⟩ = ∫ drψ∗ν(r)H(r)ψµ(r)

where H(r) is the real-space representation of the full single-particle Hamiltonian. Here,
it is assumed that the full Hamiltonian H is diagonal in the real-space.
Now, we de�ne current through the junction as the rate of change of particles,

Ie = −e ⟨I⟩ ,

where I = Ṅ1 = i[H,N1], and hence

I = i[H1 +H2 +HT ,N1] = i[H1,N1] + i[H2,N1] + i[HT ,N1].

The problem reduced to evaluating three commutators

I = i∑
ν,ν′

ξ1,ν [c
†
1,νc1,ν , c

†
1,ν′c1,ν′]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1) =0

+i∑
µ,ν′

ξ2,µ [c
†
2,µc2,µ , c

†
1,ν′c1,ν′]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2) =0

+ i∑
ν,µ
∑
ν′

[(Tνµc
†
1,νc2,µ + T

∗
νµc

†
2,µc1,ν) , c

†
1,ν′c1,ν′]

= i∑
ν,µ
∑
ν′
Tνµ [c

†
1,νc2,µ, c

†
1,ν′c1,ν′]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3)

+i∑
ν,µ
∑
ν′
T ∗
νµ [c

†
2,µc1,ν , c

†
1,ν′c1,ν′]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4)

. (1.3)

where we used the de�nition of the total particle number operator N1 = ∑ν′ c
†
1,ν′c1,ν′ for

lead 1. In Eq.(1.3), the commutators (1) and (2) are nulli�ed using

[c†1,αc1,α , c
†
1,α′c1,α′] = [nα, nα′] = 0,

and for the commutators (3) and (4) we use the following identity between commutators
and anti-commutators

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[AB,CD] = [AB,C]D + C[AB,D]

[AB,C] = A{B, C} − {A, C}B

.

9
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In this way, the two commutators in Eq.(1.3) give

(3) ∶ [c†1,νc2,µ, c
†
1,ν′c1,ν′] = c

†
1,ν′ [c

†
1,νc2,µ, c1,ν′] + [c†1,νc2,µ, c

†
1,ν′] c1,ν′

= c†1,ν′c
†
1,ν{c2,µ, c1,ν′} − c

†
1,ν′{c

†
1,ν , c1,ν′}c2,µ

+ c†1,ν{c2,µ, c
†
1,ν′}c1,ν′ − {c†1,ν , c

†
1,ν′}c2,µc1,ν′

= 0 − δν,ν′c
†
1,ν′c2,µ + 0 − 0

= −δν,ν′c
†
1,ν′c2,µ

and

(4) ∶ [c†2,µc1,ν , c
†
1,ν′c1,ν′] = c

†
1,ν′ [c

†
2,µc1,ν , c1,ν′] + [c†2,µc1,ν , c

†
1,ν′] c1,ν′

= c†1,ν′c
†
2,µ{c1,ν , c1,ν′} − c

†
1,ν′{c

†
2,µ, c1,ν′}c1,ν

+ c†2,µ{c1,ν , c
†
1,ν′}c1,ν′ − {c†2,µ, c

†
1,ν′}c1,νc1,ν′

= 0 − 0 + δν,ν′c
†
2,µc1,ν′ − 0

= δν,ν′c
†
2,µc1,ν′ ,

which then by substituting (3) and (4) into Eq.(1.3), it simpli�es to

I = i∑
ν,µ
∑
ν′
Tνµ (−δν,ν′c

†
1,ν′c2,µ) + i∑

ν,µ
∑
ν′
T ∗
νµ (δν,ν′c

†
2,µc1,ν′)

= −i∑
ν,µ

(Tνµc
†
1,νc2,µ − T

∗
νµc

†
2,µc1,ν)

≡ −i (L −L†) .

Therefore, the current in the tunneling junction reads

I ≡ −i (L −L†) , (1.4)

where we have de�ned

L =∑
ν,µ

Tνµc
†
1,νc2,µ ⇐⇒ L† =∑

ν,µ

T ∗
νµc

†
2,µc1,ν , (1.5)

to be the current operator tunneling from lead 1 to 2 and the operator for the opposite di-
rection. Taking into account that each electrode is a di�erent thermodynamic system, we
can assign a separate chemical potential to each of them. In this way, the tunneling current
between the two systems can be induced only by an imbalance in the chemical potentials
(µ1 ≠ µ2).

Considering that the tunneling matrix element Tνµ is an exponentially decaying function of
the gap between the two leads [24, 25], and the tunneling current operator is linear in Tνµ,
we can calculate the tunneling current ⟨I⟩ to the lowest order in tunneling matrix using
linear response theory [21, 23]. According to the general Kubo formula, the particle current
to �rst order in tunneling Hamiltonian HT is given by

⟨I⟩ (t) = ∫
+∞

−∞
dt′CR

IpHT (t, t
′), (1.6)

10
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with CR
IpHT

(t − t′) being the retarded correlation function de�ned as

CR
IpHT

(t − t′) = −iθ(t − t′) ⟨[Ip(t),HT(t
′)]⟩0 . (1.7)

Here, the 0 subscript in the equilibrium thermal average ⟨⋯⟩0 denotes that the time evo-
lution is governed by the bare Hamiltonian, H0 = H1 + H2. By substituting Eq.(1.2) and
Eq.(1.4) into Eq.(1.7), we obtain

CR
IpHT (t − t

′) = −θ(t − t′) ⟨[L(t) −L†(t) , L(t′) +L†(t′)]⟩
0

= −θ(t − t′) [⟨[L(t) , L(t′)]⟩0 − ⟨[L†(t) , L(t′)]⟩
0
+ c.c.] . (1.8)

The commutators ⟨[L(t) , L(t′)]⟩0 and ⟨[L†(t) , L†(t′)]⟩0 contain quartic operators of the
form

⟨(c†1,νc2,µ) (t) , (c
†
1,νc2,µ) (t

′)⟩
0
, ⟨(c†2,µc1,ν) (t) , (c

†
2,µc1,ν) (t

′)⟩
0

where two electrons are created in one system and two electrons annihilated in the other
at di�erent times; meaning that particle number is not conserved in each system2. Since
the particle number is a strictly conserved quantity, the matrix elements (Tνµ) related to
these terms must vanish. Therefore, Eq.(1.8) simpli�es to

CR
IpHT

(t − t′) = −θ(t − t′) [⟨[L(t) , L†(t′)]⟩
0
− ⟨[L†(t) , L(t′)]⟩

0
] ,

whereby using the following identity: ⟨[L(t) , L†(t′)]⟩0 = − ⟨[L†(t) , L(t′)]⟩
∗
0 , which has a

straightforward proof considering the complex conjugation of inner product, we arrive at

CR
IpHT

(t − t′) = −θ(t − t′) [− ⟨[L†(t) , L(t′)]⟩
∗
0
− ⟨[L†(t) , L(t′)]⟩

0
] .

Now by using the complex numbers identity z + z∗ = 2Re(z), and expand the current
operators in terms of creation/annihilation operators, Eq.(1.5), we obtain

CR
IpHT

(t − t′) = 2Re θ(t − t′) ⟨[L†(t) , L(t′)]⟩
0

= 2Re θ(t − t′)∑
νµ
∑
ν′µ′

T ∗
νµTν′µ′ ⟨[c

†
2,µ(t)c1,ν(t) , c

†
1,ν′(t)c2,µ′(t)]⟩0 . (1.9)

By substituting Eq.(1.9) into Eq.(1.6), the particle current becomes

⟨I⟩ (t) = 2Re ∫
+∞

−∞
dt′θ(t − t′)∑

νµ
∑
ν′µ′

T ∗
νµTν′µ′ ⟨[c

†
2,µ(t)c1,ν(t) , c

†
1,ν′(t)c2,µ′(t)]⟩0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

. (1.10)

To further simplify the current, we have to calculate the thermal average of time-dependent
quartic operators in (∗), for which we use the Wick’s theorem. But in advance, we need to
decompose the quartic operators into quadratic ones.
In general, operators of two decoupled systems, described by HA and HB satisfy

[HA,B] = [HB,A] = 0, (1.11)
2 The total particle number is still conserved.
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and therefore, the thermal average of the product of A and B is decomposable, since

⟨AB⟩0(t, t
′) =

1

ZAB
0

∑
nA,nB

⟨nA, nB ∣ e
−βHA(t)B(t′) ∣nA, nB⟩0

=
1

ZA
0 Z

B
0

∑
nA,nB

⟨nA∣ ⟨nB ∣ e
−β(HA+HB)A(t)B(t′) ∣nA⟩0 ∣nB⟩0

=
1

ZA
0

∑
nA

⟨nA∣ e
−βHAA(t) ∣nA⟩0

1

ZB
0

∑
nB

⟨nB ∣ e
−βHBB(t′) ∣nB⟩0

= ⟨A(t)⟩0 ⟨B(t′)⟩0 , (1.12)

where we expandedA andB using grand canonical density matrix in occupation represen-
tation ∣nA, nB⟩0, and also used Eq.(1.11) to commute the operators.
The four-point correlation function (∗) can be expanded as

⟨[c†2,µ(t)c1,ν(t) , c
†
1,ν′(t

′
)c2,µ′(t

′
)]⟩

0
= ⟨c†2,µ(t)c1,ν(t)c

†
1,ν′(t

′
)c2,µ′(t

′
) − c†1,ν′(t

′
)c2,µ′(t

′
)c†2,µ(t)c1,ν(t)⟩0

= ⟨c†2,µ(t)c1,ν(t)c
†
1,ν′(t

′
)c2,µ′(t

′
)⟩

0

− ⟨c†1,ν′(t
′
)c2,µ′(t

′
)c†2,µ(t)c1,ν(t)⟩0

,

in which by two commutators and using Eq.(1.12), we can pair operators of the same kind
and decompose them as

⟨[c†2,µ(t)c1,ν(t) , c
†
1,ν′(t

′)c2,µ′(t
′)]⟩

0
= (−1)2 ⟨c1,ν(t)c

†
1,ν′(t

′)c†2,µ(t)c2,µ′(t
′)⟩

0

− (−1)2 ⟨c†1,ν′(t
′)c1,ν(t)c2,µ′(t

′)c†2,µ(t)⟩0

= ⟨c1,ν(t)c
†
1,ν′(t

′)⟩
0
⟨c†2,µ(t)c2,µ′(t

′)⟩
0

− ⟨c†1,ν′(t
′)c1,ν(t)⟩0 ⟨c2,µ

′(t′)c†2,µ(t)⟩0 . (1.13)

By plugging Eq.(1.13) in Eq.(1.10) we obtain the the current as

Ip(t) = ⟨I⟩ (t) = 2Re ∫
+∞

−∞
dt′θ(t − t′)∑

ν,µ
∑
ν′,µ′

T ∗
νµTν′µ′ (⟨c1,ν(t)c

†
1,ν′(t

′)⟩
0
⟨c†2,µ(t)c2,µ′(t

′)⟩
0

− ⟨c†1,ν′(t
′)c1,ν(t)⟩0 ⟨c2,µ

′(t′)c†2,µ(t)⟩0) . (1.14)

Let’s now explicitly extract the time dependence of the fermionic operators (c1,ν(t), c2,µ(t))
due voltages V1 and V2, Eq.(1.1), and de�ne a new set of operators (c̃1,ν , c̃2,µ) with respect
to a common chemical potential

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c1,ν(t) = c̃1,ν(t)e−i(−e)V1t = c̃1,ν(t) eieV1t

c2,µ(t) = c̃2,µ(t)e−i(−e)V2t = c̃2,µ(t) eieV2t

, (1.15)

and substitute them into Eq.(1.14)

Ip(t) = 2Re∫
+∞

−∞
dt′θ(t − t′)∑

νµ
∑
ν′µ′

T ∗νµTν′µ′ (⟨c̃1,ν(t)e
ieV1t c̃†1,ν′(t

′
)e−ieV1t

′
⟩
0
⟨c̃†2,µ(t)e

−ieV2t c̃2,µ′(t
′
)eieV2t

′
⟩
0

− ⟨c̃†1,ν′(t
′
)e−ieV1t

′
c̃1,ν(t) e

ieV1t⟩
0
⟨c̃2,µ′(t

′
)eieV2t

′
c̃†2,µ(t) e

−ieV2t⟩
0
) .
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This equation can be simpli�ed to

Ip(t) = 2Re∫
+∞

−∞
dt′θ(t − t′)∑

νµ
∑
ν′µ′

T ∗νµTν′µ′ (⟨c̃1,ν(t)c̃
†
1,ν′(t

′
)⟩

0
eieV1(t−t′) ⟨c̃†2,µ(t)c̃2,µ′(t

′
)⟩

0
e−ieV2(t−t′)

− ⟨c̃†1,ν′(t
′
) c̃1,ν(t)⟩

0
eieV1(t−t′) ⟨c̃2,µ′(t

′
) c̃†2,µ(t) ⟩0

e−ieV2(t−t′))

= 2Re∫
+∞

−∞
dt′θ(t − t′)∑

νµ
∑
ν′µ′

T ∗νµTν′µ′ (⟨c̃1,ν(t) c̃
†
1,ν′(t

′
) ⟩

0
⟨c̃†2,µ(t) c̃2,µ′(t

′
) ⟩

0

− ⟨c̃†1,ν′(t
′
) c̃1,ν(t)⟩

0
⟨c̃2,µ′(t

′
) c̃†2,µ(t) ⟩0

) eie(V1−V2)(t−t′) .

By de�ning the common chemical potential in terms of voltage di�erence in the junction,
i.e., bias voltage µ = Vb = V1 − V2,

Ip(t) = 2Re∫
+∞

−∞
dt′θ(t − t′)∑

νµ
∑
ν′µ′

T ∗
νµTν′µ′ (⟨c̃1,ν(t) c̃

†
1,ν′(t

′) ⟩
0
⟨c̃†2,µ(t) c̃2,µ′(t

′) ⟩
0

− ⟨c̃†1,ν′(t
′) c̃1,ν(t)⟩0 ⟨c̃2,µ

′(t′) c̃†2,µ(t) ⟩0) e
ieVb(t−t′),

and shifting time variable t′ → t′ + t, we arrive at

Ip(t) = 2Re ∫
+∞

−∞
dt′θ(−t′)∑

νµ
∑
ν′µ′

T ∗
νµTν′µ′ (⟨c̃1,ν(t) c̃

†
1,ν′(t

′ + t) ⟩
0
⟨c̃†2,µ(t) c̃2,µ′(t

′ + t) ⟩
0

− ⟨c̃†1,ν′(t
′ + t) c̃1,ν(t)⟩0 ⟨c̃2,µ

′(t′ + t) c̃†2,µ(t) ⟩0) e
ieVb(−t′) .

The Heaviside function modi�es the integration limits, ∫
+∞
−∞ dt′θ(−t′)⟨⋯⟩ = ∫

0

−∞ dt
′⟨⋯⟩, to

Ip(t) = 2Re ∫
0

−∞
dt′∑

νµ
∑
ν′µ′

T ∗
νµTν′µ′ (⟨c̃1,ν(t) c̃

†
1,ν′(t

′ + t) ⟩
0
⟨c̃†2,µ(t) c̃2,µ′(t

′ + t) ⟩
0

− ⟨c̃†1,ν′(t
′ + t) c̃1,ν(t)⟩0 ⟨c̃2,µ

′(t′ + t) c̃†2,µ(t) ⟩0) e
−ieVbt′ .

Without loss of generality, one can set t = 0 (time translation symmetry)

Ip(t = 0) = Ip = 2Re ∫
0

−∞
dt′∑

νµ
∑
ν′µ′

T ∗
νµTν′µ′ (⟨c̃1,ν(0) c̃

†
1,ν′(t

′) ⟩
0
⟨c̃†2,µ(0) c̃2,µ′(t

′) ⟩
0

− ⟨c̃†1,ν′(t
′) c̃1,ν(0)⟩0 ⟨c̃2,µ′(t

′) c̃†2,µ(0) ⟩0) e
−ieVbt′ . (1.16)

We can more elegantly express the two-point correlation functions in Eq.(1.16) in terms of
greater and lesser Green’s functions, in which we have to be cautious about the time order
of the operators

⎧⎪⎪
⎨
⎪⎪⎩

G>1 (ν, ν
′; t′) = −i⟨c̃1,ν(0)c̃

†
1,ν′(t

′)⟩

G<1 (ν, ν
′; t′) = i⟨c̃†1,ν′(t

′)c̃1,ν(0)⟩

0↔t′
ÐÐ→

⎧⎪⎪
⎨
⎪⎪⎩

G>1 (ν, ν
′;−t′) = −i⟨c̃1,ν(t′)c̃

†
1,ν′(0)⟩

G<1 (ν, ν
′;−t′) = i⟨c̃†1,ν′(0)c̃1,ν(t

′)⟩
.

(1.17)

By plugging Eq.(1.17) into Eq.(1.16), we obtain

Ip = 2Re∫
0

−∞
dt′∑

ν,µ
∑
ν′µ′

T ∗νµTν′µ′e
−ieVbt′ [G>1 (ν, ν

′; t′)G<2 (µ,µ
′;−t′) − G<1 (ν, ν

′; t′)G>2 (µ,µ
′;−t′)] .

(1.18)
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The expression under bracket in Eq.(1.18) contains the Green’s functions of the decoupled
systems, which are diagonal since H1 and H2 are non-interacting Hamiltonians,

G
</>
1 (ν, ν′; t′) = δνν′G

</>
1 (ν; t′) , G

</>
2 (µ,µ′; t′) = δµµ′G

</>
2µ (µ; t′). (1.19)

Using Eq.(1.19), the particle current then becomes

Ip = 2Re∫
0

−∞
dt′∑

ν,µ

∣Tνµ∣
2ei(−e)Vbt

′
[G>1 (ν; t′)G<2 (µ;−t′) − G<1 (ν; t′)G>2 (µ;−t′)] . (1.20)

Now by change of variable t′ → −t′:

Ip = 2Re∫
+∞

0
dt′∑

ν,µ

∣Tνµ∣
2eieVbt

′
[G>1 (ν;−t′)G<2 (µ; t′) − G<1 (ν;−t′)G>2 (µ; t′)]

and Fourier transforming the Green’s functions to frequency-space, Eq.(1.25) simpli�es to

Ip = 2Re∫
+∞

0
dt′∑

ν,µ

∣Tνµ∣
2eieVbt

′
[∫

+∞

−∞

dω

2π
G>1 (ν;ω)e−iωt

′
∫

+∞

−∞

dω′

2π
G<2 (µ;ω′)eiω

′t′

−∫

+∞

−∞

dω

2π
G<1 (ν;ω)e−iωt

′
∫

+∞

−∞

dω′

2π
G>2 (µ;ω′)eiω

′t′] .

By recasting all exponentials into and extending the time integration limits, we obtain a
Dirac delta function,

∫

+∞

0
dt′eieVbt

′
e−iωt

′
eiω

′t′ =
1

2 ∫
+∞

−∞
ei(ω

′−ω+eVb)t′ = πδ(ω′ − ω + eVb),

with which we can directly take one the frequency integrals, ∫
+∞
−∞ dω′ δ(ω′ − ω + eVb)[⋯],

to obtain

Ip =Re∫
+∞

−∞

dω

2π
∑
ν,µ

∣Tνµ∣
2 [G>1 (ν;ω)G<2 (µ;ω − eVb) − G

<
1 (ν;ω)G>2 (µ;ω − eVb)] .

We use the �uctuation dissipation theorem

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

iG<1 (ν;ω) = A1(ν;ω)[1 − nF(ω)]

−iG>1 (ν;ω) = A1(ν;ω)nF(ω)

, (1.21)

to rewrite the lesser and greater Green’s functions in terms of spectral functions,

Ip = ∫
+∞

−∞

dω

2π
∑
ν,µ

∣Tνµ∣
2
(−i)2[A1(ν;ω)nF(ω)A2(µ;ω − eVb)[1 − nF(ω − eVb)]

−A1(ν;ω)[1 − nF(ω)]A2(µ;ω − eVb)nF(ω − eVb)]

= ∫

+∞

−∞

dω

2π
∑
ν,µ

∣Tνµ∣
2
A1(ν;ω)A2(µ;ω − eVb)[nF(ω)[1 − nF(ω − eVb)] − [1 − nF(ω)]nF(ω − eV )]

= ∫

+∞

−∞

dω

2π
∑
ν,µ

∣Tνµ∣
2
A1(ν;ω)A2(µ;ω − eVb)[nF(ω) − nF(ω − eVb)].
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Here, we dropped the Re(⋯) operator because the integrand is a real number.
Thus, we �nally derived the particle current as

Ip = ∫
+∞

−∞

dω

2π
∑
ν,µ

∣Tνµ∣
2A1(ν;ω)A2(µ;ω − eVb)[nF(ω) − nF(ω − eVb)] . (1.22)

Let’s now discuss di�erent terms in Eq.(1.22). As we can see, the current depends on the
product of the spectral functions and the di�erence of Fermi-Dirac distributions. Since the
fermionic spectral functions are positive-de�nite, their product, A1(ν;ω)A2(µ;ω − eVb), is
�nite only if both are non-zero, which means there are available density of states at the
Fermi level. Furthermore, the di�erence in the Fermi-Dirac distributions [nF(ω) − nF(ω −

eVb)], is nonvanishing only if bias (Vb) is �nite, i.e., the tunneling is merely between an
occupied and unoccupied state. Thus, in summary, in the tunneling spectroscopy, one mea-
sures the tunneling current by variation of the bias voltage, which controls the Fermi level
and direction of the current across the junction.

1.2.2 Terso�-Hamann approximation

The fact that one has limited knowledge about the STM tip spectral functionA2(µ;ω−eVb)
and the corresponding matrix elements Tνµ makes calculation of the current from Eq.(1.22)
often impossible without further simpli�cation. A simpli�cation scheme was suggested by
Terso� and Hamann and is probably the approach most widely used in the interpretation of
STM images [26]. It is based on the assumption that the STM tip is a simple conductor where
one can assume that the product of the tunneling matrix Tνµ with its spectral function is
roughly constant (s−wave tip),

∑
µ

∣Tνµ∣
2A2(µ;ω − eV ) ≈ constant. (1.23)

Now by Taylor expanding the Fermi-Dirac distributions for small eV up to the second-order

nF(ω − eV ) ≈ nF(ω) + (−eV )
∂n(ω − eV )

∂ω
+O(δω2) (1.24)

and substituting Eq.(1.23) and Eq.(1.24) into Eq.(1.22)

Ip ∝ ∫
+∞

−∞

dω

2π
∑
ν

A1(ν;ω)

⎡
⎢
⎢
⎢
⎢
⎣

nF(ω) − nF(ω) − (−eV )
∂n(ω − eV )

∂ω

⎤
⎥
⎥
⎥
⎥
⎦

,

we obtain the current as

Ip ∝ eV ∫
+∞

−∞

dω

2π
∑
ν

A1(ν;ω)
∂n(ω − eV )

∂ω
. (1.25)

At low temperatures the Fermi-Dirac distribution can be approximated by Heaviside func-
tion

nF(ω − eV ) ≈ θ(ω − eV )

15
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and its �rst derivative by Delta function

∂nF(ω − eV )

∂ω
=
∂θ(ω − eV )

∂ω
= δ(ω − eV ).

It simpli�es Eq.(1.25) to

Ip ∝ eV ∫
+∞

−∞

dω

2π
∑
ν

A1(ν;ω)δ(ω − eV ) . (1.26)

If we take a derivative from current with respect to V ,

dI

dV
∝ ∫

+∞

−∞

dω

2π
∑
ν

A1(ν;ω)δ(ω − eV )

and take the frequency integration, we �nally obtain the di�erential conductance as

dI

dV
∝∑

ν

A1(ν; eV ) . (1.27)

1.2.3 Tunneling Hamiltonian of an interacting electron region

So far, we have studied only the tunneling between two simple metals in close proximity.
We can now extend the formalism to the calculation of conductance of the Anderson-type
models for tunneling junctions, which allows us to have a sample system inside the junc-
tion. The Hamiltonian is given by

H = HL +HR +Hd +HT

whereHL andHR are the Hamiltonian for the left and right lead, Hd is a generic Hamilto-
nian describing the sample in between the leads (tip and substrate), andHT is the tunneling
Hamiltonian for the two junctions: tip-sample and sample-substrate. The electronic states
are created in the decoupled sample by d†k,σ, in the left lead by c†νL,σ, and in the right lead
by c†νR,σ. The tunneling HamiltonianHT coupling these three subsystems (tip, sample, and
substrate) is given by

HT = HTL +HTR

where HTL is
HTL = ∑

νL,k,σ

(tL c
†
νL,σ

dk,σ + t
∗
L d

†
k,σcνL,σ) (1.28)

and HTR is
HTR = ∑

νR,k,σ

(tR c
†
νR,σ

dk,σ + t
∗
R d

†
k,σcνR,σ) . (1.29)

As we assumed in the last section, we describe electrons in the left and right leads by non-
interacting Hamiltonians

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

HL = ∑νL
ξνL
c†νL,σcνL,σ

HR = ∑νR
ξνR

c†νR,σcνR,σ

. (1.30)

16
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The Hamiltonian of the tip and substrate in Eq.(1.30) can be elegantly combined by per-
forming a unitary transformation, i.e., rotation of basis, in the space of L- and R-electron
operators. The convenience of this change of basis becomes clear as we go further in the
derivations. Hence, we de�ne the even (e) and odd (o) operators as a linear combination of
the left and right operators

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cνe,σ =
1√

∣tL∣2+∣tR∣2
(t∗LcνL,σ + t

∗
RcνR,σ)

cνo,σ =
1√

∣tL∣2+∣tR∣2
(−tRcνL,σ + tLcνR,σ)

, (1.31)

or arranged in spinor representation as

Ψνe,νo,σ = (
cνe,σ
cνo,σ

) =
1

√
∣tL∣2 + ∣tR∣2

(
t∗L t∗R
−tR tL

)(
cνL,σ

cνR,σ
) . (1.32)

The inverse transformation of Eq.(1.32) follows

ΨνL,νR,σ = (
cνL,σ

cνR,σ
) =

√
∣tL∣2 + ∣tR∣2 (

t∗L t∗R
−tR tL

)

−1

(
cνe,σ
cνo,σ

) =

√
∣tL∣2 + ∣tR∣2

∣tL∣2 + ∣tR∣2
(
tL −t∗R
tR t∗L

)(
cνe,σ
cνo,σ

) .

This gives the left-right annihilation spinor in terms of even and odd operators as

ΨνL,νR,σ = (
cνL,σ

cνR,σ
) =

1
√

∣tL∣2 + ∣tR∣2
(
tL −t∗R
tR t∗L

)(
cνe,σ
cνo,σ

) . (1.33)

and by complex transpose we obtain the creation spinor as

Ψ†
νL,νR,σ

= (c†νL,σ c†νR,σ) =
1

√
∣tL∣2 + ∣tR∣2

(c†νe,σ c†νo,σ)(
t∗L t∗R
−tR tL

) . (1.34)

It is straightforward to check ∣Ψνe,νo,σ ∣
2 = ∣ΨνL,νR,σ ∣

2

Ψ†
νe,νo,σΨνe,νo,σ =

1

∣tL∣2 + ∣tR∣2
(c†νL,σ c†νR,σ)(

tL −t∗R
tR t∗L

)(
t∗L t∗R
−tR tL

)(
cνL,σ
cνR,σ

) ,

which gives

Ψ†
νe,νo,σΨνe,νo,σ =

1

∣tL∣2 + ∣tR∣2
(c†νL,σ c†νR,σ)(

∣tL∣2 + ∣tR∣2 0
0 ∣tL∣2 + ∣tR∣2

)(
cνL,σ
cνR,σ

)

= (cνL,σ cνR,σ)(
1 0
0 1

)(
cνL,σ
cνR,σ

) = (cνL,σ cνR,σ)(
cνL,σ
cνR,σ

) = ∣ΨνL,νR,σ ∣
2

Thus, as expected, under such unitary transformation Eq.(1.31), norm of the states are pre-
served. Using this transformation, we rewrite the left and right Hamiltonian in terms of
even and odd operators. First, we combine Eq.(1.30)

HLR = ∑
νL,νR,σ

(c†νL,σ c†νR,σ)(
ξνL

0
0 ξνR

)(
cνL,σ

cνR,σ
)

17
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and then substitute Eq.(1.33) and Eq.(1.34) into Eq.(1.2.3) to obtain

HLR = ∑
νe,νo,σ

(c†νe,σ c†νo,σ)
1

√
∣tL∣2 + ∣tR∣2

(
t∗L t∗R
−tR tL

)(
ξνe 0
0 ξνo

)

×
1

√
∣tL∣2 + ∣tR∣2

(
tL −t∗R
tR t∗L

)(
cνe,σ
cνo,σ

) .

By taking the matrix product from the left side

HLR = ∑
νe,νo,σ

1

∣tL∣2 + ∣tR∣2
(c†νe,σ c†νo,σ)(

ξνet
∗
L ξνot

∗
R

−ξνetR ξνotL
)(

tL −t∗R
tR t∗L

)(
cνe,σ
cνo,σ

) ,

and rearranging the terms, we obtain

HLR = ∑
νe,νo,σ

1

∣tL∣2 + ∣tR∣2
(c†νe,σ c†νo,σ)(

ξνe ∣tL∣
2 + ξνo ∣tR∣

2 −ξνet
∗
Lt
∗
R + ξνot

∗
Lt
∗
R

−ξνetRtL + ξνotLtR ξνe ∣tR∣
2 + ξνo ∣tL∣

2 )(
cνe,σ
cνo,σ

) .

(1.35)
Now we make a simplifying assumption and let the two leads to have an identical dispersion
relation (ξνe = ξνo = ξν), we arrive at

HLR = ∑
ν=(νe,νo)

∑
σ

(c†νe,σ c†νo,σ)(
ξν 0
0 ξν

)(
cνe,σ
cνo,σ

) . (1.36)

In this way, we can rewrite the tunneling Hamiltonian between the left lead and the sample,
Eq.(1.28), in terms of even and odd operators using Eq.(1.31)
HTL = ∑

νL,k,σ

(tLc
†
νL,σ

dk,σ + t
∗
Ld

†
k,σcνL,σ)

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

(tL (t∗Lc
†
νe,σ − tRc

†
νo,σ)dk,σ + t

∗
Ld

†
k,σ (tLcνe,σ − t

∗
Rcνo,σ))

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,k,σ

∣tL∣
2
(c†νe,σdk,σ + d

†
k,σcνe,σ) −

1
√

∣tL∣2 + ∣tR∣2
∑

νo,k,σ

(tLtRc
†
νo,σdk,σ + t

∗
Lt
∗
Rd

†
k,σcνo,σ)

and similarly, for the tunneling Hamiltonian between the right lead and the sample, Eq.(1.29),
we have
HTR = ∑

νR,k,σ

(tR c
†
νR,σ

dk,σ + t
∗
R d

†
k,σcνR,σ)

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

(tR (t∗Rc
†
νe,σ + tLc

†
νo,σ)dk,σ + t

∗
Rd

†
k,σ (tRcνe,σ + t

∗
Lcνo,σ))

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,k,σ

∣tR∣
2
(c†νe,σdk,σ + d

†
k,σcνe,σ) +

1
√

∣tL∣2 + ∣tR∣2
∑

νo,k,σ

(tLtRc
†
νo,σdk,σ + t

∗
Rt

∗
Ld

†
k,σcνo,σ) .

Now by recollecting the two terms, we obtain the total tunneling Hamiltonian as
HT =HTR +HTL

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,k,σ

∣tL∣
2
(c†νe,σdk,σ + d

†
k,σcνe,σ) +

1
√

∣tL∣2 + ∣tR∣2
∑

νe,k,σ

∣tR∣
2
(c†νe,σdk,σ + d

†
k,σcνe,σ)

=
1

√
∣tL∣2 + ∣tR∣2

∑
νe,k,σ

(∣tL∣
2
+ ∣tR∣

2
) (c†νe,σdk,σ + d

†
k,σcνe,σ)

= ∑
νe,k,σ

√
∣tL∣2 + ∣tR∣2 ( c

†
νe,σdk,σ + d

†
k,σcνe,σ) .
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Therefore, the tunneling Hamiltonian can be written merely in terms of the even sector of
the lead’s electrons,

HT = ∑
νe,k,σ

√
∣tL∣2 + ∣tR∣2 ( c

†
νe,σdk,σ + d

†
k,σcνe,σ) . (1.37)

This is a huge simpli�cation since we absorbed two of the particle operators (c†νL,σ , c
†
νR,σ)

into one (c†νe,σ).

1.2.4 Conductance of an interacting tunnel junction

We have shown before the conductance of tunnel junction can be directly computed by the
retarded current-current correlation function CR

II(ω), which needs the current operator of
each lead. For this, we �rst de�ne the particle-current operator for the left and right leads

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

IL = ṄL

IR = ṄR

,

where they obey Eq.(1.4) as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

IL = i∑νL,k,σ
(tL c

†
νL,σdk,σ − t

∗
L d

†
k,σcνL,σ)

IR = i∑νR,k,σ
(tR c

†
νR,σdk,σ − t

∗
R d

†
k,σcνR,σ)

. (1.38)

Now by substituting left and right creation/annihilation operators with even and odd elec-
tron operators

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

c†νL =
1√

∣tL∣2+∣tR∣2
(t∗Lc

†
νe,σ − tR c

†
νo,σ)

c†νR = 1√
∣tL∣2+∣tR∣2

(t∗R c
†
νe,σ + tL c

†
νo,σ)

,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cνL
= 1√

∣tL∣2+∣tR∣2
(tLcνe,σ − t

∗
R cνo,σ)

cνR
= 1√

∣tL∣2+∣tR∣2
(tR cνe,σ + t

∗
L cνo,σ)

into the particle-current operator Eq.(1.38), we obtain IL as

IL = i ∑
νe,νo,k,σ

⎛

⎝

tL
√

∣tL∣2 + ∣tR∣2
(t∗Lc

†
νe,σ − tR c

†
νo,σ)dk,σ − d

†
k,σ

t∗L√
∣tL∣2 + ∣tR∣2

(tLcνe,σ − t
∗
R cνo,σ)

⎞

⎠

=
i

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

( (∣tL∣
2c†νe,σ − tLtR c

†
νo,σ)dk,σ − d

†
k,σ (∣tL∣

2cνe,σ − t
∗
Lt
∗
R cνo,σ))

=
i

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

(∣tL∣
2 (c†νe,σdk,σ − d

†
k,σcνe,σ) − (tLtR c

†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ))
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and similarly, IR as

IR = i ∑
νe,νo,k,σ

⎛

⎝

tR
√

∣tL∣2 + ∣tR∣2
(t∗Rc

†
νe,σ + tL c

†
νo,σ)dk,σ − d

†
k,σ

t∗R√
∣tL∣2 + ∣tR∣2

(tRcνe,σ + t
∗
L cνo,σ)

⎞

⎠

=
i

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

( (∣tR∣
2c†νe,σ + tLtR c

†
νo,σ)dk,σ − d

†
k,σ (∣tR∣

2cνe,σ + t
∗
Rt

∗
L cνo,σ))

=
i

√
∣tL∣2 + ∣tR∣2

∑
νe,νo,k,σ

(∣tR∣
2 (c†νe,σdk,σ − d

†
k,σcνe,σ) + (tLtR c

†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ)) .

Thus, we arrive at
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

IL =
i√

∣tL∣2+∣tR∣2
∑νe,νo,k,σ (∣tL∣

2 (c†νe,σdk,σ − d
†
k,σcνe,σ) − (tLtR c

†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ))

IR = i√
∣tL∣2+∣tR∣2

∑νe,νo,k,σ (∣tR∣
2 (c†νe,σdk,σ − d

†
k,σcνe,σ) + (tLtR c

†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ))

.

(1.39)
In the case of time-independent tunneling current (DC), we can calculate the expectation
value of the current operator in each lead separately using Eq.(1.39), or alternatively, we
can use the linear combination of the two, i.e.,

I ≡ αIL − (1 − α)IR , (1.40)

where α is de�ned as,

α =
∣tR∣2

∣tL∣2 + ∣tR∣2
→ 1 − α =

∣tL∣2

∣tL∣2 + ∣tR∣2
. (1.41)

With this de�nition of α, the particle-current operator becomes merely a function of odd
electrons. This can be simply shown by plugging Eq.(1.41) and Eq.(1.39) into Eq.(1.40)

I =
1

∣tL∣2 + ∣tR∣2

i
√

∣tL∣2 + ∣tR∣2
∑

νe,νo,k,σ

(∣tR∣
2
∣tL∣

2
(c†νe,σdk,σ − d

†
k,σcνe,σ) − ∣tR∣

2
(tLtR c

†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ))

−
1

∣tL∣2 + ∣tR∣2

i
√

∣tL∣2 + ∣tR∣2
∑

νe,νo,k,σ

(∣tL∣
2
∣tR∣

2
(c†νe,σdk,σ − d

†
k,σcνe,σ) + ∣tL∣

2
(tLtR c

†
νo,σdk,σ − t

∗
Lt

∗
R d

†
k,σcνo,σ))

= −
1

∣tL∣2 + ∣tR∣2

i
√

∣tL∣2 + ∣tR∣2
∑

νo,k,σ

(∣tL∣
2
+ ∣tR∣

2) (tLtR c
†
νo,σdk,σ − t

∗
Lt
∗
R d

†
k,σcνo,σ) ,

resulting in

I =
−i

√
∣tL∣2 + ∣tR∣2

∑
νo,k,σ

(tLtR c
†
νo,σdk,σ − t

∗
Rt

∗
L d

†
k,σcνo,σ) .

With this result, the computation of the current-current correlation function immensely
simpli�es since the odd electron operator cνo and the sample operator dk,σ belong to sep-
arate sector of the Hamiltonian, and therefore, commutable. We derive it by starting from
the de�nition of the particle-current operator

I = −i(L −L†) ,

with L and L† operator being de�ned as

L =
tLtR

√
∣tL∣2 + ∣tR∣2

∑
νo,k,σ

c†νo,σdk,σ ↔ L† =
t∗Rt

∗
L√

∣tL∣2 + ∣tR∣2
∑
νo,k,σ

d†k,σcνo,σ. (1.42)
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By substituting Eq.(1.42) into current-current correlation function

CR
II(t) = −iθ(t) ⟨[I(t), I(0)]⟩ = −iθ(t) ⟨[L(t) −L

†(t) , L(0) −L†(0)]⟩ . (1.43)

and ignoring ⟨[L(t), L(0)]⟩ = ⟨[L†(t), L†(0)]⟩ = 0 terms, as they do not conserve the
number of particles, we arrive at

CR
II(t) = −iθ(t)( ⟨[L(t), L†(0)]⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1)

+ ⟨[L†(t), L(0)]⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

). (1.44)

The expectation value (1) in Eq.(1.44) simpli�es to

⟨[L(t), L†
(0)]⟩ = ∑

νo,ν′o

∑
k,k′
∑
σ,σ′

⟨[c†νo,σ(t)dk,σ(t), d
†
k′,σ′cν′o,σ′]⟩

= ∑
νo,ν′o

∑
k,k′
∑
σ,σ′

∣tL∣
2∣tR∣2

√
∣tL∣2 + ∣tR∣2

[⟨c†νo,σ(t)dk,σ(t)d
†
k′,σ′cν′o,σ′⟩ − ⟨d†k′,σ′cν′o,σ′c

†
νo,σ(t)dk,σ(t)⟩]

= ∑
νo,ν′o

∑
k,k′
∑
σ,σ′

∣tL∣
2∣tR∣2

√
∣tL∣2 + ∣tR∣2

[(−1)2 ⟨c†νo,σ(t)cν′o,σ′⟩ ⟨dk,σ(t)d
†
k′,σ′⟩

−(−1)2 ⟨d†k′,σ′dk,σ(t)⟩ ⟨cν′o,σ′c
†
νo,σ(t)⟩]

where we commuted the c and d operators twice in the last step to bring us to

⟨[L(t), L†
(0)]⟩ = ∑

νo,ν′o

∑
k,k′
∑
σ,σ′

∣tL∣
2∣tR∣2

√
∣tL∣2 + ∣tR∣2

[⟨c†νo,σ(t)cν′o,σ′⟩ ⟨dk,σ(t)d
†
k′,σ′⟩ − ⟨cν′o,σ′c

†
νo,σ(t)⟩ ⟨d

†
k′,σ′dk,σ(t)⟩] .

(1.45)
Now by recalling the de�nition of greater Green’s function G>(ν, t;ν′, t′) = −i ⟨cν(t)c†ν′(t′)⟩
and setting t′ = 0, we �nd the odd- and d-electron Green’s functions as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

G>(νoσ, t;ν
′
oσ

′,0) = −i ⟨cνo,σ(t)c
†
ν′o,σ

′(0)⟩

G>(dkσ, t;k′σ′,0) = −i ⟨dk,σ(t)d
†
k′,σ′(0)⟩

(t→−t)
ÐÐÐÐ→

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

G>(νoσ,−t;ν
′
o, σ

′,0) = −i ⟨cνo,σ(0)c
†
ν′o,σ

′(t)⟩

G>(dkσ,−t;k′σ′,0) = −i ⟨dk,σ(0)d
†
k′,σ′(t)⟩

(1.46)
and also for the lesser Green’s function G<(ν, t;ν′, t′) = i ⟨c†ν′(t′)cν(t)⟩, we have

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

G<(νoσ, t;ν
′
oσ

′,0) = i ⟨c†ν′o,σ′
(0)cνo,σ(t)⟩

G<(dkσ, t;k′σ′,0) = i ⟨d†k′,σ′(0)dk,σ(t)⟩

(t→−t)
ÐÐÐÐ→

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

G<(νoσ,−t;ν
′
oσ

′,0) = i ⟨c†ν′o,σ′
(t)cνo,σ(0)⟩

G<(dkσ,−t;k′σ′,0) = i ⟨d†k′,σ′(t)dk,σ(0)⟩

.

(1.47)
By substituting the thermal averages in Eq.(1.45) with greater and lesser Green’s function
from Eq.(1.47) and Eq.(1.47), we obtain

⟨[L(t), L†(0)]⟩ = ∑
νo,ν′o
∑
k,k′
∑
σ,σ′

∣tL∣2∣tR∣2
√

∣tL∣2 + ∣tR∣2
[G<(ν′oσ

′,−t;νoσ,0)G
>(dkσ, t;k′σ′,0)

−G>(ν′oσ
′,−t;νoσ,0)G

<(dkσ, t;k′σ′,0)] . (1.48)

Considering the symmetries of the Hamiltonian for the left and right lead, and also the tun-
neling Hamiltonian will allow us to simplify the Green’s functions in Eq.(1.48). Since the
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Hamiltonian of the left and right lead is diagonal in terms of even and odd electron opera-
tors, Eq.(1.36), and the tunneling Hamiltonian, Eq.(1.37), is in terms of only even electrons;
the Green’s function of odd electrons must be diagonal

G</>(ν′oσ
′,−t;νoσ,0) = δσ,σ′δν,ν′oG

</>(νoσ,−t).

and by considering translational invariance in the sample, the Green’s function of the d-
electrons become diagonal

G</>(dkσ, t;k′σ′,0) = δσ,σ′δk,k′G
</>(dkσ, t).

Here, we have also assumed that the tunneling (HT) and sample’s Hamiltonian (Hd) are
diagonal in spin space. With these simpli�cations, Eq.(1.48) reduces to

⟨[L(t), L†(0)]⟩ = ∑
νo,k,σ

∣tL∣2∣tR∣2
√

∣tL∣2 + ∣tR∣2
[G<(νoσ,−t)G

>(dkσ, t) − G>(νoσ,−t; )G
<(dkσ, t)] .

(1.49)
The commutator (2) in Eq.(1.44) exactly follows from Eq.(1.49) by a change of sign (−1) in
the commutator by exchanging terms

[L(t), L†(0)] = −[L†(0), L(t)],

and reversal of time (t→ −t)

−[L†(0), L(t)]
(t→−t)
ÐÐÐ→ −[L†(t), L(0)].

Therefore, under these operations the commutator (2) in Eq.(1.44) can be easily computed
based on the expression we found for the commutator (1), Eq.(1.45), as

⟨[L†(t), L(0)]⟩ = − ∑
νo,k,σ

∣tL∣2∣tR∣2
√

∣tL∣2 + ∣tR∣2
[G<(νoσ, t)G

>(dkσ,−t) − G>(νoσ, t; )G
<(dkσ,−t)] .

(1.50)

Thus, we obtain the retarded current-current correlation function in time domain by sub-
stituting Eq.(1.49) and Eq.(1.50) into Eq.(1.44) as

CR
II(t) = −iθ(t)(

∣tL∣2∣tR∣2
√

∣tL∣2 + ∣tR∣2
[G<(νoσ,−t)G

>(dkσ, t) − G>(νoσ,−t; )G
<(dkσ, t)

− G<(νoσ, t)G
>(dkσ,−t) + G>(νoσ, t; )G

<(dkσ,−t)]) . (1.51)

Now we want to calculate the imaginary part of Eq(1.51). In order to do that, we notice the
following properties of complex number

⎧⎪⎪
⎨
⎪⎪⎩

real number: z∗ = z

pure imaginary number: z∗ = −z
.
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Applying this identity to the greater and lesser Green’s functions leads to
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(G>(ν, t))
∗
= (−i ⟨cν(t)c

†
ν⟩)

∗
= i ⟨cνc

†
ν(t)⟩ = −G>(ν,−t)

(G<(ν, t))
∗
= (i ⟨c†νcν(t)⟩)

∗
= −i ⟨c†ν(t)cν⟩ = −G<(ν,−t)

,

which means that they are pure imaginary. The multiplication of two purely imaginary
functions is real, and therefore, the expression under the square bracket in Eq.(1.51) is real.
Thus, if we take the imaginary part of Eq.(1.51) ,

ImCR
II(t) = −θ(t)(

∣tL∣2∣tR∣2
√

∣tL∣2 + ∣tR∣2
[G<(νo, σ,−t)G

>(dk, σ, t) − G>(νo, σ,−t; )G
<(dk, σ, t)

− G<(νo, σ, t)G
>(dk, σ,−t) + G>(νo, σ, t; )G

<(dk, σ,−t)]) , (1.52)

only the (i) prefactor drops out.

In order to calculate the conductance, we need to Fourier transform Eq.(1.52) to frequency
domain

ImCR
II(ω) = ∫

+∞

−∞
dt eiωt ImCR

II(t)

= −∫

+∞

−∞
dt eiωtθ(t)( ∑

νo,k,σ

∣tL∣
2∣tR∣

2

√
∣tL∣2 + ∣tR∣2

[G
<
(νoσ,−t)G

>
(dkσ, t) − G>(νoσ,−t; )G

<
(dkσ, t)

− G
<
(νoσ, t)G

>
(dkσ,−t) + G>(νoσ, t)G

<
(dkσ,−t)])

= −∫

+∞

0
dt eiωt ∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[G

<
(νoσ,−t)G

>
(dkσ, t) − G>(νoσ,−t)G

<
(dkσ, t)

− G
<
(νoσ, t)G

>
(dkσ,−t) + G>(νoσ, t)G

<
(dkσ,−t)] , (1.53)

where we used the fact that ∫
+∞
−∞ dt θ(t)[⋯] = ∫

+∞
0 dt[⋯]. We can see that the expression

within the square bracket in Eq.(1.53) is an odd function of time

[(G
<
(νoσ,−t)G

>
(dkσ, t) − G>(νoσ,−t)G

<
(dkσ, t)) − (G

<
(νoσ, t)G

>
(dkσ,−t) − G>(νoσ, t)G

<
(dkσ,−t))]

t→−t
ÐÐ→

→ [(G
<
(νoσ, t)G

>
(dkσ,−t) − G>(νoσ, t)G

<
(dkσ,−t)) − (G

<
(νoσ,−t)G

>
(dkσ, t) − G>(νoσ,−t)G

<
(dkσ, t))]

= − [(G
<
(νoσ,−t)G

>
(dkσ, t) − G>(νoσ,−t)G

<
(dkσ, t)) − (G

<
(νoσ, t)G

>
(dkσ,−t) − G>(νoσ, t)G

<
(dkσ,−t))] .

This means that we can absorb the (−1) prefactor in Eq.(1.53) by switching the time ar-
gument of the expression under the square bracket. Furthermore, by using the following
property of Fourier transform of odd functions

∫

+∞

0
dt eiωtO(t) =

1

2 ∫
+∞

−∞
dt eiωtO(t) ,

we can rewrite Eq.(1.53) as

ImCR
II(ω) =

1

2
∫

+∞

−∞
dt eiωt ∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[G

<
(νoσ, t)G

>
(dkσ,−t) − G>(νoσ, t)G

<
(dkσ,−t)

−G
<
(νoσ,−t)G

>
(dkσ, t) + G>(νoσ,−t)G

<
(dkσ, t)] . (1.54)
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The expression under the square bracket in Eq.(1.54) is comprised of pair products of
greater and lesser Green’s functions which can be signi�cantly simpli�ed using the fol-
lowing property of the Fourier transformation for product functions

∫ dteiωtf(t)g(−t) = ∫ dteiωt∫
dω′

2π
e−iω

′tf(ω′)∫
dω′′

2π
e−iω

′′(−t)g(ω′′)

= ∫
dω′

2π
f(ω′)∫

dω′′

2π
g(ω′′)∫ dtei(ω

′′+ω−ω′)t

= ∫
dω′

2π
f(ω′)∫

dω′′

2π
g(ω′′)2πδ(ω′′ + ω − ω′)

= ∫
dω′

2π
f(ω′)g(ω′ − ω)

and with a change of variable (ω′ → ω′ + ω), it gives

∫ dteiωtf(t)g(−t) = ∫
dω′

2π
f(ω′ + ω)g(ω′) . (1.55)

Hence, by using Eq.(1.55) for the product of Green’s functions in Eq.(1.54) we obtain

ImCR
II(ω) =

1

2
∫

+∞

−∞

dω′

2π
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[G

<
(νoσ,ω

′
+ ω)G>(dkσ,ω′) − G>(νoσ,ω

′
+ ω)G<(dkσ,ω′)

−G
<
(νoσ,ω

′
)G

>
(dkσ,ω′ + ω) + G>(νoσ,ω

′
)G

<
(dkσ,ω′ + ω)] .

By a shift of variable for the third and fourth product in the square bracket (ω′ → ω′ − ω),

ImCR
II(ω) =

1

2
∫

+∞

−∞

dω′

2π
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[G

<
(νoσ,ω

′
+ ω)G>(dkσ,ω′) − G>(νoσ,ω

′
+ ω)G<(dkσ,ω′)

−G
<
(νoσ,ω

′
− ω)G>(dkσ,ω′) + G>(νoσ,ω

′
− ω)G<(dkσ,ω′)] ,

we can factorize d-electron Green’s function as

ImCR
II(ω) =

1

2 ∫
+∞

−∞

dω′

2π
∑
νo,k,σ

∣tL∣2∣tR∣2

∣tL∣2 + ∣tR∣2
[G>(dkσ,ω′){G<(νoσ,ω

′ + ω) − G<(νoσ,ω
′ − ω)}

−G<(dkσ,ω′){G>(νoσ,ω
′ + ω) − G>(νoσ,ω

′ − ω)}] .

Now by rewriting the greater and lesser Green’s functions in terms of spectral function and
Fermi-Dirac distribution,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

iG<(ν;ω) = A(ν,ω)[1 − nF(ω)]

−iG>(ν;ω) = A(ν,ω)nF(ω)

,

we obtain

ImCR
II(ω) =

1

2
∫

+∞

−∞

dω′

2π
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ,ω′)nF(ω

′
){A(νoσ,ω

′
+ ω)[1 − nF(ω

′
+ ω)]

−A(νoσ,ω
′
− ω)[1 − nF(ω

′
− ω)]} −A(dkσ,ω′)[1 − nF(ω

′
)]{A(νoσ,ω

′
+ ω)nF(ω

′
+ ω)

−A(νoσ,ω
′
− ω)nF(ω

′
− ω)}] .
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The expression under square bracket can be simpli�ed by rearranging terms as

[⋯] = A(dkσ,ω′)nF(ω
′
){A(νoσ,ω

′
+ ω)[1 − nF(ω

′
+ ω)] −A(νoσ,ω

′
− ω)[1 − nF(ω

′
− ω)]}

−A(dkσ,ω′)[1 − nF(ω
′
)]{A(νoσ,ω

′
+ ω)nF(ω

′
+ ω) −A(νoσ,ω

′
− ω)nF(ω

′
− ω)}

= A(dkσ,ω′){A(νoσ,ω
′
+ ω)nF(ω

′
)[1 − nF(ω

′
+ ω)] −A(νoσ,ω

′
− ω)nF(ω

′
)[1 − nF(ω

′
− ω)]

−A(νoσ,ω
′
+ ω)nF(ω

′
+ ω)[1 − nF(ω

′
)] +A(νoσ,ω

′
− ω)nF(ω

′
− ω)[1 − nF(ω

′
)]}

= A(dkσ,ω′){A(νoσ,ω
′
+ ω)[nF(ω

′
) − nF(ω

′
+ ω)] −A(νoσ,ω

′
− ω)[nF(ω

′
) − nF(ω

′
− ω)]}

= A(dkσ,ω′)A(νoσ,ω
′
+ ω)[nF(ω

′
) − nF(ω

′
+ ω)] −A(νoσ,ω

′
− ω)nF(ω

′
)[nF(ω

′
) − nF(ω

′
− ω)] .

Therefore, we arrive at

ImCR
II(ω) =

1

2 ∫
+∞

−∞

dω′

2π
∑
νo,k,σ

∣tL∣2∣tR∣2

∣tL∣2 + ∣tR∣2
[A(dkσ,ω′)A(νoσ,ω

′ + ω){nF(ω
′) − nF(ω

′ + ω)}

−A(dkσ,ω′)A(νoσ,ω
′ − ω){nF(ω

′) − nF(ω
′ − ω)}] .

(1.56)

Since we should insert ImCR
II(ω) into the Kubo formula for the conductance

G = lim
ω→0
Re(

ie2

ω
CR
II(ω)) (1.57)

and take the limit ω → 0, we are allowed to Taylor expand the Fermi-Dirac distributions in
Eq.(1.56) to the �rst order in ω as they are exponentially decaying functions of frequency,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

nF(ω′ + ω) ≈ nF(ω′) + ω
∂nF(ω′)
∂ω′ +O(ω2)

nF(ω′ − ω) ≈ nF(ω′) − ω
∂nF(ω′)
∂ω′ +O(ω2)

.

It gives

ImCR
II(ω) =

1

2
∫

+∞

−∞

dω′

2π
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ,ω′)A(νoσ,ω

′
+ ω){nF(ω

′
) − nF(ω

′
) − ω

∂nF(ω
′)

∂ω′
}

−A(dkσ,ω′)A(νoσ,ω
′
− ω){nF(ω

′
) − nF(ω

′
) + ω

∂nF(ω
′)

∂ω′
}] ,

which simpli�es to

ImCR
II(ω) = −

1

2 ∫
+∞

−∞

dω′

2π
∑
νo,k,σ

∣tL∣2∣tR∣2

∣tL∣2 + ∣tR∣2
[A(dkσ,ω′)A(νoσ,ω

′ + ω)ω
∂nF(ω′)

∂ω′

+A(dkσ,ω′)A(νoσ,ω
′ − ω)ω

∂nF(ω′)

∂ω′
] .

(1.58)
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Furthermore, we use the fact that decoupled lead electrons are described by a non-interacting
Hamiltonian, which have Dirac delta spectral functions,

A(νoσ,ω) = 2πδ(ω − ξνo) .

This allows us to simply take the frequency integration in Eq.(1.58) as

ImCR
II(ω) = −

ω

2
∫

+∞

−∞

dω′

2π
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ,ω′)2πδ(ω′ + ω − ξνo)

∂nF(ω
′)

∂ω′

+A(dkσ,ω′)2πδ(ω′ − ω − ξνo)
∂nF(ω

′)

∂ω′
]

= −
ω

2
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ,−ω + ξνo)

∂nF(−ω + ξνo)

∂ξνo
+A(dkσ,ω + ξνo)

∂nF(ω + ξνo)

∂ξνo
] .

(1.59)

The conductance of the junction can be found by recalling the Kubo formula for conduc-
tance [21], and decomposing CR

II(ω) into its real and imaginary part

G = lim
ω→0
Re(

ie2

ω
CR
II(ω)) = lim

ω→0
Re(

ie2

ω
[ReCR

II(ω) + iImC
R
II(ω)]) . (1.60)

As proved above, CR
II(ω) is a pure imaginary function of frequency (ReCR

II(ω) = 0), and
therefore, the conductance has the following limit

G = − lim
ω→0

e2

ω
ImCR

II(ω). (1.61)

Now by substituting Eq.(1.59) into Eq.(1.61), we arrive at

G = − lim
ω→0

e2

ω

⎧⎪⎪
⎨
⎪⎪⎩

−
ω

2
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ,−ω + ξνo)

∂nF(−ω + ξνo)

∂ξνo
+A(dkσ,ω + ξνo)

∂nF(ω + ξνo)

∂ξνo
]

⎫⎪⎪
⎬
⎪⎪⎭

=
e2

2
∑

νo,k,σ

∣tL∣
2∣tR∣

2

∣tL∣2 + ∣tR∣2
[A(dkσ, ξνo)

∂nF(ξνo)

∂ξνo
+A(dkσ, ξνo)

∂nF(ξνo)

∂ξνo
] .

Thus, we �nally obtain the conductance formula as

G = e2 ∑
νo,k,σ

∣tL∣2∣tR∣2

∣tL∣2 + ∣tR∣2
A(dk, σ, ξνo)(−

∂nF(ξνo)

∂ξνo
) .

Now by converting the discrete sum over lead states to an integral, ∑νo → ∫ dξρ(ξ), we
�nd

G = e2∑
k,σ
∫ dξ ρ(ξ)

∣tL∣2∣tR∣2

∣tL∣2 + ∣tR∣2
A(dk, σ, ξ) (−

∂nF(ξ)

∂ξ
)

× ρ(ξ)
ρ(ξ)
ÐÐÐ→

→ = e2∑
k,σ
∫ dξ

ρ(ξ) ∣tL∣2∣ρ(ξ) tR∣2

ρ(ξ) ∣tL∣2 + ρ(ξ) ∣tR∣2
A(dk, σ, ξ) (−

∂nF(ξ)

∂ξ
) . (1.62)

One can de�ne the tunneling (hybridization) strength for the left and right leads as

ΓL/R(ξ) = 2π∣tL/R∣
2ρ(ξ).
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With this de�nition, we can rewrite Eq.(1.62) as

G = e2∑
k,σ
∫

dξ

2π

ΓL(ξ)ΓR(ξ)

ΓL(ξ) + ΓR(ξ)
A(dk, σ, ξ) (−

∂nF(ξ)

∂ξ
) . (1.63)

Without loss of generality, we consider that the tunneling strength is energy independent:
ΓR(ξ) ≡ ΓR and ΓL(ξ) ≡ ΓL. This assumption is valid as long as the left and right leads
have a featureless density of states at the Fermi level. This brings us to the �nal form of the
conductance

G = e2∑
k,σ
∫

dξ

2π

ΓLΓR

ΓL + ΓR
A(dk, σ, ξ) (−

∂nF(ξ)

∂ξ
) . (1.64)

This is a fascinating result because all the complexities of the left and right leads (tip
and substrate) are absorbed into two coupling constants (ΓR, ΓL) and the conductance
of the tunneling junction solely depends on the spectral functions of the sample system. To
achieve this result, we have made no approximation other than those in the linear response
theory (Kubo formula for conductance) and the assumption that left and right leads have
identical dispersion relations with constant tunneling strengths.

1.3 Conclusion

In summary, we have seen that the scanning tunneling spectroscopy describes how a single
electron with de�nite energy propagates between the surface and the tip of the STM. In
other words, it takes a direct measurement of the single-particle spectral function. In the
simplest description of the STM junction, we have shown that the measured di�erential
conductance is proportional to the product of the tip and substrate spectral functions at
the position of the tip. For a generic STM junction with a sample in between (interacting
or non-interacting), we have shown that the di�erential conductance is proportional to the
sample’s spectral functionA(dk, σ, ξ) for small bias voltages, while all details of the tip and
substrate are absorbed in a few constant prefactors. In fact, one can generalize it to a �nite
bias voltage using Meir and Wingreen formula [21, 23, 27],

I = e∑
k,σ
∫

dξ

2π

ΓLΓR

ΓL + ΓR
A(dkσ, ξ) [nF(ξ − µL) − nF(ξ − µR)] . (1.65)

where µL and µR are the chemical potentials of the left and right leads, which can be alter-
natively de�ned in terms of the bias voltage (µL = µR − Vb). In this way, by sweeping the
bias voltage (Vb) and simulaneously recording the tunneling current, one can extract the
spectral function of the sample.
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Control overmicroscopic and quantumdegrees of freedom is the focal point of
interest for di�erent technological purposes portrayed [28–30], for instance, in the
newly surging competition to manufacture quantum computers [31, 32], and has
been one of the chief driving forces in the experimental condensedmatter physics
to search for novel phases of matter [33–35]. Charge and spin degrees of free-
dom have been for long the main and supporting character in this quantum play.
To this aim, an enormous enthusiasm is shown to 2D materials such as graphene
and transition metal dichalcogenides (TMDs)—for they have a su�ciently decou-
pled 2D layer and o�er a wide range of physics bracketing from strongly corre-
lated electron systems to the topological and exotic states of matter[36–38]. In
order to skip the arduous process of the top-down fabrication and preparation of
atomically-precise 2D material, the alternative avenues to achieve these function-
alities have also been paved in bottom-up approaches [1, 39–41]. Metal mediated
atomic and molecular self-assembly implemented inside scanning tunneling mi-
croscope (STM) provides us with a tour de force platform to synthesize and locally
probe and manipulate the nanoscale quantum degree of freedom [42–44].
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A self-assembled monolayer of 1,4,5,6-naphthalene tetracarboxylic acid dianhy-
dride (NTCDA) on Ag(111) substrate can create an arti�cial lattice of π-conjugated
organic molecules [16, 17, 45–47]. It inheres in the perks of the two ingredients:
delocalized electronic states from the metallic substrate, which facilitate the for-
mation of a genuine 2D lattice [48], and localized molecular orbitals that manifest
both Kondo and discharging resonance on the same orbital. This is particularly a
contentious situation since, typically, these two resonances demand opposite set-
tings. The Kondo resonance occurs when the spin of the local electron strongly
interacts with the substrate; on the other hand, the discharging resonance occurs
when there is su�cient decoupling from the substrate—making NTCDA/Ag(111)
an ideal system to study the interplay of spin and charge.

This chapter serves three purposes. First, it provides a motivation for the study
of the NTCDA/Ag(111) project. Second, it summons signi�cant reported �ndings
in the literature to make a general understanding and lubricate the �ow of ar-
guments for the following chapters. Finally, it recapitulates some representative
results and preliminary notions that wewill discuss inmore detail throughout this
thesis.
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2.1 NTCDA molecule

1,4,5,6-naphthalene tetracarboxylic acid dianhydride (NTCDA) is a planar molecule with
gas-phase D2h symmetry. Geometry and location of di�erent functional groups/atoms of
the molecule are sketched in Fig.(2.1). Upon adsorption on the substrate and forming self-
assembled nanostructures [16], the molecule interacts with the surface and other molecules
at two locations. At the center of the molecule, the aromatic naphthalene core interacts via
the spatially extended π-orbital electrons with the substrate and at the two ends via the
carboxyl and anhydride groups with the substrate and neighboring molecules as well [49].
The interactions of these two electronic systems at the metal-organic interface push the
character of adsorption towards weak chemisorption [17].

Figure 2.1: Graphical representation of gas phase NTCDA molecule (C14H4O6).

Consequent to adsorption on the silver substrate, the NTCDA lowest unoccupied molec-
ular orbital (LUMO) becomes partially occupied with a net charge transfer from silver 4s-
band, and possibly the Shockley surface state [50, 51]. As a result, it spectrally broadens and
aligns slightly below the silver’s Fermi level (EF ). Correspondingly, HOMO and HOMO-1
orbitals get fully occupied and bury deep below EF .

Figure 2.2: The gas-phase LUMO,HOMO, andHOMO-1 orbitals of NTCDA overlaid
on the molecule structure (taken from [52]).

Therefore, the behavior of molecule electronic and vibronic states takes a LUMO char-
acter around the Fermi level predominantly [49, 50]. The summary of NTCDA frontier
orbitals properties is presented in Tab.(2.1).
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Orbital Symmetry Binding energy (eV) Occupation Net charge (e) Method Ref.
HOMO-1 au 3.4, 3.5 2 neutral DFT, UPS [50, 53]
HOMO b3g 2.2, 2.5, 2.4 2 neutral DFT, UPS [50, 51, 53]
LUMO b1g 0.4, 0.48 0.94, 1.42 -0.35 DFT, UPS [49–51, 54]

Table 2.1: Molecular orbital energy levels of an NTCDA molecule adsorbed on
Ag(111) substrate.

2.2 Conformational phases of NTCDA/Ag(111) lattice

Depending on the imposed preparation conditions, various conformational phases of a
monolayer (ML) of NTCDA on Ag(111) substrate can develop. Historically, �rst, the two
stable long-range ordered phases: Relaxed monolayer (r-ML) and compressed monolayer
(c-ML), were reported to exist at the (sub-)monolayer regime, where the former transforms
to the latter through post-deposition of molecules in the sample preparation process [16,
45]. Later, a plethora of intermediate phases at the coexistence regime was discovered by
various groups [17, 46, 47]. The hitherto reported phases and their characteristics are classi-
�ed at Tab.(2.2). This thesis is concerned with the electronic properties of r-ML in the great
majority and to lower extents with the rippled phase in the coexistence regime. Therefore,
the discussions are restricted only to these two speci�c phases.

Phase Lattice Unit cell superstructure matrix Coverage (ML) Ref.

r-ML (commensurate) Brick-wall Rectangular (
4.0 0.0

3.0 6.0
) < 0.9 [16, 45]

c-ML (incommensurate)a Herringbone Hexagonal (
6.52 3.97

0.58 2.98
) ∼ 1 [16, 45, 46]

Stripy brick-wall Rectangular −b 0.9 − 1 [16]
Coexistence regime Rippled brick-wall Rectangular −b 0.9 − 1 [17]

Uniaxially compressed brick-wallc Rectangular (
3.8 0.0

3.0 6.0
) 0.9 − 1 [46]

Vertical standing brick-walld Rectangular (
3.0 0.2

1.1 4.7
) 1< [47]

a Unit cell assignment changed in the posterior publication of the same group and here is adapted accordingly [46] .
b Not reported.
c 4% compression along the short axis.
d Termed ‘NTCDA-vert’ and created via post-adsorption of NTCDA on r-ML phase with slight annealing.

Table 2.2: Properties of conformational phases of NTCDA/Ag(111) lattice.

As illustrated in Fig.(2.3), the r-ML phase contains two molecules per unit cell, forming
a brick-wall lattice with a rectangular unit cell. The lattice is commensurate, and hence
both molecules are aligned with their long axis along the [011] direction of the substrate
[46]. Though chemically the same, the two molecules exhibit in rows of dark and bright
contrast in STM images and have di�erent spectroscopic features. The apparent contrast
is explained in terms of the di�erence in the LDOS of the two molecules at the Fermi level,
which has yet been tentatively hypothesized to pertain to di�erent adsorption geometry
(top- and bridge-site) [47]. General properties of r-ML lattice are summarized in Tab.(2.3).
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Figure 2.3: Imaging the NTCDA/Ag(111) r-ML phase. Left panel: Constant-current
STM image (Vb = 48 mV, It = 1 nA, Vmod = 5 mV), and right panel: simultaneously recorded
dI/dV -map.

Ag(111) unit vector ∣g1∣ 2.89 Å [16]
NTCDA unit vector ∣a1∣ 11.57 Å [16]
NTCDA unit vector ∣a2∣ 15.04 Å [16]
∠(a1,a2) 90o [16]
∠(a1,g1) 0o [16]
Area per unit cell 174 Å2 [46]
Molecule per unit cell 2 [16]
Ag(111) point group symmetry C3ν [55]
NTCDA point group symmetry (free) D2h [49]
NTCDA point group symmetry (adsorbed) C2ν [49]

Table 2.3: Geometry and symmetries of the NTCDA/Ag(111) in the r-ML phase.

A counter-argument for this hypothesis is the existence of the long-range ordered rip-
pled phase where rows of bright and dark molecules periodically change character along
their long and short axis, i.e., the bright molecule smoothly transforms to a dark molecule,
and vice versa [17]. Typically, rippled phase occurs in islands with triangular or deformed
rims that emphasize the role of lattice boundaries over the local adsorption geometry in its
formation. In Fig.(2.4), the created rippled phase has a fast and slow axis. Along the long
molecular axis, alteration takes roughly between 9 to 12 unit cells, while it takes 3 to 7 unit
cells along the short axis.
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Figure 2.4: Imaging the NTCDA/Ag(111) rippled phase. Left panel: Constant-current
STM image (Vb = 10 mV, It = 800 pA, Vmod = 5 mV), and right panel: simultaneously
recorded dI/dV map. The Green and red arrows indicate the line along the molecule’s
short and long axis respectively where molecule smoothly changes character from bright
to dark and vice versa.

Unlike having complicated-looking frontier orbitals, interestingly enough, the dI/dV
map in Fig.(2.3) shows that the wave function of NTCDA/Ag(111) r-ML has a dumbbell-
shape-orbital around the Fermi level. A similar wave function structure can be traced in
the rippled phase with a periodic pattern. The dumbbell’s center-of-mass is located at the
bridge between two molecules, i.e., each lobe is situated in the hydrogen atoms of a di�erent
molecule.

2.3 A perspective to the electronic and vibrational prop-
erties of NTCDA/Ag(111) r-ML

The STM dI/dV curve of the highly ordered NTCDA/Ag(111) monolayer manifests the
presence of a rich physics, ranging from single- to many-body and strongly correlated elec-
tron systems. It encompasses phenomena such as Kondo e�ect, electron-vibron interaction,
molecular orbital hybridization, formation of a dispersive 2D band, and discharging reso-
nance. The synopsis of these e�ects are featured in Fig.(2.5). Starting from the negative
end of the spectrum, initially, the HOMO of the molecule appears superimposed on the tail
of the silver substrate’s bulk 4d-band with binding energy around 2.4 eV [50, 51]. Subse-
quently, the singly-occupied LUMO of the molecule comes out as a very broad and elusive
satellite, centered around −0.4 eV [50, 51]. So long as the LUMO’s tail crosses the Fermi
level, it renders a metallic ground state to the lattice. Around the Fermi level, as displayed in
the inset of Fig.(2.5), and the positive side of the spectrum comprise more intricate features
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that we brie�y outline in the following.

Figure 2.5: Multitude of spectroscopic features appearing on STM dI/dV point-
spectrum acquired on the bright molecule center of NTCDA/Ag(111) lattice. The
spectra were acquired at the bright molecule center with parameters Vb = 2.0 V, It = 4.0

nA, Vmod = 8 mV, T = 1.39 K, and the zoom-in inset at Vb = 100 mV, It = 2.0 nA, Vmod = 1

mV.

2.3.1 The vibrational modes and zero bias Kondo resonance

The low bias di�erential conductance acquired on various sites of the r-ML lattice, Fig.(2.6),
shows two common features around the Fermi level: (i) a zero-bias-peak (ZBP) with a tiny
gap precisely at zero energy, and (ii) a series of symmetric side peaks, with width, inten-
sity, and energy varying across di�erent sites. Most notably, the side-peaks appear on the
center of the bright and dark molecule at ≈ ±47 mV and are attributed to the predominantly
out-of-plane vibrational modes of the LUMO [17]. Conceivably, the other symmetric side-
peaks with energies ≈ ±75 and ±30 mV 1 might also be vibrational [17]. The nature of the
ZBP, however, is spin-related [50]. It is associated with Kondo e�ect [51]: a many-body
elastic spin-�ip scattering between the spin of the local electron occupying the LUMO and
the itinerant electrons in the substrate. The outcome is the quench of the singly-occupied
LUMO’s spin via forming a transient many-body singlet state.
The presence of the strong vibrational mode around the Fermi level is encoded into the
interactions involved with the LUMO and its symmetry reduction [49]. The metal-organic
interactions and charge transfer from the substrate to the NTCDA molecule modify the
symmetry of its LUMO. In general, charge transfer to LUMO leads to an increase in elec-
tron density at certain bonds, increasing the strength of those bonds and resulting in their
compression. Conversely, all bonds involved in nodes of the orbital stretch with respect to a
free LUMO. Besides these in-plane distortions, the planarity of the molecule is also subject
to vertical distortions. Due to the covalent bonding at the acyl oxygen atoms, the molecule

1The ±75 mV peaks have not yet been reported as a vibrational state. However, the existence of many
vibrational modes predicted by ab initio calculations in this energy range also justi�es the assignment [49].
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bends downwards at its four corners, and due to the push-back e�ect, which originates from
Pauli repulsion at the naphthalene carbon core, the molecule bulge out in the center [49,
56–58]. Such con�guration makes the out-of-plane vibrational modes, "rocking-modes,"
of the molecule susceptible to vertical perturbations [17, 59]. Conceivably, the strong vi-
brational states appearing on the STM di�erential conductance measurements belong to
the out-of-plane modes—since the tunneling electron probing those states has negligible
in-plane momentum to excite them. As a result of these distortions, the local molecular
symmetry reduces from D2h to C2ν , which, however, can be further reduced to Cs by con-
sidering the marginal e�ect of the inequivalent threefold hollow sites of the underlying
Ag(111) below the two carbon rings [49, 56].

Figure 2.6: STM dI/dV point spectra of di�erent sites of the NTCDA/Ag(111) r-ML
lattice around the Fermi level. a, Bright molecule CH. b, Bright molecule center. c, Dark
molecule bridge. d, Dark molecule CH. e, Dark molecule center. The constant-current STM
image (central panel) acquired at Vb = 10 mV, It = 0.5 nA, with the graphical representation
of NTCDA molecule is overlaid on a bright molecule. The dI/dV point spectra are highly
oversampled and averaged over 3 sweeps with parameters: Vb = 100 mV, It = 2 nA, Vmod = 1

mV, T = 1.27 K, B = 0 T.

As remarked above, it is posited that the ubiquitous ZBP and its continuous modulation
extending all across the r-ML originates from the Kondo e�ect [17], which, if so, connotes
the creation of a Kondo lattice. The Kondo peak takes its maximum intensity at the bright
molecule CH, centered around 2.5 mV with a tiny drop towards the bright molecule bridge-
site and an appreciable drop approaching its central naphthalene core. The width (FWHM)
of this Kondo peak is approximated to 28.5 mV at T = 4.3 K [17]2. On the dark molecule,
however, the ZBP humps down on the CH-site with a width approximated to 52.1 mV and
even a further drop towards its bridge-site [17].

2 We report a width of 24.4 mV and 57.4 mV for the bright and dark molecules at T = 1.27 K.
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The di�erence in the line shape of the ZBP at di�erent sites has been attributed to the
role of quantum interference of possible tunneling paths between tip, substrate and the
LUMO’s wave function [17]. Unlike the center of the molecule where the wave function
has a nodal plane and encourages only indirect tunneling path, i.e., tip’s electron tunnels
�rst to the substrate and then hop to the molecule; on the CH-site, the wave function takes
a �nite value and allows direct tunneling. In this scheme, the quantum interference of all
possible indirect and direct paths with the corresponding scattering amplitudes at a given
point transforms the Kondo resonance to the so-called Fano resonance [60], which varies
spatially.

Figure 2.7: Zoom-in dI/dV point spectra around Fermi level at di�erent sites of
the NTCDA/Ag(111) r-ML lattice reveal two small gaps. a, Bright molecule CH. b,
Bright molecule center. c, Dark molecule bridge. d, Dark molecule CH. e, Dark molecule
center. f, Spatial average spectrum of 900 spectra over a 3 × 3 nm2 area. To reveal the two
small gaps, the dI/dV point spectra (a-e), were set to be highly oversampled and temporally
slow, with lock-in time-constant (τc) of 100 ms and each was averaged over 5 sweeps with
parameters: Vb = 20 mV, It = 4 nA, Vmod = 500 µV, T = 1.27 K, B = 0 T. The spatial average
spectrum (f) was measured at Vb = 10 mV, T = 1.30 K, B = 0 T. The inset STM images with
red dot marker illustrates the respective location where the spectrum was acquired.

The zoom-in spectra, Fig(2.7), reveal the existence of hitherto unreported �ne structures
at ZBP. Precisely at zero bias, a pervasive gap appears at every point on the lattice with dif-
ferent relative intensity. More accurately, the absolute intensity of the gap remains almost
constant all over the lattice. The nature of this gap is not fully known. Even though it could
be assigned to the Coulomb blockade (CB) phenomenon, its irregular size and persistence
in temperature change from 1.2 to 4.4 K and magnetic �eld change from −10 to 10 T at-
tributes ambiguity to such CB gap. There is also a second gap which appear asymmetrically
at ≈ 5 mV, exclusively pronounced at dark molecule CH and bridge site. The nature of this
gap is even more elusive. Together with other possibilities, such as the presence of very
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low energy vibrational modes, it can also be assigned to a spin-related gap.

Figure 2.8: STM dI/dV point spectra of CH-sites at the lattice border of the NTC-
DA/Ag(111) r-ML around the Fermi level. a, b, Spectra acquired from the bright
molecule CH at the lattice border with di�erent coordination number. c, STM image of
NTCDA/Ag(111) r-ML rim (Vb = 10 mV, It = 400 pA). d, e, Spectra acquired from the dark
molecule CH at the lattice border with di�erent coordination number. The dI/dV measure-
ments were taken with parameters Vb = 100 mV, It = 14 nA, T = 1.51 K, Vmod = 200 µV,
B = 10 T. To resolve the ZBP splitting and �ne structure, the dI/dV spectra were set to be
highly oversampled and temporally slow, with lock-in time-constant of 300 ms and each
was averaged over 3 sweeps. The large current setpoint (It = 14 nA) was used to enhance
the signal-to-noise ratio at small AC modulation voltage, which was chosen to avoid the
spectral broadening inherent to the lock-in detection scheme.

Resolving the Fermi level at the lattice border further discloses the nature of ZBPs,
Fig.(2.8). Depending on the coordination number, two typical spectra on the CH-site of
each molecule have been observed at 10 T magnetic �eld. On the bright molecule, Fig.(2.8
a,b), the Kondo resonance peak is either slightly sharpened or tiny split into two unequal
peaks �anked around 2.7 meV. On the dark molecule, however, the ZBP has been dramati-
cally changed, Fig.(2.8 d,e). There, it is either noticeably split around 5 meV or appears with
a �ne structure at its summit. Naively speaking, the �ne structure looks like a split Kondo
peak with a minimal width superimposed on a broad Fano resonance. It’s worth mention-
ing that at 0 T, there is no perceptible variation among the spectra in the middle and border
of the lattice. Therefore, the changes arise from the magnetic nature of the ZBPs, which is
masked by the (intra)inter-molecular and molecule-substrate hybridization3 in the middle,
and unveiled in the border of the lattice due to lower coordination number and deformed
con�guration.

3 The strong inter/intra-molecular hybridization is encoded into the highly organized arrangement of
alternating bright and dark molecules in the r-ML lattice, which would be otherwise impossible to form,
and the strong molecule-substrate hybridization is re�ected on the very broad Kondo resonance.
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Additionally, it is noted that the symmetric pair of vibronic states at ±47 mV appears on all
spectra, though with suppressed size compared to the middle of the lattice. On the other
hand, the broad humps around ±30 mV, formerly identi�ed as vibronic states, proliferate
into more peaks and becomes further pronounced. This observation undermines the valid-
ity of such an assignment. Lastly, it must be pointed out that a common feature among all
curves is an overall positive spectral tilt, which is the opposite trend to its counterpart in
the middle of the lattice.

2.3.2 Interface state

The step-like spectroscopic feature in the positive bias side of Fig.(2.5) is associated with the
formerly Shockley surface state of the metallic substrate Ag(111) located at ≈ −63 mV that
is shifted above the Fermi level upon adsorption of the π-conjugated organic monolayer, to
form the so-called interface state [61]. It has a 2D band structure with an anisotropic free-
electron-like parabolic dispersion which has coverage-dependent onset energy of ≈ 560
meV [48]. The anisotropic dispersion is staggered along the x− and y−axis, with an smaller
renormalized electron mass along the long-axis of the molecule (m∗

y <m
∗
x) [48].

Figure 2.9: Formation of the 2D interface state in the NTCDA/Ag(111) lattice. a,
Shockley surface state of bare Ag(111) measured at Vb = −2.2 V, It = 0.5 nA, T = 4.2 K,
B = 0 T. b, Interface state spectrum measured at Vb = 0.9 V, It = 1 nA, T = 1.29 K, B = 0 T.

2.3.3 Discharging resonance

The monumental sharp peak pedestalized on the ensuing baseline of the interface state,
aroused at Vb ≈ 1.4 V in Fig.(2.5), is the spectroscopic resonance of a charging event origi-
nated from the center of the bright molecule4 [62]. Typically, it is accompanied by a shoul-
der and followed by several subsequent discharging peaks that develop at larger bias, stem-
ming from the neighboring molecules located several nanometers away, which also sense

4 The peak was reported by Sabitova, A. et al.
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the electric potential of the tip. Thus, adhere to its discharging nature, the peak lineshape
(width and height) and energy is directly related to the applied bias voltage in the STM junc-
tion and the distance between the molecule’s charging center and the tip [63–75]. Moreover,
the geometrical shape of the tip also determines the applied electric �eld to the molecule,
i.e., the sharper, the larger, which in turn allows the discharging peak to appear at lower
bias [76, 77].

Figure 2.10: Distance-dependent dI/dV point spectra showing a linear approach
of the discharging peak towards the Fermi level concomitant of sharpening of the
resonance. a, dI/dV spectra of consecutive measurements. b, The corresponding I −

V curves. All spectra are shifted by a constant for clarity. c, Compilation of the main
discharging peak center with a linear �t (slope α = 0.15 V/Å). d, Compilation of the main
discharging peak FWHM. The measurements were performed with parameters: Vb = 2 V,
It = 0.1 − 20 nA, Vmod = 5 mV, T = 1.29 K, B = 0 T. e, The sketch shows the procedure
of distance-dependent di�erential conductance measurement. Tip is stabilized for a �xed
bias Vb = 2 V and a given tunneling current setpoint (It) to perform spectroscopy and
approaches (∆z < 0) by increasing It to perform the consecutive measurement. The inset
STM image of panel (a) shows the parking position of the tip on top of the bright molecule
center where measurements were executed.

The generic dependencies mentioned above about the discharging resonance can be di-
rectly measured by distance-dependent and bias-dependent di�erential conductance mea-
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surements. In Fig.(2.10), dI/dV point spectra are acquired while successively reducing the
tip-sample distance on top of the bright molecule center. As it is depicted in Fig.(2.10a),
the discharging peak, its shoulder, and all other higher energetic peaks linearly shift to
lower energies as the tip-sample distance reduces. Meaning that the required energy to
elevate an electron located on the molecule and discharge has been reduced. Associated to
each discharging peak, there is a jump in the I −V curve, Fig.(2.10b), in which respectively
steepens and shifts to lower energies upon approaching the tip. Another general trend in
I − V curves is the increase of the overall slope, diverging out by shrinking the tip-sample
distance, which results in constant upshifts of the dI/dV spectra.

Figure 2.11: Bias-dependent dI/dV point spectra showing a linear approach of the
discharging peak towards the Fermi level concomitant of sharpening of the reso-
nance. a, dI/dV (Z) spectra of consecutive measurements. b, Semilogarithmic plot of the
corresponding I − Z curves, log(I − δI) = log(I0) − κz, subtracted from a linear �t. The
curved-up o�set in the I −Z curves is not physical and has an arti�cial instrumental cause
created by Nanonis control system. All spectra are shifted by a constant for clarity. c, Com-
pilation of the main discharging peak center with a linear �t (slope 1/α = 6.93 Å/V ). d,
Compilation of the main discharging peak FWHM with a quadratic �t. The measurements
were performed with parameters: Vb = 1.5 − 1.9 V, It = 2 nA, Vmod = 5 mV, T = 1.29 K,
B = 0 T. The inset STM image of panel (a) shows the parking position of the tip on top of
the bright molecule center where measurements were executed.
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With a similar method, the voltage dependence of the resonance can be studied via
sweeping the tip-sample distance while keeping the bias constant. Evidently, in Fig.(2.11
a), the discharging peak shifts linearly towards the Fermi level as we successively reduce
the bias. Furthermore, the FWHM of the peak drops from 0.7 to just below 0.2 Å, featuring
position-localization of the resonance, and the corresponding I − Z curves, Fig.(2.11 b),
show deviation from a linear �t on a semilogarithmic plot by a broad step. Comparing the
two methods mentioned above, the distance-dependent and bias-dependent STS, shows a
perfect self-consistency among curves and their �t parameters.

2.4 Experimental procedure

The STM measurements of the NTCDA/Ag(111) systems were taken using a home-built
combined scanning tunneling and atomic force microscope operating in ultrahigh vacuum
(p ≤ 10−10 mbar), at �elds perpendicular to the sample surface of up to 14 T, and at a base
temperature of 1.2 K. The dI/dV spectra were acquired by modulating the bias voltage with
a sinusoidal of 0.05−0.2 mV amplitude and 617 Hz frequency employing a lock-in ampli�er.

The tip conditioning was performed in-situ using �eld emission with bias voltage between
100−150 V and emission current between 3−6 µA, and indentation of the bare Pt/Ir tip into
a clean Ag(111) surface. The Ag(111) crystal was prepared by repeated cycles of Ar+ sput-
tering and annealing to 250−300 C○ for 25 minutes.5 Afterwards, NTCDA molecules were
deposited onto the clean Ag(111) surface held at room temperature and a base pressure of
p ≤ 10−9 mbar from a Knudsen cell molecule evaporator held at 215 C○.

2.5 Conclusion

I close this chapter by mentioning two remarks regarding the role of tip in the breakdown
of local charge neutrality in the NTCDA/Ag(111) system; and roughly estimating a micro-
scopic quantity, namely Pauli repulsion force, by extracting information from the previ-
ously discussed results. At positive bias, where discharging resonance occurs, the tip is
negatively charged and, as a result, creates a positive image charge, i.e., a hole, on the sam-
ple. An ideally point-like tip creates a point-like hole, and a realistic tip with a nanometer
size apex creates a nanoscale quantum dot. This hole can also be viewed as the migration
of electrons in the sample from the area underneath the tip in response to its repulsive po-
tential. Such imbalance of positive and negative charges around the molecule breaks the
local charge neutrality. The created hole encourages an electron to tunnel from the tip and
discharge it, i.e., electron doping of the sample by the tip, which results in a jump in the
tunneling current, as displayed in Fig.(2.10b).

We stated earlier in this chapter that there is a contention in the fact that Kondo and dis-
charging resonance happen on the same molecular orbital, as the former requires a strong
coupling to the substrate and the latter decoupling. Considering the con�guration of an

5Surface temperature measurement was performed by an infrared pyrometer.
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adsorbed molecule may help us to reconcile the two e�ects and to extract a constant from
measurements to estimate a microscopic quantity responsible for such concomitance. Based
on Fig.(2.11d), the FWHM of the discharging peak drops from ≈ 0.7 to 0.2 Å along the z-
axis, which, as I mentioned above, may be interpreted as a signal for reordering of charges at
the Fermi level extending over many molecules at the largest bias (1.9 V) to being localized
to a single molecule at the lowest bias (1.5 V).

Figure 2.12: Cartoon illustrating the creation of an image charge (hole) and sym-
metry breaking in vicinity of a negatively charged STM tip.

The molecule does not adsorb entirely �at on the substrate. It is arched at the carbon
rings [49, 56]. The Tab.(2.4) shows the DFT calculation and experimental result for the verti-
cal adsorption distances of di�erent elements of an individual NTCDA molecule on Ag(111)
substrate. The shortest distance belongs to the acyl oxygen group (dacylO ) where the molecule
forms a covalent bond with the substrate, and the longest belongs to the carbon rings (dC)
where discharging resonance occurs, the charge center of the molecule. Depending on the
adopted method and adsorption geometry, the subtraction of these two vertical distances
changes between 0.25−0.39 Å. This vertical distance is the deviation of the molecule from
a �at-lying con�guration due to the Pauli repulsion [57, 58]. Principally, this should be the
force providing the molecule with su�cient decoupling from the substrate to undergo a
discharging resonance.
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Con�g. dall (Å)
a
dC (Å) dacylO (Å) danhydO (Å) dH (Å) Method Ref.

Isolated 2.86 2.94 2.66 2.88 2.82 DFT (Siesta) [48]
Top1 2.89,− 2.96, 3.01, 2.89 2.70, 2.69, 2.622 2.91, 2.85, 2.798 2.88, 2.91,− DFT (Siesta, PBE-D3PBC) [48, 49, 56]
Bridge1 2.86,− 2.94, 3.03, 2.905 2.65, 2.61, 2.577 2.90, 2.85, 2.806 2.84, 2.93,− DFT (Siesta, PBE-D3PBC) [48, 49, 56]
Exp. − 2.997 2.747 3.004 − NIXSW [78]

a Averaged over all elements.

Table 2.4: Compilation of vertical adsorption distances of NTCDA’s elements in
the r-ML phase.

With a series of cursory arguments, we can naively de�ne the discharging force as the
electrostatic force needed to bring a charge from below to the Fermi level. In principle, such
force should overcome a threshold value to change the concentration of charge at the Fermi
level (∣Fthresh∣ ≤ ∣Fdischarge∣). Thus, the minimum required discharging force must satisfy the
following condition

F⃗discharge + F⃗thresh = 0 → F⃗thresh = −F⃗discharge .

In fact, we have access to the vertical component of the discharging force,

F z
discharge = −∇zU = −

dU

dz
≈ −

∆U

∆z
,

it is nothing but the slope (α) in the distance-dependent STS, or equivalently, (1/α) in the
bias-dependent STS �tting curve:

α =
∆V

∆z
= 0.15

V
Å

which we found in Fig.(2.10) and Fig.(2.11). Therefore, we can roughly estimate the micro-
scopic threshold force along the z-axis as

F z
thresh = −(−0.15

eV
Å

) .

Now by considering the conversion factor 1 eV
Å = 1.602 nN, we obtain

F z
thresh ≈ 240 pN .

As it will be clari�ed later, the gating e�ciency renormalizes this force by more than an
order of magnitude.
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The concept of quasiparticle (QP) is archetypal and ubiquitous to condensed
matter physics, enabling the understanding of essential properties of the ground
and lowest-lying excited states in otherwise inaccessible inmany-body and strongly
correlated electron systems. Its triumph encompasses a simple and accurate de-
scription of many solid-state materials such as normal metals, semiconductors,
topological insulators, etc., and even with its failure in cases like the Kondo ef-
fect[15] and high-temperature superconductivity[79], the concept has remained
as a guideline for the physicist. In this work, we drive the quasiparticle excitations
(QPE) of a molecular Kondo lattice to the Fermi level by employing the local elec-
tric �eld of a scanning probe microscope (SPM) tip and simultaneously imaging
them in real space. The tuning of such QPEs across the Fermi level with a non-
thermal parameter leads to the change of the ground state, and hence, a quantum
phase transition (QPT). Furthermore, our spectroscopic imaging of the Kondo lat-
tice with sub-angstrom resolution reveals the creation of a real-space quasiparticle
interference (QPI) pattern, in which we resolve hybridization gaps and superposi-
tion of the QPEs. To capture the underlying physics, we employ a tight-binding
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model (TBM) to simulate the experimental results. Our study illuminates the un-
derstanding of fundamental excitations in low dimensional strongly correlated
and topological materials.

To put into perspective the �ndings presented in this chapter, before discussing
them, we �rst brie�y review the basic concepts and models in strongly correlated
physics. Moreover, to enhance the �uency of the reading, some of the experimen-
tal results and calculations that demands deeper analysis are further expanded in
later chapters without harming the discussions here.
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3.1 Single impurity Kondo e�ect

The Kondo e�ect is fundamentally a collective spin-screening process resulting in a strongly
correlated many-body ground state generated by the quantum entanglement between a lo-
calized magnetic impurity (local moment) embedded on an itinerant non-magnetic (para-
magnetic) fermionic bath. At high temperatures, the magnetic moment of the impurity
remains uncorrelated in a paramagnetic phase. However, as the temperature is decreased
below a characteristic scale, the so-called Kondo temperature (TK), the local moment is
quenched cooperatively by the spins of the itinerant electrons in the bath and eventually
creates a many-body singlet, the so-called Kondo singlet [80]. Such a Kondo singlet en-
hances the scattering of the itinerant electrons and leads to an increase in their resistivity
[81, 82].

The microscopic minimal model Hamiltonian was proposed in the seminal work of the
Jun Kondo [83].

HK =∑
k,σ

εk c
†
k,σck,σ + JKSd ⋅ sc (3.1)

where c†k,σ and ck,σ creates and annihilates electrons in the non-interacting bath and the
second term describes the antiferromagnetic exchange interaction (JK > 0) of the impu-
rity spin (S) with the spin of the itinerant electrons (sc). The single-site eigenstates and
energies are

triplet

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣⇑⟩d ∣↑⟩c

∣⇓⟩d ∣↓⟩c
1√
2
(∣⇑⟩d ∣↓⟩c + ∣⇓⟩d ∣↑⟩c)

E = 1
4JK

doublet ∣⇑⟩d ∣↑↓⟩c and ∣⇓⟩d ∣↑↓⟩c E = 0

doublet ∣⇑⟩d ∣0⟩c and ∣⇓⟩d ∣0⟩c E = 0

singlet 1√
2
(∣⇑⟩d ∣↓⟩c − ∣⇓⟩d ∣↑⟩c) E = −3

4JK.

The lowest spin excitation from the ground state is obtained by breaking a singlet to
form a triplet. The gap for this excitation is ∆s =

1
4JK − (−3

4JK) = JK. The quasiparti-
cle gap, which is the energy required to create a quasiparticle (electron-like or hole-like)
via adding or removing an electron at the Fermi level by breaking the Kondo singlet is
∆qp = 0 − (−3

4JK) =
3
4JK.

Developing a perturbative expansion in small JK (up to the third order) for the electri-
cal resistivity, Kondo reproduced the experimentally observed resistivity minimum and the
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ensuing logarithmic divergence in dilute magnetic alloys [84].

ρimp =
3πmJ2

KS(S + 1)

2e2h̵εF
[1 − JK ρc(εF )ln(

kBT

D
) +O(J3

K)] (3.2)

where e is the electron charge, h̵ is the reduced Planck constant, εF is the Fermi energy,
m is the electron mass, S is the impurity’s total spin, ρc(εF ) is the density of states of the
itinerant electrons at the Fermi energy, and D is the bandwidth of the itinerant electrons.

At high temperatures, the coupling JK ρc(εF ) is very small, and therefore, the expansion
remains regular. However, when the temperature is decreased, the logarithmic corrections
cause an increase in the resistivity and eventually diverge for T → 0. The breaks down of
the perturbation theory happen when the �rst and second term of the expansion becomes
equal, which e�ectively de�nes a small fundamental scale for the single impurity problem,
the so-called Kondo temperature [84].

TK ∼De−1/JK ρ(εF ) , (3.3)

which only relates to few material-dependent parameters. The essence of the problem roots
in the spin-�ip scattering of the itinerant electrons from the degenerate local quantum level,
which becomes the dominant scattering channel below the Kondo temperature scale. Inter-
estingly, even though the perturbative expansion diverges at the Kondo temperature, it does
not produce a phase transition but rather a cross-over, indicating a smooth change from the
paramagnetic local moment regime to the Kondo singlet phase. This behavior is encoded
into the spin susceptibility of the impurity, which shows a χ ∼ 1/T Curie-law behavior at
high temperature and smoothly connects to a constant paramagnetic Pauli susceptibility
χ ∼ 1/TK at low-temperature [84].

3.2 Anderson impurity model: interacting limits

The Kondo model Eq.(3.1) su�ces to explain the Kondo e�ect by a priory assuming the
spin-spin interaction at the EF to be the cause, but it remains silent about why and how
the spin of a local level which should be originally residing far below EF shifts to it and
elastically scatter o� the electrons of the metallic host [80, 85]. It was only made clear after
Friedel (1951&1956) showed that scattering of an impurity, modeled as a static potential
with a �nite depth below EF, with itinerant electrons can create a virtual bound state with
�nite width nearEF [80, 86, 87]. The idea was employed to explain the d-electron resonance
in transition metals. Building upon this, later Anderson (1961) proposed a model for the
formation of a magnetic impurity in metal [85],

H =∑
k,σ

εk c
†
k,σck,σ +∑

σ

εd d
†
σdσ +∑

k,σ

V (c†k,σdσ + d
†
σck,σ) +Ud nd↑nd↓ (3.4)

which assumes that the localized d-electrons of the magnetic impurity located at εd below
EF have a sizeable on-site Coulomb repulsion (Ud) as a result of the con�nement of their
wave function. The local Hamiltonian

Himp =∑
σ

εd d
†
σdσ +Ud nd↑nd↓
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with four local states ∣0⟩, ∣⇑⟩, ∣⇓⟩, and ∣2⟩, with bare energy levels 0, εd (doublet) and 2εd+U ,
and also the hybridization (V ) of these d-electrons with the itinerant Bloch electrons (ck,σ),
which shifts their bare energy level to the EF and forms a renormalized band.

Figure 3.1: Cartoon illustrating the interaction limits of the Anderson impurity
model. At high temperature and large Coulomb repulsion, the ground state is an un-
screened local moment decoupled from fast-moving itinerant electrons. At temperatures
below the characteristic Kondo temperature (TK), the degenerate local moment hybridize
with the itinerant electrons and forms coherent, long-lived quasiparticles, amounting to a
resonance near the Fermi level with a spatial extension determined by the Kondo screening
cloud given by ξK ≡ h̵vF/kBTK [88, 89], where vF is the Fermi velocity.

Even in its infancy age, the model could successfully describe di�erent regimes of the
impurity problem. Initially, Anderson performed a Hartree-Fock mean-�eld theory on the
model [85], and showed that a doubly-degenerate local moment (∣⇑⟩, ∣⇓⟩) is the ground state
of the high energy sector of the Hamiltonian, and can be self-consistently generated in the
limit that bare energy level ∣εd∣ and the Coulomb interaction (πρc(εF )V 2 ≤ Ud) are the
dominant scales of the problem [90]. This is the limit where spin excitations are generally
neglected. Later, it was shown that the original Kondo model Eq.(3.1) lives in the low energy
sector of the Anderson impurity model, where charge excitations are completely gaped, and
its Kondo singlet ground state can be accessed by the Schrie�er-Wol� transformation [80,
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91], which accounts the Kondo exchange coupling to

JK = V 2 (−
1

εd
+

1

εd +Ud
) . (3.5)

At this low energy scale, the Coulomb interaction is relatively small. The impurity level is
partially occupied with spin-up and spin-down electrons, and the ground-state is a param-
agnetic Fermi liquid. In this limit, coherent spin �uctuations dominate the physics of the
system and lead to a formation of a new bound-state near EF. This amounts to a peak in
the density of states of the itinerant electron, which is called the Abrikosov-Suhl (Kondo)
resonance [92, 93]. The width of this resonance determines the Kondo temperature scale
in the particle-hole symmetric Anderson impurity model as

TK =

√
2UdΓ

π2
e−

πUd
8Γ (3.6)

where Γ = πρc(εF )V 2 is the hybridization strength [80, 94, 95].

3.3 Resonant level model

The non-interacting limit (Ud = 0) of the Anderson impurity model Eq.(3.4) has a simple
and interesting physics. Historically it is called the resonant level model [80, 96]

HRLM =∑
k,σ

εk c
†
k,σck,σ +∑

σ

εd d
†
σdσ +∑

k,σ

(V c†k,σdσ + V
∗ d†σck,σ) . (3.7)

It describes scattering between a non-interacting local level (d) and a lattice of itinerant
electrons (c) by a hybridization (tunneling) amplitude (V ).

Figure 3.2: Feynman diagram for the local (d) and itinerant electrons (c) in the
resonant level model. (adapted from [80])

Despite the fact that the translational invariance of the lattice is lost due to the presence
of the local level, the model can be exactly solved. This can be done by summing all Feyn-
man diagrams in powers of hybridization, Fig.(3.2), to obtain the single-particle Matsubara
Green’s function of the local level

G−1
d (iωn) = iωn − εd −Σc(iωn) = iωn − εd −

1

VBZ
∑
k

∣V ∣2

iωn − εk
(3.8)
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where we used the c-electron self-energy Σc(iωn) =
1
VBZ
∑k

∣V ∣2
iωn−εk .

Now by converting the discrete momentum sum to integration using the c-electron density
of states, we obtain

G−1
d (iωn) = iωn − εd − ∫ dε

ρc(ε)∣V ∣2

iωn − ε
.

This integral contains a branch cut along the real axis. It can be simply taken out if we
approximate the density of the states of the itinerant electrons by its value at the Fermi
level, ρc(εF ), and performing an analytic continuation (iωn → ω+ iη). It gives the retarded
Green’s function as

GR
d (ω) =

Γ

ω − ε̃d + iΓsgn(ω)
where we have restricted the integral to the bandwidth (D) of c-electrons, and also used the
fact that the real part of the c-electron self-energy has a negligible frequency dependence,
which merely renormalizes the bare local level (ε̃d = εd+ReΣc(ω)). In this way, the density
of states on the local level is a Lorentzian peak of width Γ

ρd(ω) = −
1

π
ImGR

d,σ(ω) =
1

π

Γ

(ω − ε̃d)2 + Γ2

which describes the d-electron on the local level with the renormalized energy ε̃d and life-
time of 1/Γ, as it tunnels coherently into the itinerant electrons band (continuum).

3.4 Kondo lattice system: Doniach’s phase diagram

The extension of the single-impurity Kondo problem to a lattice of impurities brings us to
the concept of the Kondo lattice model (KLM). In its simplest form, the KLM describes a lat-
tice of spin-1/2 magnetic moments coupled antiferromagnetically via the Kondo exchange
coupling JK to a single band of itinerant electrons at each lattice site.

HKLM =∑
i,j

∑
σ

tc c
†
i,σcj,σ + JK∑

i

Sd(xi) ⋅ sc(xi), (3.9)

where the spin operators are represented in terms of fermionic operators and Pauli matrices
as

Sd(xi) =
1

2
∑
α,α′

d†α(xi)σα,α′dα′(xi) and sc(xj) =
1

2
∑
α,α′

c†α(xj)σα,α′cα′(xj).

Like the single impurity version, the KLM also forbids charge �uctuations of the d-electrons
and strictly enforces single-occupancy at each lattice site. Even though the physics of the
single impurity Kondo problem is well established, the KLM still poses a challenge, theoret-
ically and experimentally, even after more than half a century since its original conception
[97–101]. As Doniach depicted the KLM’s physics [102], the core of the problem underlies
the presence of two competing energy scales: The Kondo temperature, which, as mentioned
before, is associated with the screening of impurity spins and the formation of a Kondo sin-
glet at each lattice site, and additionally, a new energy scale, under which the local moments
tend to order and destroy the singlets.
In the lattice problem, the magnetic polarisation of the c-electron around a local moment
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can couple to the neighboring local moments leading to an e�ective long-range interaction
between them. This interaction is called Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion [103–105],

HRKKY =∑
i,j

IRKKY(xi − xj)Sd(xi) ⋅ Sd(xj) (3.10)

and is associated with the ordering energy scale. Generally, the RKKY scale dominates at
the weak Kondo exchange coupling and is the driving force for the observed continuous
quantum phase transitions between an antiferromagnetic phase and a Kondo screened state
in Doniach’s picture. More speci�cally, in this picture, Fig.(3.4), for a small Kondo coupling,
the RKKY interaction dominates, and an antiferromagnetic ground state is favored below
a critical temperature. With increasing the Kondo coupling, the spin screening enhances,
ultimately prevails the RKKY coupling, and the ground state transforms to a paramagnetic
Fermi liquid phase comprised of the Kondo singlets. Interestingly, for temperatures higher
than the lattice Kondo temperature (T ∗

K), there is another regime where the singlets dis-
solve into free spins (paramagnet). In between these phases, particularly when the energy
scales of the Kondo and RKKY couplings are proportionate, there is a quantum critical point
(QCP), with non-Fermi liquid behavior [106–112].

Figure 3.3: Cartoon illustrating the coupling scheme of a Kondo lattice. The lattice
Kondo e�ect is produced by the quantum �uctuations between c-electrons and degenerate
spin states (d-electrons) near the Fermi surface that constantly hybridize to form a Kondo
singlet, which develops coherence with other singlets in the lattice. The coherence can be
suppressed by the presence of a magnetic instability, e.g., RKKY interaction, that favors
ordering the spins and destroying the Kondo singlets.

Such a magnetic quantum phase transition has been observed in various heavy fermion
materials, with even more complicated phase diagrams, such as the celebrated YbRh2Si2
[113], and also in YbRh2(Si1−xGex)2 [114], CeRh1−xCoxIn5 [115], CePd2Si2 [116], Ce1−xLaxRu2Si2
[117], CeIn3 [116], CeCu6−xAux [118], etc. Experimentally, the QPT is tuned by chang-
ing the Kondo coupling via non-thermal control parameters such as by applying pressure,
chemical doping, an external magnetic �eld, or as we will show later in this thesis, an ap-
plied electric �eld which can e�ectively dope the lattice an drive the transition.
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Figure 3.4: Doniach’s phase diagram for the quantum phase transition between
an antiferromagnetic phase and a Kondo screened phase (Fermi liquid), with free
spins regime (paramagnet) and quantum critical point (T = 0) in between. (Figure
adapted from [106])

3.5 PeriodicAndersonmodel: the slave-bosonmean-�eld
theory

An alternative way to study heavy fermion systems and Kondo lattice is provided by the
periodic Anderson model (PAM), which captures both charge and spin degrees of freedom
of the f -electrons, unlike KLM that regards only the spin dynamics1. Similar to its single
impurity version, Sec.(3.2), PAM describes how local moments form in a lattice as a result
of a strong Coulomb repulsion which blocks charge �uctuation and electron transport at
the local level. It also describes how a Kondo resonance occurs as a virtual bound state
resonance at the Fermi level due to the tunneling process between the itinerant and local
band. The PAM Hamiltonian is

HPAM = Hc +Hhyb +Hd (3.11)

where the conduction electrons have a nearest-neighbor hopping

Hc = − ∑
<i,j>
∑
σ

tc (c
†
i,σcj,σ + h.c.) −∑

i,σ

µc†i,σci,σ

and an on-site hybridization with the local levels

Hhyb =∑
i,σ

(V c†i,σdi,σ + V
∗ d†i,σci,σ) .

1 Similar to the single impurity Kondo problem, the ground state of the KLM can be derived from the
PAM via a Schrie�er-Wol� transformation. In this way, the KLM coupling parameter is related to the PAM
parameters as J ∼ V 2

U
[119]. We recognize that the large U limit of the PAM is equivalent to the small J limit

of the KLM.
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The local levels have a nearest-neighbor hopping and also Coulomb interaction,

Hd =∑
i,σ

εd d
†
i,σdi,σ − ∑

<i,j>
∑
σ

td (d
†
i,σdj,σ + h.c.) +∑

i

Ud nd,i,↑nd,i,↓

where d†i,σ and di,σ are the creation/annihilation operators for the ‘physical’ 4f -fermions,
and c†i,σ and ci,σ for the itinerant band.

To qualitatively layout the low energy physics of PAM, let’s restrict the discussion to the
in�nite-U regime2 of a 4f system, where double-occupancy at the local levels is forbidden,
and the coherent charge �uctuations occur between the following valence con�gurations
[80]

f 0 + e− ⇌ f 1.

Here, we can regard the intermediate state as an exchange boson, and use the auxiliary
particle method (slave-boson representation) to decompose the physical operator (d†i,σ)

into the product of a pseudofermion (∣f 1, σ⟩ = f†
σ ∣0⟩) and a slave-boson (∣f 0⟩ = b† ∣0⟩)

as d†i,σ = f
†
i,σbi. Subsequently, we de�ne the conserved charge at each site Qi = nf,i + nb,i =

∑σ=↑,↓ f
†
i,σfi,σ + b

†
i bi , and let the slave-bosons bi measure the deviations of the valence state

from its maximum charge. At this step, a simpli�cation can be made by considering a (spu-
rious) slave-boson condensation and applying a mean-�eld treatment (slave-boson mean-
�eld theory [120]), which demands that the average value of the slave-boson operator is
static over the unit cell ⟨bi⟩ → bi. The consequence is the following renormalizations: the
Kondo resonance width, which scales by the hybridization, narrows around the Fermi en-
ergy V → Ṽ = bV and the dispersion of the f -electrons �attens εfk → ε̃fk = b2εfk for b < 1.
Furthermore, by imposing a non-holonomic constraint on the average charge per lattice
site (⟨Qi⟩ ≤ 1) with a Lagrange multiplier (λi),

HQ =∑
i

λi(Qi − 1) (3.12)

we can forbid the double-occupancy on the f -level and arrive at the following single-
particle mean-�eld Hamiltonian for the in�nite-U PAM

H =∑
k,σ

[
c†k,σ
f†
k,σ

]

T

[
εck − µ Ṽ

Ṽ ∗ ε̃fk + λ
] [
ck,σ
fk,σ

] +Nfλ(b
2 −Q), (3.13)

where Nf = ∑i nf,i and we have also used the translation invariance property of the PAM
to set

bi → b and λi → λ,

and Fourier transformed the operators to momentum space (f†
k,σ =

1
Nf
∑i f

†
i,σe

k⋅xi). Thus,
the problem reduced to solving two self-consistent saddle-point equations for b and λ
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨ δHδb ⟩ = 0→ 1
Nf
∑k,σ V (⟨c†k,σfk,σ⟩ + ⟨f†

k,σck,σ⟩) −
1
Nf
∑k,σ 2 b εfk⟨f

†
k,σfk,σ⟩ + 2λb = 0

⟨ δHδλ ⟩ = 0→ 1
Nf
∑k,σ⟨f

†
k,σfk,σ⟩ + b

2 −Q = 0,

(3.14)
2 This is the Kondo regime of the PAM.
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which should be closed by the constraint enforced on the average charge per site ⟨Q⟩ ≤ 1.
In this way, at the saddle point, the f -electrons turns into a single-particle Hamiltonian of
hybridized quasiparticles (γ†k,σ , η

†
k,σ)

γ†k,σ = ukc
†
k,σ + vkf

†
k,σ , η†k,σ = −vkc

†
k,σ + ukf

†
k,σ → ∣γk,σ ∣

2 + ∣ηk,σ ∣
2 = 1,

with renormalized eigenvalues

E±
k =

εck + ε̃
f
k + λ

2
± [(εck − ε̃

f
k − λ)

2
+ Ṽ 2]

1/2
(3.15)

and eigenvectors

uk, vk =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

2
±

(εck − ε̃
f
k − λ)/2

2
√

(εck − ε̃
f
k − λ)

2 + Ṽ 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

. (3.16)

Here, without loss of generality, we �xed the chemical potential to the Fermi level (µ = 0)
and absorbed the bare f -level (εf) into its renormalized dispersion (ε̃fk). In the case when
the Fermi level lies inside the gap (∆(k) = E+

k −E
−
k), a Kondo insulator is formed, and

otherwise a correlated metal [80].

Figure 3.5: Quasiparticles of a Kondo insulator. a The cartoon illustrates how hole-
doping a Kondo insulator at the strong coupling limit breaks a Kondo singlet, forming a
hole quasiparticle, and opens a transport channel for the conduction electrons. (b) Electron
and hole quasiparticle dispersion (E±

k ) of a Kondo insulator. The chemical potential of
a Kondo insulator resides inside the narrow quasiparticle gap by holding 2 particles per
site on average, and hence, it gives rise to no Fermi surface. A tiny amount of hole (δh)
shifts the chemical potential downwards, leading to the crossing of the quasiparticle bands
and amounts to a large Fermi surface with 2-δh electrons. The renormalized bands in (b)
are obtained for b = 0.63, λ = 0.28 as the self-consistent solutions of the saddle-point
equations, Eq.(3.14), for parameters: T /D = 10−4, V /D = 0.3, and tf/D = 0.1, where D is
the bandwidth of the conduction electrons. (Adapted from [80])
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3.6 The NTCDA Kondo Lattice: a heuristic picture

The paradigmatic understanding of the Kondo lattice and its QPT, developed in the last
sections, has taken for granted the fact that there is a well-de�ned localized spin-12 atomic
band with almost no spatial extension. This picture may need to be revised in the case of
the molecular Kondo lattice where singly-occupied states host π−electrons with orbitals
delocalized over several angstroms and directly and indirectly overlap with the neighbor-
ing electrons. Moreover, unlike above, where the conduction band comprises s-orbital elec-
trons, the character of the itinerant electrons in many substrate-mediated molecular Kondo
lattices is not �xed and, in fact, is a mixture of bulk and interface state electrons present at
the surface of the substrate. This makes the expectation of a simple, well-de�ned local band
under the Fermi level of a molecular Kondo lattice unrealistic. Here, we will investigate the
fundamental scales of the NTCDA Kondo lattice and a few of its properties.

Observation of Kondo resonance on the self-assembled monolayer of 1,4,5,6-naphthalene
tetracarboxylic acid dianhydride (NTCDA) on Ag(111) substrate [17] provided us with a
playground to study the rich properties of electronic states and their excitations in the con-
text of strongly correlated physics. As we have seen in Ch.(2), the NTCDA relaxed mono-
layer (r-ML) creates an atomically precise, highly organized 2D lattice of π-conjugated elec-
trons. The molecules con�gure arrays of alternating bright and dark chains with drastically
di�erent properties, Fig.(3.6). On the bright chain, the molecules show a Kondo tempera-
ture of TK1 ∼ 132 K, and on the dark one TK2 ∼ 350 K. We relate the noticeable di�erence in
the Kondo temperature of the two molecules to their di�erent molecule-substrate distances.
Generally, a shorter distance results in a larger hybridization between the local electron at
the molecule with the conduction electrons of the substrate, giving a higher Kondo tem-
perature and also a topographically darker appearance.

A noteworthy observation is the dramatic modi�cation of the Kondo scale, from weak to
the strong coupling limit, upon the formation of the lattice. As T. Esat and R. Temirov have
shown3, the single-ion Kondo temperature of an isolated NTCDA molecule on Ag(111) is
much lower than the experimental temperature, and hence, no Kondo resonance appears
at the Fermi level.

Moreover, at the summit of the Kondo peaks, we observed magnetic-dependent �ne struc-
tures (see Fig.(2.7) and F.(2.8)), more pronounced on the dark molecules, that we relate to
the inter-molecular magnetic interactions. These interactions are relatively long-ranged,
mediated mainly by the LUMO of the molecules which have large ligands, and also, to a
lower extent, by the residual surface states of the substrate4. We call it RKKY-like inter-
action5 and assign a roughly J̃RKKY ∼ 7 meV to it (see Sup.(A.1) for further information).
This interaction induces magnetic instability, which decoheres the Kondo singlets formed

3 Private communication.
4 The silver substrate surface state is primarily destroyed and shifted in energy upon formation of the

lattice (see Sec.(2.3.2)).
5 We chose the name RKKY-like interaction to resemble the nomenclature in the KLM, but there is no

necessity for it to take the same character as the original RKKY interaction. Realistically, this interaction can
take a very complicated form in a molecular Kondo lattice.
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at each lattice site, and as a result, produces depression of the density of states or a dented
Kondo peak at the Fermi level, Fig.(3.6c top-inset). The depression of the density of states
(pseudogap), which is associated with the strength of this interaction, does not turn into a
full-�edged gap, essentially because of the strong background scattering with the metallic
substrate and also due to the dominating Kondo scale on the molecules.

Figure 3.6: The molecular Kondo lattice. a, Constant-current gray-scale STM image
(Vb = 48 mV, It = 1 nA) of a monolayer of NTCDA molecules on Ag(111) showing a brick-
wall like structure consisting of molecules with higher (brighter) and lower (darker) ap-
pearance (yellow and blue circles, respectively). The apparent height di�erence is ≈ 30 pm.
Superimposed are stick-and-ball models of the molecules and the lattice basis vectors a1

and a2 with lengths 1.5 and 1.16 nm. b, Constant-current gray-scale di�erential conduc-
tance (dI/dV ) image measured at higher bias (setpoint: Vb = 1.4 V, It = 6 nA, Vmod = 8 mV)

reveals ring-like structures centered at each bright molecule. c, Di�erential conductance
dI/dV spectrum (setpoint: Vb = 2 V, It = 4 nA, Vmod = 8 mV) measured with the tip of the
STM positioned above the center of a bright molecule (yellow dots) shows three promi-
nent features: The interface state of the Ag(111) surface (IS), and a sharp peak at about
1.3 V (QPE) which is at the origin of the ring-like structures seen in panel (b). The two
insets show over the lattice averaged dI/dV spectra at biases close to the Fermi energy EF.
They reveal formation of a pseudogap at EF, and also strong molecular vibrational modes
(vib), a Kondo resonance and quasi-particle states (QP) introduced by the Kondo lattice.
d, Schematic phase diagram of the Kondo lattice versus applied electric (E) and magnetic
(B) �eld scaled by temperature. The Kondo screened (KS) metallic phase exists at low E-
and B-�eld and undergoes a quantum phase transition to a paramagnetic metallic (PM)
phase constituting free spins by tuning E and B. The width of the transition regime (red
area) where �uctuations dominates the system narrows by the applied B-�eld. A quantum
critical point expected to exist at the point where all phases merge at zero temperature.

The most outstanding spectroscopic feature of the NTCDA Kondo lattice is the promi-
nent peak with a small shoulder at Vb ∼ 1.3 V, Fig.(3.6c), labeled as quasiparticle excitation
(QPE). This peak shows up as ring-like feature in dI/dV maps at higher positive biases and
can be obtained at the center of bright molecules while being irreproducible at the dark

57



Chapter 3

ones and also at negative biases6. To understand the nature of this peak, we should remind
that ab initio calculations of an isolated NTCDA on the Ag(111) predict partial occupation
of the LUMO, close to a single-occupancy [49, 56]. This is also re�ected in the Kondo peak,
which is just by 2.7 meV o� the EF [17]. These observations bring us to an important con-
clusion that a moderate tip-induced electric �eld cannot lift the LUMO, which is located at
ELUMO ∼ −0.5 eV all the way to EF. This is a stark distinction from the systems studied
in back-gated setups, which can compensate for this huge energy di�erence. Another sce-
nario compatible exclusively with the impurity studies is to assume a single-particle level
or a bound-state very close to EF, associated with the impurity. This scenario is also ruled
out in the NTCDA case by the DFT calculations and also experimentally by us, our collab-
orators, and also former studies on the NTCDA as no single-particle level or a bound-state
is reported to exist near EF. And �nally, we disregard scenarios including a simple band-
bending/lifting of the NTCDA LUMO state. This can be simply understood by considering
that the NTCDA LUMO is a very broad satellite with a tail crossing theEF, sitting ‘directly’
on Ag(111), which is a bath of free electrons. A continuous lifting of such a state should
result in a fractional change in the density of states and not a sharp monumental peak in
the di�erential conductance. We, therefore, more intuitively, explain it in the following in
terms of charge quasiparticle excitations (QPE) of the Kondo lattice.

3.7 Electric �eld driven quantum phase transition

As explained in Sec.(3.1), below the Kondo temperature, the bare energy of the local elec-
trons (εf ), which was originally buried deep belowEF (typically in eV-order), shifts towards
EF (by amount λ) and forms a localized quasiparticle band there. As we have shown in our
single-site analysis, Sec.(3.1), the low-lying charge excitation of such a quasiparticle state
can be introduced in terms of breaking of a Kondo singlet via adding or removing an elec-
tron, which requires an energy of 3

2JK. Following this scheme, in our measurement, we �rst
demonstrated that the QPE has a discharging character7 and its energy linearly depends on
the applied electric �elds (see Fig.(2.10) and Fig.(2.11)). More explicitly, we employ the tip’s
local electric �eld to wash away electrons at the molecule site and e�ectively hole-doping it.
This, in turn, breaks the Kondo singlet and opens a lateral transport channel in the lattice,
which lead to a step in the current channel, or equivalently, a sharp peak in the di�erential
conductance. This process involves a change of ground state via tuning a non-thermal pa-
rameter (E-�eld) at a �xed temperature, and hence a QPT from a Kondo screened state to
a state with unscreened spins.

The hallmark of such a QPT is imprinted on the magnetic properties of the initial and �nal
states. As emphasized before, the Kondo peak of the bright molecule has a width of 28.5
meV, that even up to 14 T applied B-�elds it remains intact, indicating a typical Pauli para-
magnetic behavior deep in the Kondo regime. This behavior is in marked contrast with that
of the QPE — for it dramatically sharpens with the appliedB-�eld, Fig.(3.7f). Such behavior
in the B −T diagram can be seen as the freezing of the spin degree of freedom, that can be

6 Using a bias voltage range that does not damage the lattice.
7 We have used interchangeably the term ‘discharging peak’ for the QPE throughout this thesis.
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oriented in every direction in the absence of the B-�eld and is polarized to the direction of
the B-�eld as it is increased, which subsequently leads to the suppression of the thermal
�uctuations.

Figure 3.7: Signatures of the quantum phase transition. a, Logarithmic plot of the
dI/dV (z) signal above a bright molecule at constant Vb ranging from 1.4−2.0 V (T = 1.4 K,
B = 5 T). The peaks mark the phase transition between the Kondo screened (KS) state and
the paramagnetic metallic (PM) state. The inset shows exemplarily the Vb = 1.7 V data in a
linear plot and the corresponding least-squares �t of the data to the sum of an exponential
and a Gaussian. b, Model of the e�ective tip-sample tunneling barrier z and its change to
z+∆z. c, The extracted center of the Gauss-peaks shown in (a). The slope leads to a critical
�eldEc = (1.77±0.02)GVm−1. d, Extracted ∆z of the e�ective tip-sample tunneling barrier
from simultaneously measured I(z) data in (a). e, Logarithmic plot of the I(z) signal for
the Vb = 1.7 V data with exponential �ts (dashed lines) separating the three regimes of the
system. f, Half-width at half-maximum Γ of the phase transition at di�erent �elds and
temperatures (dots), and least-square model of a paramagnetic metal with g-factor of 2

(solid lines). g, Cartoon illustrating an electric �eld driven QPT in a Kondo lattice. The tip’s
local E-�eld sweeps away electrons at the molecule site and e�ectively hole-dopes it, which
leads to the breakdown of the Kondo singlet and releases a local moment.

3.8 Real-space manifestation of the NTCDA Kondo lat-
tice

We unravel the real-space spectroscopic features of the quasiparticle states and also the
Kondo resonance of the NTCDA lattice in the vicinity of EF, Fig.(3.8). For this, we use
the feature detection scanning tunneling spectroscopy [121] to e�ciently sample the fea-
tures for di�erent energies buried in 58 × 58 dI/dV spectra spanning a 3 nm2 area. The
method allows us to extract tiny signals that are overwhelmed by the broad Kondo reso-
nance and the strong metallic background, and further, disentangle their density of states
from the topography of the lattice. In this way, our analysis reveals the presence of two
low-lying features almost symmetrically appearing at ±21 mV that we relate to the hole
and electron quasiparticle states, Fig.(3.8a, bottom panel). They are localized in the center
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of molecules and extend along its long axis, Fig.(3.8 b, I and IV). Moreover, we resolve the
Kondo resonance localized at CH sites of the LUMO, which also overlaps with the reso-
nances originating from the neighboring molecules (see Sup.(A.1) and Sup.(A.2) for further
information).

Figure 3.8: Low energy spectroscopic features of the Kondo lattice. a, Top panel:
Energy distribution histogram of peaks in a map of 58×58 dI/dV spectra (Vb = 70 mV, It =
1 nA, Vmod = 0.2 mV, T = 4.24 K) taken across the lattice. The full and hatched bars mark
areas of interest at positive and negative bias ranges around EF. Middle panel: Average
spectra taken over the spectra in the interval speci�ed by the full bar (labeled II) and hatched
bar (labeled III), corresponding to the Kondo resonance at bright (gold dots) and dark (blue
dots) molecules, with Frota �ts (black full lines) (Γ = 12.2 (28.7)meV, q > 300 (= 1.2),
ε0 = 2 (21)meV, TK = 132± 5 (340± 20)K, where values in the brackets belong to the dark
molecules. Bottom panel: Average spectra taken over the spectra in the interval speci�ed
by the full bar (labeled I) and hatched bar (labeled IV), corresponding to the hole (blue dots)
and electron (black dots) quasiparticle states. b, Color-coded feature distribution maps of
the peak intensity (dark: low, yellow: high) in the energy ranges marked in the histogram (a,
top panel) with superimposed stick-and-ball model of the lattice (bright molecule: yellow
circle, dark molecule: blue circle).

3.9 Cascade of quasiparticle excitations

Akin to their discharging (hole) character, the QPEs emerge in rings for large positive bi-
ases in dI/dV (x, y) signals. However, in stark contrast to the impurity discharging events,
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where they appear in ever-growing rings8; here, they manifest clear signatures of corre-
lation and interactions, innate in their Kondo lattice traits. Starting from a point on the
center of bright molecules, they gradually turn into in a ring as bias increases and when
the tip goes o� the discharging center. Once the rings reach the size of the unit cell, the
QPEs interact with each other by creating a hybridization gap along the long molecule’s
axis (a1), and constructively superpose along the short one (a2): generating an intriguing
portray of real-space quasiparticle interference Fig.(3.9).

Figure 3.9: A portray of strongly correlated quasiparticle excitations. Top row:
Color-coded plots of the dI/dV signal at constant Vb ranging from 1.6−2.22V measured in
an area of approx. 1.5×1.5 nm2 with a bright molecule in the centre (T = 1.4 K,B = −10 T).
At increasing bias, i.e., increasing electric �eld, the transition rings cross along the short
direction (a2) without strong interaction. Contrary, along the long direction (a1), in which
the rings cross the bridge between two dark molecules, we observe an avoided crossing and
the opening of a gap (Vb = 1.85 V). Bottom row: Tight-binding simulation of the discharg-
ing rings assuming a complex nearest-neighbor hybridization (arrows) between bright and
dark molecules, as well as a next-nearest neighbor hoping (dashed line) between bright
molecules, and di�erent on-site energies (yellow: bright, blue: dark). The numbers in the
last �gure indicate the number of discharged molecules at the critical �eld Ec. The simula-
tions reproduce the main features of the experimental data.

We further investigate the interference pattern of QPEs by using a tight-binding model
Eq.(3.17) for a bipartite rectangular lattice and calculate the conductance between the tip
and sample as the tip sweep the lattice. The model considers di�erent on-site energies for
each sublattice and also nearest-neighbor staggered hoppings inside a sublattice. Moreover,
inspired by the seminal work of Haldane on Graphene, we assume a complex hybridization
between the sublattices9. This assumption relies on the observation that an electron does
not face the same energy landscape on the right and left sides while hopping forward and
backward between the sublattices. In this model, the STM tip serves as a local top-gate

8 Typically, there is an upper limit for the bias where rings disappear above it.
9 We have to note that Haldane assumed a complex hopping between sites inside a sublattice, and a real-

valued hopping between sublattices. This is the opposite setting of our model. Yet, we have borrowed his
argument for justifying a complex hybridization.
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that shifts the on-site energies, depending on their distance to the tip, besides its role in the
junction for the electron tunneling to the sample. The model Hamiltonian follows as

H =∑
i

∑
ν=A,B

∑
σ

(Eν +U
eff
i ) c†ν,iσcν,iσ − ∑

α=a1,a1

∑
σ
∑
⟨⟨i,j⟩⟩

tα,A [c†A,iσcA,jσ + h.c.]

− ∑
⟨i,j⟩
∑
σ

[VABe
iθi,j c†A,iσcB,jσ + h.c.], (3.17)

where c†ν,iσ and cν,iσ are the creation and annihilation operators for ν = A andB sublattices
with spin σ, Eν is the on-site energies, tα,A is the hopping amplitude along α = a1 and a2

directions in the sublattice A, and VAB is the hybridization amplitude between sublattices
with phase eiθij . The brackets ⟨i, j⟩ and ⟨⟨i, j⟩⟩ in the sums stand for the nearest- and next-
nearest- neighbors indices. The tip’s local potential in Eq.(3.17) reads [77]

U eff
i = α

eVb

1 + ε0
di
r

with di = ((xi − xtip)
2 + (yi − ytip)

2)
1/2
, (3.18)

where α is the gating e�ciency, ε0 is the dielectric constant of the sample, r is the radius
of the tip, and di is the tip-sample distance.

The direction of arrows in the superimposed lattice in Fig.(3.9, bottom row) shows the con-
vention for a positive phase. Interestingly, such a non-interacting e�ective model with a
minimal number of parameters is very predictive of the main features of the rings. In short,
the main features comprise rings with certain broadening, which evolve with bias at di�er-
ent rates along a1 and a2 directions. Along a1, they grow faster and always constructively
superpose. Along a2, they grow slower and form a hybridization gap, where at larger bi-
ases, they close the gap and further grow. The redistribution of the conductance intensity
across the pattern comes from the fact that di�erent part of the rings reaches the Fermi
level at a di�erent bias. We found that to match the conductance intensity in the simu-
lation with the experimental results, �ne-tuning the complex hybridization is crucial. For
more information about the model and simulation consult with Ch.(5) and Sup.(B).

3.10 Conclusion

We close this chapter by recapitulating our understanding of the signal interpreted as a QPT
in the Kondo lattice. Traditionally, the QPT has been studied along the trajectories in the
phase diagram that joins the Kondo screened phase to the Néel ordered antiferromagnet.
This is because to visit the interesting properties that happen in the neighborhood of QCP
at very low temperatures, e.g., non-Fermi liquid behavior. In this study, we do not drive the
ground state in this trajectory. The NTCDA Kondo lattice is in the strong coupling regime,
even though there are low energy signatures of ordering in its density of states. Utilizing
the tip’s local electric �eld, we drive the ground state from the Kondo screened to the free
spin regime of the phase diagram and probe the properties of the released spins by an ap-
plied magnetic �eld.

Naturally, the QPT in the Kondo lattice has been characterized mainly by means of measure-
ments at the bulk (large) scale, elucidating the global properties of the ground state prior
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to and after the phase transition. However, instrumentally, STM provides us with a tool to
simultaneously probe and manipulate states at the local level. A unique chance to study
the local properties of the QPT. In our investigation, we imaged a molecular Kondo lattice,
and its spectroscopic features close to EF , and showed that the QPT can be addressed in
the ‘real-space’ and ‘locally’ in terms of low-lying charge quasiparticle excitations, which
has ring-like representation and form long-range patterns of interference.

Last but not least, we have to mention that the interference pattern presented in Fig.(3.9,
top panel) is not the only observed pattern. In fact, we have shown that the NTCDA lattice
(relaxed monolayer and rippled phase) accommodate various other patterns that respect
di�erent symmetries. For more information consult with Ch.(4).
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Real-space qantum interference pattern

4.1 Discharging rings interference of NTCDA lattice . . . . . . . . . . . 66
4.1.1 Interference pattern (i): sample A, r-ML lattice . . . . . . . . 66
4.1.2 Interference pattern (ii): sample A, r-ML lattice . . . . . . . . 66
4.1.3 Interference pattern (iii): sample B, r-ML lattice . . . . . . . 67
4.1.4 Interference pattern (iv): sample A, rippled lattice . . . . . . 67

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Quasiparticle interference (QPI) imaging is a powerful surface-sensitive tech-
nique to characterize the electronic structure of two-dimensionalmaterials around
the Fermi surface. It is based on electronic scattering of well-de�ned momentum
states leading to interference patterns in the quasiparticle density of states that
can be imaged with scanning tunneling spectroscopy. Practically, it is obtained by
�rst Fourier-transforming the real-space interference map of the local density of
states for a su�ciently large area, and then inverting it to yield the proportionate
momentum gradient of energy. The patterns play a crucial role in revealing the
type of interactions and correlations that determine the electronic ground state
of the material. Here, without being faithful to the standard procedure of the QPI
imaging, wemerely look at the real-space interference patterns of the strongly cor-
related charge QPs of the NTCDA Kondo lattice. The intricate patterns are created
by the constructive and destructive superposition of the discharging rings, which
are induced by the local electric �eld of the STM tip. It is worth mentioning that
similar patterns have also been observed as (dis)charging of impurities and defects
at the surface of 2D materials and thin �lms [63, 64, 68, 70, 72, 73, 122–126], and
also in molecules [74, 75, 127–130]. However, due to the complexity and novelty
of the e�ects observed here, and also the limited number of available datasets, the
thorough description of the underlying physics goes beyond the scope of this the-
sis and the above-mentioned works.
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4.1 Discharging rings interference of NTCDA lattice

A �ashback into the last chapter; we recall that in response to the tip’s electric �eld which
locally modi�es the chemical potential of the lattice, a dot appears on the center of bright
molecules and evolves into a growing ring as bias ramps up. The rings interfere once their
radius is large enough to create a pattern of high and low intensity regions. Now, with
sub-angstrom spectroscopic images Fig.(4.1), we can resolve the internal structures of the
interference patterns and discuss their physical consequences.

4.1.1 Interference pattern (i): sample A, r-ML lattice

Let’s �rst examine the pattern obtained for sample A and under 10 T magnetic �eld, Fig(4.1).
The key features of this pattern are the non-trivial intertwining of rings along the molecule
short axis, Fig(4.1 e), and formation of a hybridization gap at the intersection of the bright
and dark molecules, Fig(4.1 f). We have to emphasize that these features are the product of
interaction between the rings; otherwise, we would have observed ever-growing rings, as
many groups have reported in impurities and defect studies. The non-trivial twist in the
rings induces symmetry breaking and handedness (chirality) to the patterns. A property
that is typically accompanied by systems with broken time-reversal symmetry. More im-
portantly, the inter-locked rings create a topologically non-trivial object in real-space as
one cannot separate them by smoothly deforming their manifold. Here, we have to be cau-
tious of using common terminology since topology in physics is often refers to geometric
properties of the momentum-space and not the real-space.

The meaning of chirality requires elaboration as the rings are not the trajectories of the
electrons. For the sake of simplicity, consider the case of only two overlapping rings, Fig(4.1
e), originating from the nearest neighbouring bright molecules, which we call top and bot-
tom. The overlaps with more rings in higher bias, Fig.(4.1 f-h), follows in the same way.
The intersection of two consecutive rings has two special points, say left and right points,
at equal distances from the center of both rings. As a result, once the tip is on these points
and the bias is large enough, it can simultaneously discharge electrons of both molecules.
So the intensity in these regions can be either summation (constructive) or subtraction (de-
structive) of rings. Surprisingly, the tip does not discharge both electrons at these points.
Instead, once it is on the right point, it discharges the bottom molecule, and once it is on
the left point, it discharges the top molecule: forming intertwined rings.

4.1.2 Interference pattern (ii): sample A, r-ML lattice

Repeating the measurement on the same sample but in a di�erent area yielded a slightly
di�erent pattern, Fig.(4.2). The detail of this pattern is not as obvious as Fig.(4.1) because
it was measured at 0 T B-�eld, and hence, the discharging peaks has an excessive width.
Here, along the molecule’s short axis the rings twist and along the long molecule’s axis they
take a �sh scale structure.
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4.1.3 Interference pattern (iii): sample B, r-ML lattice

A new set of observations were made on a completely di�erent sample and at -10 T B-�eld.
Most notably there are side rings, Fig.(4.3 a-c), which one can even spot them in the pattern
(i), Fig.(4.1 d, e). The origin of the side rings is so far unclear, but it relates to the shoulder of
the discharging peak (see Fig.(2.5)) that has been observed in many of the point dI/dV mea-
surements. Moreover, at the center of each ring, Fig.(4.3 c, d), an additional feature appears
and gradually takes an oval shape as bias increases. This feature is hardly visible in the
other patterns1. One can attribute these features to the artifact of a double-tip. However,
based on our personal experience, such an ordered pattern with sub-angstrom resolution
cannot be achieved by a double or asymmetric tips.

Unlike pattern (i) which shows intertwining of rings along the molecule’s short axis, here
we see a �sh scale structure, and therefore, it has no chirality and symmetry breaking along
this direction. Along the long molecule’s axis, it is very similar to the pattern (i) as both
show the hybridization gap.

4.1.4 Interference pattern (iv): sample A, rippled lattice

Interestingly, we found that discharging rings are not exclusive to the r-ML lattice. We
performed a similar measurement to the one we took on sample A and at 10 T B-�eld, but
this time in the rippled phase and with a di�erent tip. The topography of the lattice was
previously presented in Fig.(2.4). Unfortunately, the tip was slightly asymmetric, and as
a result, it deformed the rounded rings into broadened droplet shapes. This prevents us
from resolving the intricate internal structures of the pattern. Nevertheless, based on this
dataset, we can make general observations about the rippled phase.

As we said previously, in the rippled phase, bright and dark molecules periodically change
character along their long and short axis, i.e., the bright molecule becomes dark, and vice
versa [17]. Here, we see that discharging rings follow the same periodicity, Fig.(4.4). First,
the bright molecules show the rings, and then gradually, as the bias increases, it extends to
all over the lattice; even the darker-looking molecules in the transition regions show the
discharging rings. It seems what is modulated across the lattice is the discharging energy of
the molecules, which in turn modi�es their bright and dark appearance and possibly even
their Kondo temperature.

1In pattern (ii), it is not present, but visible in pattern (i), Fig.(4.1 g, h).
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Figure 4.2: Interference pattern (ii) of discharging rings of theNTCDA r-ML lattice.
a, b, Constant-current dI/dV −maps of the r-ML lattice show the interference pattern of
discharging rings incorporating the intertwining and �sh scale structure along di�erent
axis (Vb = 1.4 V and 1.5 V, It = 2 nA, T = 1.3 K, B = 0 T). c and d are zoom-in images of
panel a and b, respectively.
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4.2 Conclusion

We conclude this chapter by raising an important question about the patterns we have seen
so far under di�erent conditions. What drives the rings to develop a di�erent pattern of in-
terference? Is it encoded into the magnetic �eld, lattice type, sample preparation or the tip,
since these are the apparent parameters vary among them2? Regarding the controversial
role of magnetism, we have to consider the fact that the electron involved in the discharg-
ing process has an screened spin due to the Kondo e�ect (TK ∼ 130 K), which requires at
least 15 T external magnetic �eld to show some signatures of magnetism. However, from
other measurements3, we know that the discharging peaks sharpens under applied mag-
netic �eld. A clear signature that over the discharging events the electron’s spin is freed up
from the Kondo singlet. Yet, one has to take into account that the discharging peaks occurs
roughly around 1.5 eV, which is far beyond the reach of spin-related e�ects to play a signif-
icant role4. Therefore, the e�ect of magnetic �eld on the patterns, apart from sharpening
of the rings, remains unclear and demands for further investigations.

As explained in Sec.(2.2), the NTCDA/Ag(111) is a substrate-mediated molecular lattice
with various coverage-dependent phases. The lattice coverage controls the spacing be-
tween molecules, which in turn determines the strength of interaction between di�erent
entities, such as molecule-molecule and metal-molecule interactions. Consequently, the
microscopic parameters such as hopping, hybridization, on-site energy, Coulomb repul-
sion, etc., could vary from lattice to lattice. Unfortunately, there are several technical barri-
ers, computational and experimental, to gain realistic information about these microscopic
quantities and how they impact the shape of the charging rings. From the theoretical side,
this is due to the fact that the NTCDA/Ag(111) is a strongly correlated electron lattice sys-
tem with a very large unit cell, and even though many of the single-molecule parameters
are extracted [17, 49], ab initio calculations for the lattice problem are still missing. Simi-
lar blindness is also re�ected in the experiments. From the experimental side, the control
parameter to characterize the lattice is the molecular coverage which is determined by the
deposition time and the substrate temperature during sample preparation, presuming that
there are su�ciently large terraces on the silver substrate to deposit the molecule. Usually,
this quantity is not sharply determined and has �exibility for a given phase, Tab.(2.2), which
subsequently reserves a similar attitude in the above-mentioned microscopic parameters.
Besides this, the STM tip, which we have little knowledge about its shape and symmetries,
acts not only as a local probe but also modi�es the parameters of the sample, such as the
electron’s on-site energy via its electric �eld. These discouraging myriad of unknowns im-
pede a full characterization of the observed interference patterns, but nevertheless, in the
next chapter, we will humbly approach the problem with the power of toy models!

2 I have deliberately labeled each dataset by the sample (A,B), lattice type (r-ML, rippled), and the applied
magnetic �eld so that one knows they are obtained under di�erent conditions. Because in topographic images
they are almost identical, except in r-ML and rippled phase.

3 Not reported here.
4 One caveat about the eV-energy scale of the discharging peaks is that, it is the energy needed to bring

the electron to the Fermi level by the tip’s electric �eld which acts like a local top-gate. Otherwise, it is not
the intrinsic energy of the discharged electrons as they reside at the Fermi level of the sample.
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We present a class of single-particle model Hamiltonians tailored to simulate
the measurements discussed before. Eventually, the aim is to calculate the tunnel-
ing conductance between the metallic tip and the lattice inside the STM junction
over a given area in real-space, dI/dV(x,y). We start with a generic Hamiltonian
and later add or drop terms based on their relevance to the experimental results.
Therefore, not all scenarios discussed in this chapter can be realized in experi-
ment. Unlike momentum-space, where calculations are fairly straightforward for
periodic or in�nite lattices, there are many subtleties to be noticed in real-space,
especially for imposing periodic boundary conditions. Therefore, our strategy is
to break the large real-space Hamiltonian matrix into a set of block matrices and
provide a modular procedure to combine them. In this approach, even though the
number of matrices to be constructed is large, the transparency and modularity of
the method signi�cantly help us to spot mistakes, and also modify them to make
di�erent models.

73



Chapter 5

5.1 Model Hamiltonian

The model is presented schematically in Fig.(5.2). We start with the following Hamiltonian

H = HA +HB +HAB +H
G
tip, (5.1)

where HA describes the on-site energy (EA) and staggered next-nearest-neighbour hop-
ping (t1A, t2A) of the electron between A-sites

HA =∑
i

∑
σ=↑,↓

EA c
†
A,iσcA,iσ − ∑

⟨⟨i,j⟩⟩
∑
σ=↑,↓

[t1A c
†
A,iσcA,jσ +h.c.]− ∑

⟨⟨i,j⟩⟩
∑
σ=↑,↓

[t2A c
†
A,iσcA,jσ +h.c.],

(5.2)
HB describes only on-site energy (EB) of the electron on B-sites (no hopping)

HB =∑
i

∑
σ=↑,↓

EB c
†
B,iσcB,iσ , (5.3)

HAB describes a complex nearest-neighbor hybridization (hopping) between A- and B-sites
[34]

HAB = ∑
⟨i,j⟩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c†A,i↑
c†B,j↑
c†A,i↓
c†B,j↓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −V ↑↑ABe
iθ 0 0

−V ↑↑ABe
−iθ 0 0 0

0 0 0 −V ↓↓ABe
−iθ

0 0 −V ↓↓ABe
iθ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cA,i↑
cB,j↑
cA,i↓
cB,j↓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.4)

and HGtip term describes the local tip-gating e�ect imposed on the electron at sites A and B

HGtip =∑
i

∑
σ=↑,↓

U eff
i c†A,iσcA,iσ +∑

i

∑
σ=↑,↓

U eff
i c†B,iσcB,iσ (5.5)

with the following band-bending electrostatic potential1 [77, 131]

U eff
i = α

eVb

1 + ε0
di
r

where di = ((xi − xtip)
2 + (yi − ytip)

2)
1/2
. (5.6)

Here, c†A,iσ and cA,iσ are the creation and annihilation operators of an electron with spin σ
at i−th site of the sublattice A and likewise in sublattice B. The brackets ⟨i, j⟩ and ⟨⟨i, j⟩⟩
in the sums stand for nearest- and next-nearest- neighbors indices. The A-B hybridiza-
tion matrix allows electrons with parallel and anti-parallel spins to have di�erent Peierls
phase (e±iθ), and therefore, hop in opposite directions in the unit cell [132–134]. This is
inspired by Haldane’s work on Graphene, which assumes a phase-dependent hopping be-
tween next-nearest neighbors, based on the assumption that electrons face di�erent energy
landscapes on the left and right sides while hopping forward and backward between the
sites. Similarly, we can see that in the NTCDA lattice, an electron hopping from the dark to
bright molecules faces the bridge-site on the right side, where the density of states is sup-
pressed, while on the left side, it faces the CH-site, where the Kondo resonance is localized,

1 The potential is modi�ed by the prefactorα compared to Ref.[77] and Ref.[131], and also the constantW0

representing the di�erence in the work functions between the tip and sample in those references is absorbed
by the shift of on-site energies.
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Tight-binding model of discharging rings

Figure 5.1: Inter-molecule phase-dependent hybridization and real hopping in the
NTCDA lattice. a, Complex hybridization between bright and dark molecules with ar-
rows indicating the positive phase convention. b, Staggered real hopping between bright
molecules with single and double lines indicating the strong and weak bonds.

Fig.(7.1a). This argument does not hold for the hopping between two bright or two dark
molecules as the left and right (top and bottom) environments are identical in those paths,
Fig.(7.1b).

The STM tip plays the role of a local top-gate that shifts the onsite energy of electron at
each lattice site by amount U eff

i . The value of U eff
i is determined by bias voltage between

tip and sample (Vb), electric charge (e), gating e�ciency (α), electrostatic dielectric con-
stant of the sample (ε0), tip radius (r), and the tip-sample distance (di).

To preserve the periodic boundary condition (PBC), the �rst and last sites must be con-
nected to each other in each row and column. Applying this condition results in additional
cells, which we shaded with light yellow color to distinguish them from the rest of the cells
in the schematic lattice, Fig.(5.2). This is the consequence of having the nearest-neighbor
hopping and hybridization in the Hamiltonian. In case there is a next-nearest neighbor
hopping, the �rst and second sites in each row and column must be connected to the last
and before the last ones, which requires appending one more cell. There is an important
remark regarding the metric we use to evaluate the local gate potential in Eq.(5.6). Consider
the tip is sweeping a row with nx sites (Ai → Bi+1 → ⋯→ Bnx → Ai) of a lattice with width
Lx = nx ax. Due to PBC, there are two Euclidean distances between the tip and site i along
the x-axis: d(1)i,x = ∣xi − xtip∣, and d(2)i,x = Lx − ∣xi − xtip∣. It is straightforward to check that
d
(1)
i,x < d

(2)
i,x before the tip reaches the middle of the row and d(2)i,x ≤ d

(1)
i,x , otherwise. The same

argument is true for a sweep along the y-axis for d(1)i,y and d(2)i,y distances. To compute the
local gating potential U eff

i , we choose the minimum distance along each axis.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

di,x = min(d(1)i,x , d
(2)
i,x )

di,y = min(d(1)i,y , d
(2)
i,y )

→ di = (d2i,x + d
2
i,y)

1/2.
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Figure 5.2: Schematic of a bipartite lattice comprises of sites A and B with stag-
gered hopping and complex hybridization. Sublattices A and B are speci�ed by red and
green circles, which are separated by the lattice constant (a). The lattice constant of sub-
lattice A and B is (a

√
2). The hopping is merely between A-sites and staggered by strong

(double red line) and weak bond (single red line). The complex hybridization is between A-
and B-sites (black line) with an arrow specifying the direction of the hybridization (phase).
The light yellow cells impose periodic boundary conditions on the lattice. To compare this
lattice with the arrays of bright and dark molecules in the NTCDA lattice, one should as-
sign the A-sites (red: 1, 6, 11, ...) to the chain of bright molecules and the B-sites (green:
2, 7, 12, ...) to dark ones.
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5.2 Matrix structure of the real-space Hamiltonian

This section can be used as a manual to follow our python source code provided at the
supplement of this thesis, Sup.(B). The variable naming and matrix structure obey a similar
style to make reading the code smoother. The Hamiltonian of the spin-1/2 electron, Eq.(5.1),
can be decomposed into a Hspin ⊗HA−B space as

H = [
Ψ↑
Ψ↓

]

T

[
H↑↑ H↑↓
H↓↑ H↓↓

] [
Ψ↑
Ψ↓

]

with the following basis

Ψ↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψA1↑
ψB2↑
ψA3↑
ψB4↑
⋮

ψBN↑

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ψ↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψA1↓
ψB2↓
ψA3↓
ψB4↓
⋮

ψBN↓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where indices running over �avor (A, B) and lattice site number (i = 1,2, ..., N ). The Hilbert
space of the full Hamiltian has a (2N × 2N) size, where N can be decomposed into the
number of sites in rows and columns (N = nx ×ny) of the lattice. All four blocks of the full
Hamiltonian are cyclic block tri-diagonal matrices that will explore their structure in
the following sections. Since there no spin mixing term in the Hamiltonian, we can already
set H↑↓ = H↓↑ = 0.

5.2.1 Diagonal blocks: H↑↑ and H↓↓

We construct the full Hamiltonian matrix block by block, starting with H↑↑,

H↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1x↑↑ O1y↑↑ 0 0 0 ⋯ 0 0 O
†
2y↑↑

O
†
1y↑↑ D2x↑↑ O2y↑↑ 0 0 ⋯ 0 0 0

0 O
†
2y↑↑ D1x↑↑ O1y↑↑ 0 ⋯ 0 0 0

0 0 O
†
1y↑↑ D2x↑↑ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ D1x↑↑ O1y↑↑ 0 0

0 0 0 ⋱ ⋱ O
†
1y↑↑ D2x↑↑ O2y↑↑ 0

0 0 0 0 0 0 O
†
2y↑↑ D1x↑↑ O1y↑↑

O2y↑↑ 0 0 ⋯ 0 0 0 O
†
1y↑↑ D2x↑↑

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.7)

The PBC is automatically imposed on the blocks by satisfying the following conditions

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

[H↑↑]1,N = [H↑↑]
†
2,3

[H↑↑]N,1 = [H↑↑]
†
3,2

. (5.8)
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First, we �nd its diagonal blocks, D1x↑↑ and D2x↑↑, which generate the on-site energies and
hybridization between A and B sites along the row of the lattice. The D1x↑↑ matrix follows
as

D1x↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EA +U
eff
1 −V ↑↑ABe

iθ 0 0 0 ⋯ 0 0 −V ↑↑ABe
iθ

−V ↑↑ABe
−iθ EB +U

eff
1 −V ↑↑ABe

−iθ 0 0 ⋯ 0 0 0

0 −V ↑↑ABe
iθ EA +U

eff
2 −V ↑↑ABe

iθ 0 ⋯ 0 0 0

0 0 −V ↑↑ABe
−iθ EB +U

eff
2 ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ EA +U
eff
N−1 −V ↑↑ABe

iθ 0 0

0 0 0 ⋱ ⋱ −V ↑↑ABe
−iθ EB +U

eff
N−1 −V ↑↑ABe

−iθ 0

0 0 0 0 ⋱ 0 −V ↑↑ABe
iθ EA +U

eff
N −V ↑↑ABe

iθ

−V ↑↑ABe
−iθ 0 0 ⋯ 0 0 0 −V ↑↑ABe

−iθ EB +U
eff
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the PBC is imposed on the linking elements by satisfying the following conditions

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

[D1x↑↑]1,nx
= [D1x↑↑]

∗
2,1

[D1x↑↑]nx,1
= [D1x↑↑]

∗
1,2

. (5.9)

One can track the alternating phase reversal in D1x↑↑ from site to site by following the
arrows in Fig.(5.2). By convention, moving along the arrow is assigned to eiθ, and the
opposite to e−iθ. Moreover, notice in Fig.(5.2) that from one row to the next, the starting
site switches from A to B. This leads to the following elements for D2x↑↑ matrix

D2x↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EB +U
eff
1 −V ↑↑ABe

−iθ 0 0 0 ⋯ 0 0 −V ↑↑ABe
−iθ

−V ↑↑ABe
iθ EA +U

eff
1 −V ↑↑ABe

iθ 0 0 ⋯ 0 0 0

0 −V ↑↑ABe
−iθ EB +U

eff
2 −V ↑↑ABe

−iθ 0 ⋯ 0 0 0

0 0 −V ↑↑ABe
iθ EA +U

eff
2 ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ EB +U
eff
N−1 −V ↑↑ABe

−iθ 0 0

0 0 0 ⋱ ⋱ −V ↑↑ABe
iθ EA +U

eff
N−1 −V ↑↑ABe

iθ 0

0 0 0 0 ⋱ 0 −V ↑↑ABe
−iθ EB +U

eff
N −V ↑↑ABe

−iθ

−V ↑↑ABe
iθ 0 0 ⋯ 0 0 0 −V ↑↑ABe

iθ EA +U
eff
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The PBC of the D2x↑↑ is imposed similar to Eq.(5.9). We have to take into account that di-
mension of these two matrices are (nx × nx), where nx is the number of sites in a row of
the lattice. The D1x↑↑ and D2x↑↑ matrices sit alternately on the diagonal blocks of H↑↑ to
capture the periodic reversal of �ow and specie in successive rows (see Fig.(5.2)).

The o�-diagonal blocks ofH↑↑ consist ofO1y↑↑ andO2y↑↑ matrices, and their complex trans-
pose. They generate the staggered hopping (t1A, t2A) between two A-sites for a spin up
electron, and also hybridization between A and B sites along the column of the lattice. The

78



Tight-binding model of discharging rings

O1y↑↑ matrix can be found as

O1y↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↑↑AB e
−iθ −t1A 0 0 0 ⋯ 0 0 −t2A

0 −V ↑↑AB e
iθ 0 0 0 ⋯ 0 0 0

0 −t2A −V ↑↑AB e
−iθ −t1A 0 ⋯ 0 0 0

0 0 0 −V ↑↑AB e
iθ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 −t2A ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↑↑AB e

−iθ −t1A 0 0
0 0 0 ⋱ ⋱ 0 −V ↑↑AB e

iθ 0 0
0 0 0 ⋱ 0 0 −t2A −V ↑↑AB e

−iθ −t1A
0 0 0 ⋯ 0 0 0 0 −V ↑↑AB e

iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and O2y↑↑ matrix as

O2y↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↑↑AB e
iθ 0 0 0 0 ⋯ 0 0 0

−t2A −V ↑↑AB e
−iθ −t1A 0 0 ⋯ 0 0 0

0 0 −V ↑↑AB e
iθ 0 0 ⋯ 0 0 0

0 0 −t2A −V ↑↑AB e
−iθ −t1A ⋱ ⋱ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↑↑AB e

iθ 0 0 0
0 0 0 ⋱ ⋱ −t2A −V ↑↑AB e

−iθ −t1A 0
0 0 0 ⋱ 0 0 0 −V ↑↑AB e

iθ 0
−t1A 0 0 ⋯ 0 0 0 −t2A −V ↑↑AB e

−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Their complex transpose reads

O
†
1y↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↑↑AB e
iθ 0 0 0 0 ⋯ 0 0 0

−t1A −V ↑↑AB e
−iθ −t2A 0 0 ⋯ 0 0 0

0 0 −V ↑↑AB e
iθ 0 0 ⋯ 0 0 0

0 0 −t1A −V ↑↑AB e
−iθ −t2A ⋱ ⋱ ⋮ ⋮

0 0 0 0 ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↑↑AB e

iθ 0 0 0
0 0 0 ⋱ ⋱ −t1A −V ↑↑AB e

−iθ −t2A 0
0 0 0 ⋱ 0 0 0 −V ↑↑AB e

iθ 0
−t2A 0 0 ⋯ 0 0 0 −t1A −V ↑↑AB e

−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

O
†
2y↑↑ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↑↑AB e
−iθ −t2A 0 0 0 ⋯ 0 0 −t1A

0 −V ↑↑AB e
iθ 0 0 0 ⋯ 0 0 0

0 −t1A −V ↑↑AB e
−iθ −t2A 0 0 0 0 0

0 0 0 −V ↑↑AB e
iθ 0 ⋱ ⋮ ⋮ ⋮

0 0 0 −t1A ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↑↑AB e

−iθ −t2A 0 0
0 0 0 ⋱ ⋱ ⋱ −V ↑↑AB e

iθ 0 0
0 0 0 0 0 0 −t1A −V ↑↑AB e

−iθ −t2A
0 0 0 ⋯ 0 0 0 0 −V ↑↑AB e

iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The size of these four matrices are (ny ×ny), where ny is the size of a column of the lattice.
Without loss of generality, we choose ny = nx.
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In a similar way, we construct H↓↓ as

H↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1x↓↓ O1y↓↓ 0 0 0 ⋯ 0 0 O
†
2y↓↓

O
†
1y↓↓ D2x↓↓ O2y↓↓ 0 0 ⋯ 0 0 0

0 O
†
2y↓↓ D1x↓↓ O1y↓↓ 0 ⋯ 0 0 0

0 0 O
†
1y↓↓ D2x↓↓ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ D1x↓↓ O1y↓↓ 0 0

0 0 0 ⋱ ⋱ O
†
1y↓↓ D2x↓↓ O2y↓↓ 0

0 0 0 0 0 0 O
†
2y↓↓ D1x↓↓ O1y↓↓

O2y↓↓ 0 0 ⋯ 0 0 0 O
†
1y↓↓ D2x↓↓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.10)

where the PBC forH↓↓ is imposed similar to Eq.(5.8). TheD1x↓↓ matrix generates the on-site
energies and the hybridization of electron with spin down between A and B sites along a
row of the lattice. It reads

D1x↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EA +U
eff
1 −V ↓↓ABe

−iθ 0 0 0 ⋯ 0 0 −V ↓↓ABe
−iθ

−V ↓↓ABe
iθ EB +U

eff
1 −V ↓↓ABe

iθ 0 0 ⋯ 0 0 0

0 −V ↓↓ABe
−iθ EA +U

eff
2 −V ↓↓ABe

−iθ 0 ⋯ 0 0 0

0 0 −V ↓↓ABe
iθ EB +U

eff
2 ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ EA +U
eff
N−1 −V ↓↓ABe

−iθ 0 0

0 0 0 ⋱ ⋱ −V ↓↓ABe
iθ EB +U

eff
N−1 −V ↓↓ABe

iθ 0

0 0 0 0 ⋱ 0 −V ↓↓ABe
−iθ EA +U

eff
N −V ↓↓ABe

−iθ

−V ↓↓ABe
iθ 0 0 ⋯ 0 0 0 −V ↓↓ABe

iθ EB +U
eff
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and for the next row, we use D2x↓↓

D2x↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EB +U
eff
1 −V ↓↓ABe

iθ 0 0 0 ⋯ 0 0 −V ↓↓ABe
iθ

−V ↓↓ABe
−iθ EA +U

eff
1 −V ↓↓ABe

−iθ 0 0 ⋯ 0 0 0

0 −V ↓↓ABe
iθ EB +U

eff
2 −V ↓↓ABe

iθ 0 ⋯ 0 0 0

0 0 −V ↓↓ABe
−iθ EA +U

eff
2 ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ EB +U
eff
N−1 −V ↓↓ABe

iθ 0 0

0 0 0 ⋱ ⋱ −V ↓↓ABe
−iθ EA +U

eff
N−1 −V ↓↓ABe

−iθ 0

0 0 0 0 ⋱ 0 −V ↓↓ABe
iθ EB +U

eff
N −V ↓↓ABe

iθ

−V ↓↓ABe
−iθ 0 0 ⋯ 0 0 0 −V ↓↓ABe

−iθ EA +U
eff
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where again one should notice that the A and B on-site energies, and the direction of �ow
has been switched from D1x↓↓ to D2x↓↓ matrix.
The o�-diagonal blocks ofH↓↓ consist ofO1y↓↓ andO2y↓↓ matrices, and their complex trans-
pose. They generate the staggered hopping (t1A, t2A) of a spin down electron between two
A-sites, and also the hybridization between A and B sites along the column of the lattice.
The O1y↓↓ matrix can be found as

O1y↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↓↓AB e
iθ −t1A 0 0 0 ⋯ 0 0 −t2A

0 −V ↓↓AB e
−iθ 0 0 0 ⋯ 0 0 0

0 −t2A −V ↓↓AB e
iθ −t1A 0 ⋯ 0 0 0

0 0 0 −V ↓↓AB e
−iθ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 −t2A ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↓↓AB e

iθ −t1A 0 0
0 0 0 ⋱ ⋱ 0 −V ↓↓AB e

−iθ 0 0
0 0 0 ⋱ 0 0 −t2A −V ↓↓AB e

iθ −t1A
0 0 0 ⋯ 0 0 0 0 −V ↓↓AB e

−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and O2y↓↓ matrix as

O2y↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↓↓AB e
−iθ 0 0 0 0 ⋯ 0 0 0

−t2A V ↓↓AB e
iθ −t1A 0 0 ⋯ 0 0 0

0 0 −V ↓↓AB e
−iθ 0 0 ⋯ 0 0 0

0 0 −t2A −V ↓↓AB e
iθ −t1A ⋱ ⋱ ⋮ ⋮

0 0 0 ⋱ ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↓↓AB e

−iθ 0 0 0
0 0 0 ⋱ ⋱ −t2A −V ↓↓AB e

iθ −t1A 0
0 0 0 ⋱ 0 0 0 −V ↓↓AB e

−iθ 0
−t1A 0 0 ⋯ 0 0 0 −t2A −V ↓↓AB e

iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Their complex transpose reads

O
†
1y↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↓↓AB e
−iθ 0 0 0 0 ⋯ 0 0 0

−t1A −V ↓↓AB e
iθ −t2A 0 0 ⋯ 0 0 0

0 0 −V ↓↓AB e
−iθ 0 0 ⋯ 0 0 0

0 0 −t1A −V ↓↓AB e
iθ −t2A ⋱ ⋱ ⋮ ⋮

0 0 0 0 ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↓↓AB e

−iθ 0 0 0
0 0 0 ⋱ ⋱ −t1A −V ↓↓AB e

iθ −t2A 0
0 0 0 ⋱ 0 0 0 −V ↓↓AB e

−iθ 0
−t2A 0 0 ⋯ 0 0 0 −t1A −V ↓↓AB e

iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

O
†
2y↓↓ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−V ↓↓AB e
iθ −t2A 0 0 0 ⋯ 0 0 −t1A

0 −V ↓↓AB e
−iθ 0 0 0 ⋯ 0 0 0

0 −t1A −V ↓↓AB e
iθ −t2A 0 0 0 0 0

0 0 0 −V ↓↓AB e
−iθ 0 ⋱ ⋮ ⋮ ⋮

0 0 0 −t1A ⋱ ⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ −V ↓↓AB e

iθ −t2A 0 0
0 0 0 ⋱ ⋱ ⋱ −V ↓↓AB e

−iθ 0 0
0 0 0 0 0 0 −t1A −V ↓↓AB e

iθ −t2A
0 0 0 ⋯ 0 0 0 0 −V ↓↓AB e

−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5.3 Lattice conductance

To compute the conductance (G) of the lattice we make use of Eq.(1.64),

G = e2∑
k,σ
∫

dξ

2π

ΓLΓR

ΓL + ΓR
A(dk, σ, ξ) (−

∂nF(ξ)

∂ξ
)

that we derived in great detail in chapter 1. It is worth recalling that in this formula the
dispersion of the metallic tip and substrate

H0 =∑
k,σ

εsub,k c
†
sub,kσcsub,kσ +∑

k,σ

εtip,kc
†
tip,kσctip,kσ,

the tunneling between the sample and substrate,

H
(1)
tunn. =∑

i

∑
σ=↑,↓

[Γ1 c
†
sub,iσdiσ + h.c.]
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and also the tunneling between the tip and sample

H
(2)
tunn. =∑

i

∑
σ=↑,↓

[Γ2 c
†
tip,iσdiσ + h.c.].

are already accounted for small bias approximation (see chapter 1), and we only have to
determine the sample spectral function A(dk, σ, ξ), which is a simple task since the lat-
tice Hamiltonian, Eq.(5.1), is quadratic and can be exactly diagonalized. Considering the
de�nition of density of states in terms of spectral function

ρ(ξ) =∑
k,σ

A(k, σ, ξ) = ∣Ψ(ξ)∣2,

we compute the following quantity as the tip sweeps the lattice in discrete steps

G ∼∑
ξ

∣Ψ(ξ)∣2 (−
∂nF(ξ)

∂ξ
) ,

where ξ and Ψ(ξ) are the eigenvalue and eigenstate of the lattice Hamiltonian which we
obtain by diagonalization of the full Hamiltonian at each step.

5.4 Simulation of discharging rings interference pattern

Here, we systematically explore the parameter space of the full Hamiltonian. In each sim-
ulation, we variate only one parameter and keep the other parameters constant so that we
can monitor the e�ect of that speci�c parameter on the discharging pattern without losing
track. Since the size of the parameter space is relatively large, we restrict the simulations
to six interesting collections of the most relevant intervals.

5.4.1 Pattern (1): a trivial pattern

The most straightforward discharging pattern is obtained by setting the hopping and hy-
bridization amplitudes to zero and the sublattice on-site energies (EA, EB) to a �nite value,
Fig.(5.3). In this case, we can see that dots appear when the tip’s local potential reaches the
on-site energy of electrons at the sublattice A and turn into ever-growing rings as it ramps
up. More importantly, rings always constructively interfere at the crossings in this setting.

5.4.2 Pattern (2): hybridized rings

We can see that intensity modulates around a ring when the A-B hybridization amplitudes
take �nite real values, Fig.(5.4). Similar to the trivial pattern, there is no gap opening at the
crossing of the rings, but obviously, the intensity shifts more from the A-B axis to the A-A
axis as the hopping amplitudes increases. This becomes more obvious when we show the
line-cut of this pattern along the A-B axis.
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5.4.3 Pattern (3): a complex pattern

A diverse number of e�ects emerges as the hybridization takes a �nite phase (θ = π/2)
and when we allow the electrons to have a �nite staggered hopping in the sublattice A-
sites, Fig.(5.5). Most notably, the continuous symmetry of a ring reduces to a two-fold
symmetry, and a gap opens at the crossings. This set of parameters is the most interesting
case because it generates the closest patterns to the maps we have for the NTCDA/Ag(111)
measurements.

5.4.4 Position dependence

Looking at the line-map of the three cases above side by side in Fig.(5.6), shows unambigu-
ously how hybridization shifts the intensity and opens a small gap at the crossing point of
two consecutive rings along the A-B axis and also a much larger gap opening along the bias
axis once the staggered hopping amplitude becomes �nite. Furthermore, we can discern a
parabolic dependence of bias to (lateral) position in all cases.

5.4.5 Phase dependence

Changing phase of the complex hybridization in Fig.(5.7) makes a π-periodic modulation
of the conductance intensity. It transfers the conductance from the oval shapes created by
the intersection of two rings (two discharging events) to the small square regions created
by the intersection of four rings (four discharging events). As a matter of fact, reproducing
the pattern we see in measurements requires �ne-tuning of the phase to obtain the correct
intensity. Therefore, a real hybridization is insu�cient.

5.4.6 Hopping amplitude dependence

Increasing the staggered hopping amplitudes (t1A, t2A) of the sublattice A, Fig.(5.8),2 gen-
erates a gap along the hopping direction, for it pushes the electron energy level further
below the Fermi level and thus harder to be gated3. This allows us to e�ectively make a
hard and easy gating axis for the electrons, i.e., anisotropy. Besides, we can see that hopping
broadens the linewidth of the rings.

2 Without loss of generality, we set t2A = 0 and only change t1A.
3 The electron hopping term (kinetic energy) in the real-space Hamiltonian comes with a minus sign

convention which e�ectively lowers the on-site energy of the electron.
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Figure 5.3: Evolution of discharging rings interference pattern (1) with increasing
bias voltage. The 2D conductance map simulations are obtained with the following model
parameters: EA = −0.5 and EB = 3.0 for the on-site energies of A and B sites, t1A = t2A = 0

for the staggered hopping amplitudes of the electron in the sublattice A, V ↑↑AB = V ↓↓AB = 0.0

for the hybridization amplitude of the spin up and down electrons between sublattice A
and B, θ = 0 for the complex phase of the hybridization, T = 0.01 for the temperature, r = 1,
α = 0.5, and ε0 = 2 for the radius of the tip apex, tip-gating e�ciency, and sample dielectric
constant, respectively.

Figure 5.4: Evolution of discharging rings interference pattern (2) with increasing
bias voltage. The 2D conductance map simulations are obtained with the following model
parameters: EA = −0.5 and EB = 3.0 for the on-site energies of A and B sites, t1A = t2A = 0

for the staggered hopping amplitudes of the electron in the sublattice A, V ↑↑AB = V ↓↓AB = 0.1

for the hybridization amplitude of the spin up and down electrons between sublattice A
and B, θ = 0 for the complex phase of the hybridization, T = 0.01 for the temperature, r = 1,
α = 0.5, and ε0 = 2 for the radius of the tip apex, tip-gating e�ciency, and sample dielectric
constant, respectively.
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Figure 5.5: Evolution of discharging rings interference pattern (3) with increasing
bias voltage. The 2D conductance map simulations are obtained with the following model
parameters: EA = −0.5 and EB = 3.0 for the on-site energies of A and B sites, t1A = 0.1

and t2A = 0 for the staggered hopping amplitudes of the electron in the sublattice A, V ↑↑AB =

V ↓↓AB = 0.1 for the hybridization amplitude of the spin up and down electrons between
sublattice A and B, θ = π/2 for the complex phase of the hybridization, T = 0.01 for the
temperature, r = 1, α = 0.5, and ε0 = 2 for the radius of the tip apex, tip-gating e�ciency,
and sample dielectric constant, respectively. The parameters are set to reveal the e�ect of
complex hybridization amplitudes and staggered hopping on the patterns.

Figure 5.6: Position dependence of the discharging rings. The line-map simulations
along the A-B axis of the bipartite lattice show parabolic modulation of the bias as a function
of position, and also shift of intensity and gap opening at the crossing points of neighbour-
ing rings. Panel (a), (b), and (c) are line-cuts of case (1), (2), and (3), respectively. The labels
on panel (a) specify the number of discharging events.
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Figure 5.7: Phase dependence of the discharging rings. The 2D conductance map
simulations are obtained while all parameters kept constant except the phase (θ) of the
complex hybridization which is varied by a π/4 step. The constant parameters are: EA =

−0.5 andEB = 3.0 for the on-site energies of A and B sites, Vb = 2.8 V for the bias, t1A = t2A =

0 for the staggered hopping amplitudes of the electron in the sublattice A, V ↑↑AB = V ↓↓AB = 0.1

for the hybridization amplitude of the spin up and down electrons between sublattice A
and B, T = 0.01 for the temperature, r = 1, α = 0.5, and ε0 = 2 for the radius of the tip apex,
tip-gating e�ciency, and sample dielectric constant, respectively.

Figure 5.8: Hopping amplitude dependence of the discharging rings. The 2D conduc-
tance map simulations are obtained while all parameters kept constant except the staggered
hopping amplitude (t1A). The constant parameters are: EA = −0.5 and EB = 3.0 for the
on-site energies of A and B sites, Vb = 2.0 V for the bias, t2A = 0 for the staggered hopping
amplitudes of the electron in the sublattice A, V ↑↑AB = V ↓↓AB = 0.1 for the hybridization ampli-
tude of the spin up and down electrons between sublattice A and B, θ = π/2 for the complex
phase of the hybridization, T = 0.01 for the temperature, r = 1, α = 0.5, and ε0 = 2 for the
radius of the tip apex, tip-gating e�ciency, and sample dielectric constant, respectively.

5.5 Conclusion

We conclude this chapter by summarizing what we were able to simulate with this simple
model. As a matter of fact, the rings are created as a direct consequence of the tip’s local
electric �eld that shifts the on-site energy of the electron to the Fermi level, which leads
to a spike in the tunneling conductance. Considering the spatial dependence of the electric
�eld, a ring is an equipotential line where the tip can discharge the electron located at its
center. Naturally, as the electric potential increases, the size of the ring increases, mean-
ing that the tip can discharge the electron at farther distances. Once the size of the rings
surpasses the unit-cell size, they will interfere with each other and form new discharging
patterns. In other words, the tip can be coupled to multiple charges located at di�erent
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lattice positions at the same time.

In the simplest version of the model, where the lattice Hamiltonian of A- and B-sites com-
prises only the on-site energies, the interference of the above-mentioned tunneling chan-
nels is always constructive, and therefore, the rings add up at the crossing points. However,
once we let the electrons hop or hybridize between di�erent sites and sublattices, new fea-
tures appear on the discharging patterns. Most remarkably, hopping and hybridization shift
the conductance intensity, broadens the ring’s linewidth, and open up di�erent gaps at the
crossing points. Additionally, we have seen that a complex hybridization induces an alter-
nating orbital current in the lattice, which leads to the redistribution of the conductance
intensity between di�erent discharging zones.

Last but not least, we have to be cautious that several important terms are missing in this
model. Even though the relevance and substantiation of these terms goes beyond the scope
of this thesis, very brie�y, we will touch on them in the following. As we mentioned above,
there are zones in the patterns where the tip is coupled to multiple charges4 on the lattice.
This means that the Coulomb interaction and correlation e�ect of these charges must be
accounted for in the tunneling conductance. Moreover, even though we have included the
spin degree of freedom in the single-particle Hamiltonian, it remains degenerate through-
out the formalism. Upon the necessity, one can lift the spin degeneracy in various ways.
The simplest way is to lift it along the z-axis with an applied magnetic �eld (Bz). This
can be easily included in the Hamiltonian matrix as a Zeeman term (gµBBzSz) via the
following substitution (EA → EA ± gµBBz) for the spin-up (+) and spin-down (−) blocks.
It results in the doubling of the rings. Another way to lift the Sz degeneracy is through the
hybridization Hamiltonian, Eq.(5.4), by setting V ↑↑AB ≠ V ↓↓AB .

Figure 5.9: Lifting spin degeneracy giving rise to a double ring structure. Exam-
ples of lifting spin degeneracy: a, with an applied magnetic �eld (Bz ≠ 0); and b, with
the hybridization amplitudes V ↑↑AB ≠ V ↓↓AB . The simulation (a) is performed with the same
parameters as pattern (1), plus assuming Bz = 0.05, and simulation (b) with the same pa-
rameters as pattern (3), except for V ↑↑AB = 0.3 and V ↓↓AB = 0.1. Both simulations are obtained
at Vb = 1.6.

4 Zones with up to 4 discharges have been observed in our measurements.
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In a similar way, one can also lift the degeneracy for Sx and Sy. One way is to introduce
spin-�ip terms V ↑↓AB and V ↓↑AB in the hybridization Hamiltonian, Eq.(5.4). Another way can
be, for example, via the Dzyaloshinskii-Moriya interaction (DMI), which is an antisymmet-
ric exchange interaction between neighboring spins (i, j)

HDM =∑
i,j

D ⋅ (S⃗A,i × S⃗A,j). (5.11)

If we rewrite this term in the second quantization, it can be easily included into the Hamil-
tonian matrix. For the sake of simplicity, if we assume that the symmetry breaking happens
only along the y−axis,

D = (Dx, Dy, Dz) = (0, Dy, 0),

we can reduce Eq.(5.11) to

HDM =∑
i,j

Dy(SA,i,zSA,j,x − SA,j,xSA,i,z)

=∑
i,j

Dy[SA,i,z , SA,j,x]

=∑
i,j

Dy(2i h̵δi,j SA,i,y)

=∑
i

2ih̵Dy SA,i,y.

Now by setting (h̵ = 1) and using the Abrikosov’s pseudo-fermion representation of Sy
spin operator

SA,i,y = −
i

2
(c†A,i,↑cA,i,↓ − c

†
A,i,↓cA,i,↑),

we �nd the second quantized HDM as

HDM =Dy∑
i

(c†A,i,↑cA,i,↓ − c
†
A,i,↓cA,i,↑). (5.12)

The calculation follows analogously for the sublattice B. As we can see, the DMI is just
another channel for the spin-�ip process, which allows us to e�ectively break symmetry
along the y-axis. Including these spin-�ip terms (hybridization and DMI) into the Hamilto-
nian matrix is straightforward. One should only modify the diagonal elements of H↑↓ and
H↓↑ with ±Dy, and their o�-diagonal elements with V ↑↓AB and V ↓↑AB .
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It reminds Hollywoodmovies where a tiny turn of the head traverses you from
the classical to the quantum world. In nanoscale, however, owing to the magic of
symmetry; it is part of reality. This chapter explores the impact of symmetry and
adsorption geometry on the ground state of a metal-organic molecule adsorbed on
a transition metal dichalcogenide, a van der Waals 2D superconductor. Namely,
we identify two fundamentally di�erent spin-related ground states by means of
appliedmagnetic �elds and their apparent planar symmetries in STM images. The
two ground states are tunable by a small voltage pulse from the STM tip altering the
twist angle between the molecule and the underlying substrate. One of the ground
states is driven by a sizeable non-collinear Dzyaloshinskii–Moriya interaction be-
tween two electron spins on the molecule, which originates from the spin-orbit
coupling in the van der Waals 2D material with broken mirror symmetries. On
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the other ground state, we observe Yu-Shiba-Rusinov bound states, a genuinely
quantummechanical entity, formed due to partial screening of molecular spin by
Cooper pairs from the superconducting substrate.
This chapter is adapted from our publication [135]:
Wang, Y., Arabi, S., Kern, K. and Ternes, M. Symmetrymediated tunable molecular
magnetism on a 2D material. Commun Phys 4, 103 (2021).
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6.1 Introduction

The emergence of strong electronic correlations in condensed matter physics as a result of
modifying angle was initially introduced by twisted bilayer graphene, where a tiny angle
mismatch between graphene layers dramatically changes the ground state at macroscopic
scale and gives rise to unconventional superconductivity [136]. Here, we adopt a method-
ologically similar approach and resolve the changes of the ground state properties of a
molecule-superconductor hybrid system (CoPc/2H-NbSe2) at the nanoscale by means of a
low-temperature scanning probe microscope.

The Cobalt phthalocyanine (CoPc) is an e�ective spin-1/2 system in the gas phase. Upon
adsorption on the surface of an 2H-phase NbSe2, it is found in two possible ground states:
(i) a magnetic state with Yu-Shiba-Rusinov (YSR) bound states around the Fermi level, and
(ii) a non-magnetic singlet ground state with a triplet excited state. We attribute the origin
of the �rst ground state to the partial Kondo screening of the spin located on the central
metallic ion of the molecule by the Cooper pairs, while the other to the quench of the central
spin due to an in-plane antiferromagnetic interaction with a distributed magnetic moment
on the molecular ligands.

The key idea to understand the stark deviation in magnetic properties of the two ground
states is embedded in the signi�cant non-collinear Dzyaloshinskii–Moriya interaction (DMI)
induced by the 2D superconducting substrate [137, 138]. The DMI stems from the broken
in-plane inversion symmetry in 2H-NbSe2 and the signi�cant spin-orbit coupling of the
substrate induced by the heavy metal ion [139, 140].

6.2 Adsorption geometries of CoPc/2H-NbSe2

CoPc is a �at-lying metal-organic molecule with two possible adsorption sites on the surface
of 2H-NbSe2 that shows di�erent in-plane symmetries. The mirror planes of the molecule
are found either aligned or twisted by 15○ with respect to the three high symmetry planes
of the surface, Fig.(6.1). The two di�erent adsorption geometries can be explained by con-
sidering the point group symmetries of the molecule and the substrate. Upon adsorption,
the surface of 2H-NbSe2 acquire a C3ν cyclic symmetry, with three identical mirror planes,
and the CoPc a C4ν symmetry, with in-equivalent pairs of σν and σd mirror planes. The
symmetries of these two entities must conform, and as a result, all rotational symmetries
are broken, and only mirror planes survive. Therefore, the hybrid system can obtain the
maximum symmetry if one of the three σν mirror planes of the substrate aligns with one of
the σν of the CoPc, or otherwise with one of its σd mirror planes; resulting in only two dis-
tinct con�gurations which are o� by 15○ in-plane rotation. We observe that those molecules
where their σd are aligned with the substrate’s σν have magnetic properties similar to the
gas-phase CoPc, showing an e�ective spin S = 1/2 system [141]. We acronymize these
molecules as CoPcd. And respectively, those molecules in which their σν match with that
of the substrate show charge transfer [142–144], and acquire a non-magnetic ground state.
We accordingly acronymize them as CoPcν .
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Figure 6.1: Absorption symmetry and spectral �ngerprint of Cobalt phthalocya-
nine (CoPc) molecules on 2H-NbSe2. Constant current image of the 2H-NbSe2 surface
showing the 3 × 3 charge-density wave superstructure (Vb = −10 mV, Ip = 1 nA). b, c,
Constant-height scanning tunneling microscopy images of two CoPc molecules (Vb = 400

mV) adsorbed in di�erent orientations. Colored dashed lines in a-c mark the di�erent mir-
ror planes of the CoPc molecules and the 2H-NbSe2 surface. d, Model of the CoPc molecule
with its vertical σν (red lines) and diagonal σd (blue lines) mirror plane symmetries. e, f,
Absorption models of CoPc molecules on 2H-NbSe2. While the molecule in (e) is rotated
by 15○ with respect to one of the three principal axes of the substrate (gray dashed lines),
the molecule in (f) is aligned (Taken from [135]).

6.3 Group theory of CoPc/2H-NbSe2

The two adsorption geometries of the CoPc molecules on the 2H-NbSe2 substrate can be
understood using point-group theory. The gas-phase CoPc molecule has a D4h symmetry,
which, upon adsorption reduces due to the presence of the surface. Neglecting the charge
density wave at su�ciently low temperatures, the symmetry of 2H-NbSe2 surface reduces
from the D3h to the C3v point group [145]. Combining these two high symmetry groups
reduces the possible symmetry operations drastically. In particular, all non-trivial cyclic
operations, i.e., rotations by 360○, are broken due to the incommensurability of the allowed
C4 operations of the molecule with the C3 operations of the substrate. Additionally, the
inversion symmetry operation is also broken, leaving mirror symmetries as the only sym-
metry of the system.
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The surface with C3ν point group contains three mirror planes (σν) (see Fig. 6.2a), while
the CoPc molecule with C4ν symmetry has four mirror planes: two vertical σν and two
dihedral σd planes, which have 45○ angle mismatch (see Fig. 6.2b). To minimize the energy,
the CoPc prefers high symmetry adsorption sites. Therefore, we �nd the following two
con�guration sites where one of the substrate’s σν planes is either aligned with one of the
molecule’s σv planes (Fig. 6.2c), or with one of the molecule’s σd planes (Fig. 6.2d). The
former symmetry describes the nonmagnetic CoPcν , while the latter in which the molecule
is 15○ rotated describes the doubly degenerate (S = 1/2) system, CoPcd.

Figure 6.2: Symmetry conformation of CoPc/NbSe2. a, b, The symmetry elements
of C3ν and C4ν point group of the NbSe2 surface and the adsorbed CoPc molecule. c, d,
Sketch of the high symmetry conformation of the symmetry elements of the C3ν and C4ν

point groups.

6.4 Kelvin probe force microscopy of CoPc molecules

To identify di�erent charge states of the CoPc molecules, we performed the Kelvin probe
force microscopy (KPFM) on them. Our data, Fig.(6.3), shows a remarkable di�erence be-
tween the energies of the dips on CoPcd and CoPcν , allowing us to assign di�erent charge
states to them [146]. Evidently, the KPFM parabola of the CoPcν has a very broad dip around
−3.25 eV, meaning that the charge is delocalized over the ligands of the molecule, leading
to a negligible shift of the local work function. On the contrary, the CoPcd shows a sharper
dip at about −1.2 eV, implying that the charge is localized at Co2+ ion. We repeated the
measurements over the ligands and obtained similar results. To eliminate the possibility of
hydrogenation of the molecules as the origin of their di�erent spin states, rather than the
charge transfer that we proved above, we compared the topography and constant-height
frequency shift measurement of CoPcd, CoPcν , and H-CoPc in Fig.(6.4). The hydrogenated
molecule indicates a di�erent appearance from the other two.
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Figure 6.3: Kelvin probe force microscopy on CoPc molecules. a, Kelvin probe force
microscopy data obtained on the NbSe2 surface (black) and on the adsorbed CoPc molecules
(red and blue), respectively. b, A zoom-in as marked in a. All spectra were measured
with the same tip at the tip-sample distance. Dips on-top of the general parabolic spectra
indicates the charging of CoPcν (CoPc0ν →CoPc+ν ) and CoPcd (CoPc0d →CoPc+d ), respectively.

Figure 6.4: Hydrogenated CoPc. a, Constant-current SPM image (size 10 × 10 nm2) of
several CoPc molecules and one H-CoPc complex (lower left molecule). b, Zoom-in SPM
image of the H-CoPc complex (V = −500 mV, I = 10 pA). c, d, Constant height df image of
a H-CoPc (c) and a bare CoPcν molecule (d). Both molecules have a S = 0 ground state but
a signi�cant di�erence in the topographical appearance. Setpoint parameters at molecular
center of the H-CoPc complex: V = −500 mV I = 10 pA. Set point parameters at molecular
center of the bare CoPcν are V = −20 mV, I = 20 pA.
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6.5 YSR states on CoPcd molecules

Magnetic impurities induce subgap bound states on the surface of a s-wave superconduc-
tor, due to interaction of the unscreened impurity spin with the Andreev re�ected elec-
trons or holes, which can penetrates to the superconductor for several nanometers. The
phenomenon was independently discovered by Yu, Shiba and Rusinov in the late 1960s and
have been observed in numerous measurements since then [147–149]. Here we investigate
it in a molecular spin which is placed in a superconducting tunnel junction by means of a
lead coated tip [150], i.e., tip and substrate are both superconductors. The e�ective super-
conducting gap of the tip is ∆T ≈ 1.15 meV and of the substrate is ∆S ≈ 1.3 meV. The YSR
states appear in a particle-hole (PH) pair at ≈ ±1.8 mV on the molecule, with an asymmet-
ric intensities indicating PH symmetry breaking, Fig.(6.5 a, b). The origin of this symmetry
breaking is attributed to the nonmagnetic background Coulomb scattering [151], which we
estimate to πρSU = 0.28 ± 0.02.

Denoting the origin of the YSR states allows us to extract the fundamental scales of the
problem from the magnetic-dependent measurements. As we stated earlier, they can be
merely created in the weak Kondo coupling regime where normal conducting electrons are
depleted at the superconducting gap, leading to a partial Kondo screening of the impurity
spin. This requires that the Kondo temperature to be smaller than the Cooper pair binding
energy (∆S > kBTK) [152]. In other words, the local magnetic �eld of the unscreened
spin is not strong enough to break the Cooper pairs and locally collapse the superconduct-
ing gap. Therefore, to see the Kondo splitting of the magnetic moment, one needs �rst to
quench the superconductivity, which naturally has a critical value.

Upon quenching superconductivity, the gap �lls with normal electrons and subsequently
allows the impurity spin to antiferromagnetically couple to them and produce a Kondo
resonance at the Fermi level. Based on our results, a magnetic �eld of B ≥ 5 T normal
to the sample surface is su�cient to quench the superconductivity of both tip and sam-
ple and reveal the unscreened spin of the CoPcd. Fig.(6.5c) shows that the Zeeman energy
(EZ = gµBB ) of 5 T is not only enough to quench the superconductivity but also split
the Kondo peak (EZ ≥ kBTK) with equal intensity around zero bias, accounting for its
S = 1/2 state. By treating the molecule as a classical spin-1/2 system, we can approximate
its e�ective magnetic moment as

1/2πρSJSS = −0.60 ± 0.02 (6.1)

where JS is the antiferromagnetic coupling of the molecule spin to the normal electrons in
the substrate with local density of state ρS . Usually, the antiferromagnetic exchange cou-
pling strength cannot be measured directly, even though it controls the Kondo resonances
and also the YSR states energies. The detail of the perturbative model we used to calculate
the energies of the YSR states in Fig.(6.5 a) is presented in the next section.

We extract a Landé g-factor of 1.54±0.02 from the linear regression of the Zeeman splitting,
Fig.(6.5d), which is smaller than the one for a free electron. Furthermore, the interception of
the linear �t with the abscissa gives the minimum magnetic �eld required to split the Kondo
peak, amounting toBK = 0.67±0.19 T. One has to take into account that this is a very naive
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estimation of BK as it typically plays a very complicated role with the Kondo singlets [153,
154]. However, from this two quantities (g,BK) we can estimate the Kondo temperature of
TK ≈ gµBBK/kB = 0.77± 0.24 K, lying perfectly in the weak coupling regime. Historically,
the formalism of the weak-coupling Kondo e�ect developed by Anderson and Appelbaum
[155, 156]. It is a second-order perturbation theory also known as s − d exchange model,
to explain the zero bias tunneling anomaly which was observed in various p − n junctions
and insulating oxide layers.

Figure 6.5: Spectral features of a Cobalt phthalocyaninemolecule with diagonal σd
mirror plane symmetry (CoPcd). a, b, Di�erential conductance (dI/dV ) spectra mea-
sured on the bare NbSe2 sample (black dots) and the center of a CoPcd molecule (blue dots)
by using a superconducting tip (Vb = −40 mV, Ip = 40 pA in a; Vb = −5 mV, Ip = 50 pA in
b). Full line in b is a least-square �t to a scattering model in which the magnetic impurity
is treated classically. c, Di�erential conductance spectra measured on CoPcd at magnetic
�elds large enough to suppress superconductivity (dotted lines, Vb = −10 mV, Ip = 100 pA)
and least-square �ts using a perturbative scattering model (full lines). Curves are vertically
o�set for clarity. d, Extracted splitting ∆ of the peaks in c and linear regression (full line).
The dashed circle marks the crossing of the regression with the abscissa.
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6.6 Simulation of YSR states in a superconducting tun-
nel junction

In superconducting tunnelling junction, both tip and sample are superconductors with
a quasiparticle excitation spectrum described in the framework of the Bardeen-Cooper-
Schrie�er (BCS)-theory of superconductivity as

ρBCS(ε) = ρS Im
⎛

⎝

ε + iΓ
√

∆2 − (ε + iΓ)2

⎞

⎠
, (6.2)

where ∆ is the superconducting gap width of either sample or tip, iΓ is a small imagi-
nary number accounting for the �nite lifetime e�ects of the quasiparticles around the gap
edge (Γ ≪ ∆), and ρS is the density of states of the sample at Fermi energy in the nor-
mal conducting state [157]. The di�erential conductance (dI/dV ) for tunneling between
superconducting tip and sample reads

dI

dV
(V )∝

d

dV

+∞

∫
−∞

ρBCSS
(ε)ρBCST

(ε − eV )[f(ε) − f(ε − eV )]dε, (6.3)

with f(ε) = [1 + exp(ε/kBT )]−1 being the Fermi–Dirac distribution, kB the Boltzmann
constant, and T the e�ective temperature.
The interaction between the superconducting Cooper pairs and the unscreened spin leads
to a pair of YSR peaks around the Fermi energy. By approximating the spin as a classical
magnetic moment, the energy (EYSR) and intensities (I±) of the peaks reads [151, 158, 159]:

EYSR = ∆S
1 −w2 + u2

√
(1 −w2 + u2)2 + 4w2

, (6.4)

I± = −ρS
2w(1 + (w ∓ u)2)

((1 −w2 + u2)2 + 4w2)
3/2 , (6.5)

where ∆S is the e�ective superconducting gap of the 2H-NbSe2 substrate, S is the local
impurity spin, JS is the antiferromagnetic exchange coupling, U is the local Coulomb po-
tential, and w and u are the dimensionless parameters de�ned as

w =
1

2
πρSJSS < 0 , u = πρSU.

The quasiparticle excitation spectrum of the magnetic impurity then reads

ρnnYSR(ε) = −
1

π
ImGR,nn(ε), (6.6)

where ρnnYSR(ε)s are the diagonal elements of the spectral function withn = (1,2) superscript
addressing electron (n = 1) and hole (n = 2) components of the YSR state.
The full retarded Green’s function at �nite temperature GR(ε) is de�ned in terms of the
Dyson equation as

GR(ε) = GR
0 (ε) +G

R
0 (ε)V G

R(ε) , GR(ε)−1 = GR
0 (ε)

−1 −Σ,
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where GR
0 (ε) is the free Green’s function

GR
0 (ε) =

−πρS
√

∆2
S − (ε + iΓ)2

(
ε + iΓ ∆S

∆S ε + iΓ
) ,

and Σ is the impurity self-energy matrix

Σ =
1

πρS
(
w + u 0

0 w − u
) .

The di�erential conductance of the superconducting tunneling junction with YSR states
is then the convolution of Eq.(6.2) and Eq.(6.6), which we additionally broaden them by a
Gaussian distribution function g(ε) = 1√

πγ
e−(

ε
γ
)2 [160],

dI

dV
(V )∝

d

dV

+∞

∫
−∞

+∞

∫
−∞

[ρBCST
(ε)ρ11YSR(ε

′ − eV )(f(ε) − f(ε′ − eV ))

+ ρBCST
(ε′ − eV )ρ22YSR(ε)(f(ε

′ − eV ) − f(ε))]g(ε − ε′)dε′dε.

(6.7)

6.7 Singlet–triplet transition in CoPcv molecules

There is a strikingly dissimilar physics ruling over the CoPcν molecules. On the one hand,
we observe no subgap YSR states or other signatures of magnetism, such as Kondo reso-
nance or zero-bias peak splitting at the Fermi level. On the other hand, these molecules
show very strong, symmetric, inelastic steps at ∣Vb∣ ≈ 23 mV. We attribute these steps to a
singlet-triplet (ST) transition, Fig.(6.6a, b), accompanied by a normal singlet ground state1.
We interrogate the magnetism of the ST transition by applying magnetic �elds perpendic-
ular to the sample, resulting in the splitting of the steps, which unequivocally corroborate
its magnetic nature [161].

1 Here, we used the term normal singlet (drop the normal henceforth) to discriminate it from a Kondo
singlet.
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Figure 6.6: The singlet-triplet transition in a Cobalt phthalocyaninemolecule with
vertical σν mirror plane symmetry (CoPcν). a, Di�erential conductance (dI/dV ) spec-
tra measured on CoPcν at B = 0 (red dots) and at B = 8 T, where superconductivity is
suppressed (green dots). Here, B is the magnetic �eld perpendicular to the sample surface.
The full line at B = 0 is a least-square �t to a model, which accounts for the superconduct-
ing gaps in tip and sample and the spin excitation. b, Detail of the curves in a (red and green
dots) and spectrum measured on the bare NbSe2 surface (black dots), showing that neither
Yu-Shiba-Rusinov states nor a Kondo peak can be detected on the molecule (V = −5 mV,
I = 50 pA). The dark red line is a �t to a superconducting tunneling model. c–f, dI/dV and
numerically derived d2I/dV 2 spectra measured on CoPcν atB = 5,8 and 13 T, respectively.
Full lines in (d, f,) are least-square �ts to a perturbative transport model. The spectra re-
veal an asymmetric splitting of the inelastic excitation at ≈ ±23 mV in magnetic �eld. g,
Expected splitting of a triplet excitation at B = 13 T (red line) if only Heisenberg exchange
interaction between both spins is taken into account. h, i, Accounting for an additional
non-collinear Dzyaloshinskii–Moriya (DM) interaction rationalized the observation of the
DM vector lies in the surface plane (D∥). A DM vector pointing out of surface (D⊥) would
reverse the intensity order. Curves in all panels are vertically o�set for clarity.
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6.8 Non-collinear intra-molecular spin-spin interaction

We attribute the observed symmetry reduction in the CoPcν to a charge transfer from the
substrate and demonstrate it by taking Kelvin probe force microscope (KPFM) measure-
ments on both kinds of molecules. The KPFM result of CoPcν Fig.(6.3) shows that the
central ion strongly couples to the substrate and, therefore, has only a minor change in
the local work function. This suggests that the transferred electron is distributed in the
large ligand of the molecule and makes only a tiny dip on the KPFM parabola, in contrast
to a localized charge that typically creates a more signi�cant signal. The transferred charge
induces an additional magnetic moment, which interacts antiferromagnetically with the
moment localized at the Co2+ ion and leads to a singlet ground state with a triplet excited
state. In principle, under a magnetic �eld the degeneracy of the triplet state is lifted, and
it splits into three identical peaks, Fig.(6.6g). Surprisingly, when we apply a magnetic �eld
along z-axis, the ST transition split into only two peaks of di�erent heights with approxi-
mately 2:1 ratio Fig.(6.6 d, f). We relate this to the presence of a non-collinear interaction
between spins, which induces an in-plane magnetic moment by decanting the spin towards
the surface Fig.(6.9g).

Di�erent magnetic interactions in CoPcν are summarized in the following Hamiltonian

HCoPcν = ∑
i=1,2

gµBS
i
zB + JST S1 ⋅ S2 +DST ⋅ (S1 × S2). (6.8)

We consider a Zeeman splitting for both magnetic moments on the molecule under an ap-
plied magnetic �eld along the z-axis, introduced in the �rst term. Moreover, we allow the
spins to interact with each other inside the molecule in two ways: an isotropic Heisenberg-
type interaction (JST ), which is captured in the second term, and a non-collinear DM in-
teraction (DST), the last term [137, 138]. Subsequently, we use a perturbative tunneling
model based on the above model Hamiltonian Eq.(6.8) to simulate the measured results
[161]. In this manner, the Heisenberg coupling strength is found as JST = 21.6 ± 0.5 meV
and the DM vector, which lies mainly in the substrate plane, as ∣DST∣ = (0.45 ± 0.1) × JST ,
Fig.(6.6d, f). The possibility of having a signi�cant out-of-plane DM vector (D⊥) is ruled
out as it reverses the order of peaks compared to the experimental measurements (check
Fig.(6.6 h, i).

6.9 Simulation of Heisenberg models with DM interac-
tion

The Hamiltonian of CoPcν , Eq.(6.8), can be rewritten as

HCoPcν = ∑
i=1,2

giµBŜ
i
zB + S1T S2, (6.9)
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where T =
⎛
⎜
⎝

Jx Dz Dy

−Dz Jy −Dx

−Dy Dx Jz

⎞
⎟
⎠

is the coupling matrix incorporating both Heisenberg and

DM interactions. The general form of Eq.(6.9) allows us to discuss di�erent terms of the
Hamiltonian and exclude possible interaction schemes based on the evolution of their eigen-
values in the external magnetic �eld, compared to the experimental result.

First, we consider an isotropic Heisenberg model with exchange couplings: Jx = Jy = Jz =
JST = 21.6 meV and g-factors g1 = g2 = 2, neglecting any DM interaction (DST = 0⃗). Fig.(6.7
a) shows the evolution of its eigenvalues versus B-�eld. At zero �eld only transitions at
an energy of JST between (S,Sz) = ⟨0,0⟩ singlet and the three degenerate triplet states
(S,Sz) = ⟨1,0⟩ and (S,Sz) = ⟨1,±1⟩ are possible, while at large enough B-�eld the triplet
state splits in three independent states with equal excitation amplitude. The calculated
dI2/d2V spectra of this model is shown in Fig.(6.6g). This model is obviously incompatible
with the experimental data.

Second, we consider the isotropic Heisenberg model with an in-plane DM interaction.
Fig.(6.7b) shows the evolution of its eigenvalues using the same isotropic exchange coupling
terms as in Fig.(6.7a), and an additional in-plane DM term with coupling Dx = 0.45JST,
Dy = Dz = 0. Here, the colored dots correspond to the energies of the simulated d2I/dV 2

peaks in Fig.(6.6 d, f). This model �ts our observed spectroscopic data well. Experimen-
tally, since the relatively short lifetime of the excitations leads to a signi�cant broadening
at B = 0 all three excitations merge to only one detectable peak and at B ≥ 5 T they appear
in two peaks with ≈ 1 ∶ 2 intensity ratio.

Even though the second coupling scheme �ts our experimental data well, it is not evident
that it is the physically only possible solution. Therefore, in the following, we will discuss
other coupling schemes, which, as it becomes clear, do not lead to a description consistent
with our observations. Note that due to the inherent symmetry of the molecule, we restrict
our search to cases where the intramolecular in-plane coupling constants Jx and Jy are
identical.

Therefore, we now assume Ising-like couplings Jx = Jy = 0, Jz = JST. At zero magnetic
�eld the eigenstates are doubly-degenerate with ∣↑↓⟩ and ∣↓↑⟩ as the ground state, and ∣↑↑⟩

and ∣↓↓⟩ as the excited state. While the doublet ground state is not in�uenced by the mag-
netic �eld so long as g1 = g2, the excited states split, Fig.(6.7c), leading to two excitations
with equal intensity which does not correspond to the experimental observations, Fig.(6.7e).

Because the molecule is highly symmetric in its plane, next we check whether an exclu-
sively planar coupling of the form Jx = Jy = JST, Jz = 0 could be a reasonable description
of the spin system. As Fig.(6.7d) illustrates, such couplings lead to a (S,Sz) = ⟨0,0⟩ ground
state, and a doubly-degenerate excited state (S,Sz) = ⟨1,±1⟩ at energy of JST/2, which
splits in �nite magnetic �eld, and an additional excited state (S,Sz) = ⟨1,0⟩ at energy of
JST, which does not react to the magnetic �eld. Contrary to our observation, at B = 0, this
coupling scheme results into two excitations from the ground state, Fig.(6.7f).
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From the above discussed scenarios, we conclude that any XXZ and XYZ Heisenberg models
with arbitrary values of Jx = Jy and Jz , and also Ising model, can not describe our observa-
tions. This further points to the proposed model discussed before: an isotropic Heisenberg
model with an additional non-collinear DM interaction.

Figure 6.7: Simulation of the spin excitations under magnetic �elds and the corre-
sponding d2I/dV2 spectra. a, The eigenvalues and eigenstates versus out-of-plane mag-
netic �eld strength of an isotropic Heisenberg model with couplings Jx = Jy = Jz = JST =

21.6 meV. b, The eigenvalues and eigenstates versus out-of-plane magnetic �eld strength
of an isotropic Heisenberg model with the same couplings as (a) and an additional in-plane
DM interaction with ∣ D∥ ∣= 0.45×JST. The colored dots are the energies of the peaks of the
calculated d2I/dV 2 in Fig.(6.6). c, d, Same as (a) for an anisotropic Heisenberg exchange
coupling with Jx = Jy = 0 and Jz = 21.6 meV (c) and Jx = Jy = 21.6 meV and Jz = 0

(d), respectively. e, f, Modelled d2I/dV 2 spectra for the simulations in (c) and (d), without
magnetic �eld (black line) and with B = 13 T (red line), respectively. The arrows on the
right-hand side of the panels (a-d) mark the possible transition between the energy levels
labeled with the total spin (S) and its z-axis projection (Sz).
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6.10 Tunneling conductance of the singlet-triplet tran-
sition on CoPcν

The total tunneling current through the singlet-triplet transition on CoPcv can be calculated
by decomposing it into its elastic and inelastic parts (I = Iel. + Iinel.). The elastic tunneling
current follows as

Iel. =σel.

+∞

∫
−∞

+∞

∫
−∞

[ρBCSS
(ε′ − eV )ρBCST

(ε)f(ε′ − eV ) (1 − f(ε))

+ ρBCSS
(ε)ρBCST

(ε′ − eV )f(ε) (1 − f(ε′ − eV )) ]g(ε − ε′)dεdε′,

(6.10)

and the inelastic current as

Iinel. =
3

∑
i=1

1

3
σinel.

+∞

∫
−∞

+∞

∫
−∞

+∞

∫
−∞

[ρBCSS
(ε′′ − eV + V i

ST)ρBCST
(ε)f(ε′′ − eV + V i

ST)

× (1 − f(ε)) + ρBCSS
(ε)ρBCST

(ε′′ − eV − V i
ST)f(ε)

× (1 − f(ε′′ − eV − V i
ST)) ]g(ε − ε

′)h(ε′ − ε′′)dεdε′dε′′.

(6.11)

Here, ρBCSS
(ε) and ρBCST

(ε) are density of states of the superconducting tip and sample,
V i
ST is the threshold voltage of the three possible spin excitations, V 1

ST = V 2
ST < V 3

ST in zero
magnetic �eld. An additional Cauchy-Lorentz distribution h(ε) = (πδ)−1[1 + 2(ε/δ)]−1 is
added to account for a �nite lifetime of the excited state [162]. We found δ = 0.30 meV
corresponding to a lifetime of τ = h/δ ≈ 14 ps, (h, Planck constant). The �tting in Fig.(6.6a)
results in the threshold voltage of the spin excitation as V 1

ST = V
2

ST = 22.7 meV and V 3
ST = 23.8

meV. They correspond to an intramolecuar Heisenberg coupling of JST = 21.7 meV, and a
DMI coupling of ∣ DST ∣= 0.45 × JST.

Figure 6.8: Measured and modeled spin excitation spectra of CoPcν atBz = 13 T. a,
dI/dV measurement acquired at the ligands of a CoPcν molecule. b, Zoom-in of the left
step of the spectrum in (a). c, Zoom-in of the right step. d, Measured d2I/dV 2 (black dots)
and modelled d2I/dV 2 spectrum (red dots). e, Zoom-in of the left peak. f, Zoom-in of the
right peak. The extracted couplings are JST = 22.4 meV, and ∣ DST ∣= 0.45 × JST.
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6.11 Spatial distribution of the spin excitation overCoPcν

Spatially resolved inelastic electron tunneling spectroscopy further reveals the existence
of only a mirror plane on the CoPcν molecule. We take dI/dV measurement on a grid of
45 × 45 pixels where at each pixel we determine the energy ε or equivalently JST , and the
inelastic di�erential conductance relative to the total conductance, A = σinel./(σel. + σinel.)

of the molecule Fig.(6.9 a, b). In the ε-map, Fig.(6.9 a), we restrict ourselves to the spatial
distribution of the spin excitation energies, 20 mV < ε < 23 mV, for a �xed di�erential
conductance. It is evident that the ε-map retains a four-fold symmetry, which means that
the Heisenberg coupling JST is identical along x and y axis. In the A-map, however, we
look at the spatial distribution of the relative spin excitation intensity at the ST transition
energy. We can clearly see that the A-map has a two-fold symmetry. We further prove
this by comparing each map from an enforced four-fold symmetry Fig.(6.9 e, f), where the
ε-map deviates only by a few percent from it but the A-map up to 40 percent.

Figure 6.9: Spin excitationmap of a Cobalt phthalocyaninemolecule with vertical
σν mirror plane symmetry (CoPcν). a, b, Maps of 45×45 points covering an area of 3×3

nm2 on which di�erential conductance spectra (setpoint: Vb = −50 mV, I = 500 pA) were
taken and (a) the spin excitation energy ε and (b) the intensityA = σinel./(σinel.+σel.) were
extracted. Here, σinel. is the inelastic conductance, and (σinel.+σel.) is the total conductance.
While the ε map shows mainly fourfold symmetry, the A-map clearly reveals the mirror
plane, which cuts approximately vertical through the image. c, d, Averaged images of ε
and σinel./(σinel. + σel.) with enforced C4ν symmetry derived from (a) and (b), respectively.
e, f, The relative di�erence ∆r between the measured and averaged maps, respectively. g,
Schematic ball model of the CoPcν and its interactions. Gray, white, light blue, and pink
spheres correspond to C, H, N, and Co atoms, on the molecule, respectively. Yellow and
turquoise spheres correspond to Se and Nb atoms of the surface. Blue arrows indicate the
two spins and the red arrow the Dzyaloshinskii-Moriya vector.

6.12 Experimental procedure

The 2H-NbSe2 single crystal was cleaved by attaching an adhesive Kapton polyimide tape
to the crystal surface and pulling it o� at a base pressure of p ≤ 10−8 mbar. CoPc molecules
were then deposited from a Knudsen cell evaporator held at 410 C○ onto the freshly cleaved
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2H-NbSe2 at room temperature and p ≤ 10−9 mbar. The SPM experiments were performed
using a home-built combined scanning tunneling and atomic force microscope operating in
ultrahigh vacuum (p ≤ 10−10 mbar), at �elds perpendicular to the sample surface of up to 14
T, and at a base temperature of 1.2 K. The dI/dV spectra were detected by modulating the
bias voltage Vb with a sinusoidal of 0.05−0.2 mV amplitude and 617 Hz frequency utilizing
a lock-in ampli�er. We functionalized the bare Pt/Ir tip by indenting it into a Pb surface by
several hundreds of nm repeatedly until it showed a bulk-like superconducting gap. The
tip is mounted on a quartz tuning fork with a resonance frequency of f0 = 29,067 Hz, a
sti�ness of k = 1800 N/m, and a Q-factor of ≈ 60,000. Tuning fork oscillation amplitudes
of 50 pm were used to measure the forces acting between tip and sample by detecting the
frequency shift df of the tuning fork.

6.13 Conclusion

To summarize this chapter, we have studied in great detail the change of ground state by
modifying the twist angle between the molecule mirror plane and the substrate. Evidently,
the angle mismatch between the two controls the symmetry of the adsorbed molecule and
as a result the nature of involved interactions. In one molecule, the localized spin on Co2+

strongly interacts with the superconducting substrate and renders subgap YSR states, and
in the other, the molecule-substrate interaction is suppressed, and instead, intra-molecular
spin-spin interactions determine the ground state. In this case, the spin-spin interactions
take an isotropic Heisenberg-type plus a signi�cant non-collinear DM character, which is
presumably due to the coupling between the magnetic moments in the CoPc and the Nb
d-orbitals of the 2H-NbSe2 [163, 164].
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Conclusions

In this thesis, we studied in great detail the properties of the NTCDA Kondo lattice using a
low-temperature scanning tunneling microscope. We observed that the NTCDA molecules
adsorbed on the surface of Ag(111) show two visually di�erent appearances, labeled as
bright and dark molecules. They collaboratively form a self-assembled Kondo lattice in
the relaxed monolayer phase with two dramatically di�erent Kondo scales. Moreover, we
identi�ed another scale in the lattice (much smaller than the Kondo scale) generated by the
long-range RKKY-like interaction between the local moments that favors ordering them
and breaking the Kondo singlets, resulting in the opening of a small gap or a dented Kondo
peak at the Fermi level.

Employing the feature detection scanning tunneling spectroscopy, we extracted the small
dI/dV signals related to the low energy features of the NTCDA Kondo lattice and imaged
them in real space. We have also shown that STM as a local probe allows us to study the
QPT of the Kondo lattice from a local perspective. In this way, by utilizing the tip’s elec-
tric �eld, we induced the charge QPE of the Kondo lattice and simultaneously interrogated
their magnetic properties to track the change of the ground state. We observed that they
appear as a train of discharging peaks in the dI/dV signal running towards the Fermi level
at su�ciently large biases.

Figure 7.1: Discharging cascade of the NTCDA Kondo lattice.
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Moreover, we have shown via our dI/dV mappings that these QPEs have ring-like fea-
tures in the real space, which grow in size with increasing bias and interact with each other,
forming various interference patterns. The patterns contain interesting sub-angstrom fea-
tures such as a twist at the intersection of the rings and a hybridization gap. These patterns
respect di�erent symmetries and are not exclusive to the relaxed monolayer phase. In fact,
we have observed similar patterns in the rippled phase, too. We complemented our un-
derstanding by developing a tight-binding model to simulate the conductance maps of the
NTCDA lattice in the STM junction under di�erent conditions. Interestingly, we observed
that the simulations predicts many features of the patterns.

In order to further improve this work, there are still questions pending to be answered,
such as

• Why does the r-ML NTCDA lattice show a variety of discharging patterns, and which
parameter in the lattice controls it?

• What e�ect is responsible for the twist of the rings? Is it an artifact of the tip, or is
there a more profound underlying e�ect?

• Is the discharging pattern of the rippled phase similar to the ones in the r-ML phase?

• How does the Coulomb interaction and strong correlation between several discharged
molecules play a role?

• How does the substrate play a role in the formation of such spatially extended pat-
terns? Are these patterns exclusive to the Ag(111) substrate?

• Does the NTCDA lattice at its border with the substrate host a low energy edge state?

This thesis also recapitulated our published work on the tuning of the molecular mag-
netism in the superconducting tunneling junction studied by STM and AFM methods. In
this work, we have shown that the CoPc molecule has two stable adsorption sites on the
2H-NbSe2, which are mismatched by 15○ angle. The magnetic properties of the molecule
at each of these sites are markedly di�erent. In one of them, the molecule shows in-gap
YSR bound states with partially screened spins, and in the other shows a singlet ground
state with a triplet excited. In the latter, we have also observed signatures of a signi�cant
Dzyaloshinskii-Moriya interaction originating from the superconducting substrate.
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Scanning tunneling spectroscopy
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A.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Scanning tunneling spectroscopy (STS) mapping is a versatile technique join-
ing the sub-atomic spatial resolution of STM and energy-resolved di�erential con-
ductance spectroscopy, providing us with a powerful tool tomeasure the local den-
sity of states of single atoms andmolecules [18, 165–167]. STS is typically acquired
bymeasuring the di�erential conductance under open feedback-loop condition by
adding a small ACmodulation with speci�c frequency ωmod on the bias voltageVb,
which is su�ciently far from the low-frequency noises in the STM junction, and
then extracting the corresponding dI/dV signal via a lock-in technique. The pro-
cedure is repeated on a given area pixel-by-pixel, while the feedback loop is closed
after recording each measurement, to prepare a tuple of data (x,y,dI/dV). Subse-
quently, the spatial distribution of the local density of states can be extracted from
the dataset in terms of dI/dV−maps for a chosen bias voltage.

In this supplement, we compile several dI/dV−maps of the NTCDA/Ag(111) r-ML
and rippled phase for di�erent bias ranges. The aim is to give us a general un-
derstanding of the system by listing out the essential features of the two lattices
in real-space. Therefore, unavoidably, the text takes a monotonous repetitive lan-
guage.
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A.1 STS of NTCDA r-ML (I):Vb ∈ [−8.0, 8.0] mV

The constant current dI/dV −maps in Fig.(A.1) resolves the spatial dependence and spectro-
scopic evolution of the Fermi level of NTCDA/Ag(111) r-ML for di�erent bias in [−8.0, 8.0]
mV. In this range, three representative bias intervals can be distinguished based on the
apparent contrast1:

Vb ∈ [−8.0, −0.4) mV

In this interval, alternating bright and dark chains appear along the bright and dark molecules.
The apparent contrast is mainly due to the periodic modulation of the Kondo resonance
across the lattice, demonstrating a spatially extended Kondo cloud. Withing a bright molecule,
the Kondo resonance takes its maximum intensity at the CH and bridge site2 and drops sig-
ni�cantly at the naphthalene core. The relatively sharp contrast between bright and dark
molecules gradually smears as the bias approaches -0.4 mV.

Vb ∈ [−0.4, 7.2) mV

In this interval, the contrast almost completely disappears across the lattice. Moreover, on
the point dI/dV spectrum two dips appear within this range most prominent on the dark
molecule CH- and bridge-site. One of them is precisely located at zero bias and the other
between 3−4 mV. The inhomogeneous distribution of the di�erential conductance, together
with the observation of the dips, signi�es the formation of an asymmetric pseudogap of
approximately 7 mV width at the Fermi level. The pseudogap does not evolve into a full-gap
most presumably due to the presence of the strong background scattering of the tunneling
electron with the silver substrate around the Fermi level. Besides, we have to consider the
marginal e�ect of the instrumental broadening in the lock-in detection scheme3 and the
�nite temperature broadening,4.

Vb ∈ [7.2, 8] mV

In this interval, the alternating bright and dark chains reappear, with a minor di�erence
compared to the �rst interval. Unlike the negative bias where contrast is homogeneously
distributed along the chains, here the intensity is predominantly localized at the CH and
bridge sites, with negligible contribution from the naphthalene cores.

1 One has to take into account that the tip had a slight lateral drift in this measurement.
2 The bridge between two bright molecules.
3 An AC modulation amplitude of 200µV was used in the lock-in ampli�er.
4 The measurement was carried out at T = 1.5 K.
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A.2 STS of NTCDA r-ML (II):Vb ∈ [−70, 70] mV

The constant-current dI/dV −maps in Fig.(A.2) resolves the spatial dependence and spec-
troscopic evolution of various low energy features of the NTCDA/Ag(111) r-ML for di�erent
bias in [−70, 70] mV range. It includes vibronic states, which are mainly localized at the
center of molecules and the Kondo states, which are localized at CH- and bridge-site. In
this range, �ve representative bias intervals can be distinguished based on the apparent
contrast:

Vb ∈ [−70, −43) mV

In this interval, the vibronic states localized at the center of bright molecule (naphthalene
core) shows the maximum LDOS. On the dark molecule, however, the central area is much
less pronounced, despite the fact they are identical molecules. This suggests that in the
negative bias, the out-of-plane vibrational modes on the bright molecules are more sus-
ceptible to scatter o� the tunneling electrons than the dark ones. Surprisingly, the bridge
between two bright molecules which also accommodates the Kondo state at the Fermi level
(see Sec.(A.1)), shows a noticeable intensity.

Vb ∈ [−43, −14) mV

In this interval, a ‘dumbbell-like’ feature appears on the dark molecule CH- and bridge-site.
This feature should be related to the Kondo state of the dark molecules.

Vb ∈ [−14,28) mV

In this interval, as we approach the Fermi level, the ‘dumbbell-like’ feature originating from
the dark molecule consistently overlaps with the feature from the Kondo state on the bright
molecule, and create a (quasi-)1D Kondo chain.

Vb ∈ [28, 35] mV

In this interval, the contrast almost completely disappears.

Vb ∈ (35, 70] mV

Throughout this interval, the contrast almost remains unchanged. The vibronic states reap-
pear with maximum LDOS localized at the center of bright and dark molecules. The CH-
sites hosting the Kondo states shows the minimum LDOS.
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A.3 STS of NTCDA r-ML (III):Vb ∈ [300, 790] mV

The constant-current dI/dV −maps in Fig.(A.3) resolves the spatial dependence and spectro-
scopic evolution of the interface state of the NTCDA/Ag(111) r-ML lattice within [300, 790]
mV bias range. In this range, three representative bias intervals can be distinguished based
on the apparent contrast5:

Vb ∈ [300, 515) mV

In this interval, all molecules on the lattice appear with similar contrast. As we increase
the bias, the LDOS is redistributed such that the bright molecules takes more weight and
gradually extend along the short axis of the molecule (H-Ccore-H). Denoting that in this
energy range, the tunneling electron is su�ciently away from the spectroscopic features
around the Fermi level, makes the interface state a suitable place to extract the surface
potential pro�le of the lattice6. The surface potential pro�le provides us with a powerful
tool to determine the location of electrostatic charges7. An electrostatic charge naturally
prefers the lower potential, and therefore, the naphthalene cores which have the maximum
intensities in this map are the charge centers.

Vb ∈ [515, 590] mV

In this interval, as we approach 560 mV, which is the approximate energy of the interface
state, the bright molecules create a chain along the molecule’s short axis.

Vb ∈ [605, 790] mV

In this interval, the bright chains gradually smears out and the intensity evens out in the
entire lattice.

5 One has to take into account that the tip had a slight lateral drift in this measurement.
6 In fact, this map does not accurately address the surface potential. Because it is a constant current

map which means tip-sample distance changes pixel by pixel, and therefore, the spectroscopic features are
convoluted with topography. A better way to extract the surface potential pro�le is through the constant bias
dI/dV (Z)-map at energies su�ciently away from the Fermi level.

7 In principle, a lattice can be conceived as a periodic array of parabolic electrostatic potentials.
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A.4 STS of NTCDA r-ML (VI): Vb ∈ [1.0, 1.27] V

The constant-current dI/dV −maps in Fig.(A.4) resolves the spatial dependence and spec-
troscopic evolution of a charge quasiparticle excitation on the NTCDA/Ag(111) r-ML. In
this range, two representative bias intervals can be distinguished based on the apparent
contrast:

Vb ∈ [1.0, 1.20] V

In this interval, bright and dark chains features appear smeared and blurry. It is because the
bias is far from the Fermi level, and there is no intrinsic state in this range on the molecule
to be probed.

Vb ∈ (1.20, 1.27] V

In this interval, the background contrast between bright and dark chains abruptly disap-
pears, and a dot emerges on the center of bright molecules8. This announces the arrival of
a new tunneling channel to the Fermi level, which masks all the underlying spectroscopic
features in the background. As the bias increases and the tip goes o� the center, the dot
evolves into a growing ring. There is a crucial consideration here. There is no intrinsic
molecular state at 1.20 V on the adsorbed NTCDA, neither reported by DFT calculations
nor have it been probed in various experiments9. It’s worth mentioning that a similar fea-
ture, a growing ring10, has been observed in numerous defect and impurity studies in 2D
materials and back-gated heterostructures, where su�cient control over the local state and
decoupling from the charge reservoir (substrate) can be exerted. In these studies, the ring
is attributed to (dis)charging of a gated local state at the Fermi level. This picture, however,
needs to be modi�ed for the NTCDA case since based on the DFT calculations, the near-
est electronic state to the Fermi level belongs to the partially �lled LUMO, which is a very
broad satellite centered around 500 meV immersed in a sea of the substrate’s conduction
electrons. The tip-gating of such a broad energetic level cannot result in an abrupt step-like
jump in the current channel. Therefore, presence of a small local state on the molecule in
the vicinity of the Fermi level is necessary to justify this picture. As it becomes more ap-
parent later, we interpret this abrupt change in the local density of states at the Fermi level
as the excitation of charged quasiparticles of the NTCDA Kondo lattice by means of tip’s
electric �eld11, rather than a simple (dis)charging event as a result of the tip-gating e�ect.

8 In this map, the dot is slightly o� the center and deformed because the tip is asymmetric.
9 The fact that it emerges only on the bright molecules and not on the dark ones excludes the possibility of

probing an intrinsic molecular state at approximately 1.2 V, as both bright and dark molecules are identical.
10 The ring is the equipotential line of the electrostatic �eld when the tip is o� the charging center.
11 The presumption here is that the partially �lled LUMO of individual molecules overlaps and forms a

band, which energetically shifts to the vicinity of the Fermi level.
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A.5 STS of NTCDA r-ML (VI): Vb ∈ [1.28, 1.96] V

The constant-current dI/dV −maps in Fig.(A.5) resolves the spatial dependence and spectro-
scopic evolution of a real-space quasiparticle interference pattern12 on the NTCDA/Ag(111)
r-ML lattice. In this range, three representative bias intervals can be distinguished based
on the apparent contrast:

Vb ∈ [1.28, 1.64] V

In this interval, the ring’s size grows as bias increases with a much faster rate along the
molecule’s short axis (H-Ccore-H) than the long one (Oanhy−Ccore−Oanhy). Above 1.5 V, the
ring has already surpassed the size of the molecule13, and interfere (overlap) with other
rings approaching from the neighboring sites. Considering the size of the molecule and the
typical range of quantum tunneling distance14, this is strong evidence for the existence of
a molecular band, which allows the tip to excite the quasiparticle several nanometers away
from the charge center.

Vb ∈ (1.64, 1.71] V

In this interval, the interference pattern shows two distinct features: (i) Formation of a hy-
bridization gap (dark segments) of about 50 meV when rings overlap at the oxygen groups,
and (ii) propagation and twisting when they cross at the CH-sites15. This observation also
approves that the quasiparticles have a 1D physics in this energy range. Furthermore, we
can see inhomogeneity in the lattice in terms of variation in the growth rate of di�erent
rings and the evolution of real-space gaps 16.

Vb ∈ (1.71, 1.96] V

In this interval, the hybridization gap closes, and the ring penetrates to the next molecule.
It is worth mentioning that propagation of rings continues as bias increases until the tip’s
electric �eld destroys the lattice. Typically, above 2.3 V the NTCDA lattice is washed away
by the intense electric �eld of the tip.

12 In STM, the term quasiparticle interference is typically used for the scattering of quasiparticles in mo-
mentum space, and is obtained by Fourier-transforming then inverting the real-space interference patterns,
which contains information about the wavefunction of the of the quasiparticles (dI/dV ∼ ∑k ∣Ψk(r)∣

2).
Here, in real space, the interference pattern is produced by the overlap of the rings at di�erent lattice sites.

13 The size of the molecule is 11.57 × 15.04 Å2.
14 A typical range for the quantum tunneling is less than 1 nm.
15 The delicate features in this map and their profound physical consequences demand a higher resolution

result. Therefore, this result will be repeated later with extraordinary quality.
16 The coupling between molecules slightly varies among di�erent unit cells.
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A.6 STS of NTCDA r-ML at the border: Vb ∈ [−100, 100]

mV

The constant-current dI/dV −maps in Fig.(A.6) resolves the spatial dependence and spec-
troscopic evolution of the NTCDA/Ag(111) r-ML around the rim. The major features of this
map are qualitatively the same as the maps in the middle of the lattice, except the observa-
tion of an edge state and creation of several low energy peaks at the Fermi level. In this range,
�ve representative bias intervals can be distinguished based on the apparent contrast:

Vb ∈ [−100, −40) mV

In this interval, the vibronic states localized at the center of bright molecules, and to a lower
extent, on the dark ones, appear with the maximum LDOS, while the CH-sites show the
minimum. On the bare Ag(111), away from the lattice, the intensity remains homogeneous
and perceptibly drops adjacent to the lattice border.

Vb ∈ [−40, −10) mV

The dumbbell-like features appear at the dark molecule CH- and bridge sites in this interval.
Additionally, as we further approach the Fermi level, a new state emerges precisely at the
lattice border with Ag(111).

Vb ∈ [−10, 30) mV

In this interval, the Kondo state on CH- and bridge-sites appear with the maximum inten-
sity, while the centers show the minimum. Moreover, looking more closely at the point
spectra extracted from the same dataset shows several low energy peaks at the edge, most
notably a split state precisely at the Fermi energy, which penetrates several angstroms into
the bare Ag(111) and decays at far distances.

Vb ∈ [30, 40] mV

The contrast between the substrate and the lattice almost completely disappears in this
interval.

Vb ∈ (40, 100] mV

In this interval, the vibronic states localized at the center of molecules reappear with the
maximum intensity, while the CH- and bridge-sites show the minimum.
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A.7 STS of NTCDA rippled phase (I):Vb ∈ [−60, 60] mV

The constant-current dI/dV −maps in Fig.(A.7) resolves the spatial dependence and spec-
troscopic evolution of the NTCDA/Ag(111) rippled phase in the smooth transition region of
the lattice17 for di�erent bias in [−60, 60] mV range. The major features of this map are
shared with the one for the r-ML lattice except an apparent inhomogeneity. In this range,
�ve representative bias intervals can be distinguished based on the apparent contrast:

Vb ∈ [−60, −39) V

In this interval, the vibronic states localized at the center of bright molecule takes the max-
imum LDOS. It also appears on the center of the dark molecule, though with much less
intensity. Furthermore, the bright molecule CH-sites have a noticeable weight in this range.

Vb ∈ [−39, −12] V

In this interval, the maximum LDOS is located on the dark molecule CH-sites in a spherical
shape18, and on the bright molecule bridge-sites in a rectangular shape.

Vb ∈ (−12, 22) V

In this interval, as we further approach the Fermi level, the spherical features on the dark
molecule CH-sites fade away and the bright molecule CH-sites, where the Kondo state is
located, takes the maximum LDOS in a slightly distorted rectangular shape.

Vb ∈ [22, 33) V

The contrast almost completely disappears in this interval, exhibiting a roughly 10 meV
pseudogap, which is slightly larger than the gap in the r-ML lattice.

Vb ∈ [33, 60] V

In this interval, the vibronic states localized at the center of bright and dark molecules reap-
pear with the maximum intensity, while the Kondo state at CH-sites shows the minimum.

17 Recall that, roughly speaking, the rippled phase is comprised of two regions [17]. A region where there
is a smooth transition from the bright to the dark molecule and vice versa, and a region where all molecules
are identical. This map resolves the former.

18 In the r-ML lattice, the nearest neighbor spherical shapes connect and form a dumbbell-like-feature.
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A.8 STS of NTCDA rippled phase (II):Vb ∈ [−60, 60]mV

The constant-current dI/dV −maps in Fig.(A.8) resolves the spatial dependence and spec-
troscopic evolution of the NTCDA/Ag(111) rippled phase in the region where all molecules
are topographically identical. The major features of this map qualitatively di�ers from the
r-ML phase. In this range, �ve representative bias intervals can be distinguished based on
the apparent contrast:

Vb ∈ [−60, −44) V

In this interval, the vibronic states localized at the center of bright and dark molecules show
the maximum LDOS in a rectangular shape. Unlike the r-ML lattice, in which the bright
molecule CH-sites are also present in this interval, here they are absent (see rectangular
dark regions).

Vb ∈ [−44, −19) V

In this interval, the contrast smears out inhomogeneously across the lattice, which may be
interpreted as the creation of a pseudogap. Comparatively, in the same interval, the r-ML
lattice shows dumbbell-like features at the dark molecule CH-sites.

Vb ∈ [−19, 22] V

In this interval, the CH- and bridge-sites on both molecules show the maximum LDOS,
and the centers show the minimum, creating a checkerboard rectangular lattice. As we
have seen it before, this interval in the r-ML lattice host the Kondo state which takes a
qualitatively di�erent shape from here.

Vb ∈ (22, 33] V

The contrast almost completely disappears in this interval.

Vb ∈ (33, 60] V

In this interval, the vibronic states localized at the center of molecules reappear with the
maximum intensity, while the CH- and bridge-sites show the minimum.
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A.9 Conclusion

We close this chapter by summarizing the signi�cant observations made in the dI/dV −maps.

• The vibronic states (±47 meV) are localized at the center of bright and dark molecules.
The spatial distribution of the contrast for positive and negative peaks is not identical,
implying the presence of fermionic states in their vicinity.

• The Kondo state on the bright molecule is localized at the CH- and bridge-sites and
creates a ‘butter-�y-shape’ in the real space.

• The Kondo state on the dark molecule is located further below the Fermi level and
localized at the CH-sites, creating a ‘dumbbell-like shape’ in the real space.

• Overlap of Kondo states on di�erent molecules forms alternating bright and dark
chains at the Fermi level.

• There is a roughly 7 meV pseudogap at the Fermi level.

• The interface state creates alternating bright and dark chains very similar to the one
created by the Kondo state at the Fermi level.

• A charging resonance occurs about 1.3 eV at the center of bright molecules and turns
into a growing ring at a larger bias, when the tip is o� the center. The rings mix
(interfere) at di�erent locations and create intricate patterns in real space.

• The rippled phase is comprised of two regions. A region where both molecules look
identical, and a region where bright molecules smoothly turn into a dark one and
vice versa. There are qualitative di�erences among the maps of the former and r-ML
lattice, including an apparent spectral inhomogeneity.

• At the lattice border, there is an edge state with onset energy of about −20 meV,
and also several low-energy peaks around the Fermi level, including a split state that
penetrates the bare silver.
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Python source code

#############################################################################
##################### Packages & Libraries ##################################
#############################################################################
from numpy import lib , pad, shape, resize , tanh, minimum, pi, cos , sqrt ,\

clip , zeros , ones, empty, nonzero, vstack , array , exp ,\
arange, newaxis, �ll_diagonal , set_printoptions , load , save

from scipy . linalg import eigh , norm
from scipy . sparse import diags
import matplotlib . pyplot as plt
import os
import time
#############################################################################
######################### Saving path #######################################
#############################################################################

saving_path = "Give your saving path"

#############################################################################
##################### Parameters and setting ################################
#############################################################################
t0 = time. time () # Execution time: Start

# Sublattice A parameters:
E_A = −0.5 # On−site energy of the A−site
t_1A = 0.1 # Staggered nearest−neighbor hopping amplitude between A−sites
t_2A = 0.0 # Staggered nearest−neighbor hopping amplitude between A−sites

# Sublattice B parameters:
E_B = 3.0 # On−site energy of the B−site

# STM tip parameters:
alpha = 0.5 # Tip−gating e�ciency
epsilon0 = 2 # Sample dielectric constant
r = 1 # Tip apex radius

# Common parameters:
V_AB_upup = 0.1 # Hybridization amplitude between A and B sublattice preserving spin−up
V_AB_downdown = 0.1 # Hybridization amplitude between A and B sublattice preserving spin−down
Theta = pi /2 # A−B hybridization phase
W_dim = 4 # Width of the lattice
kB = 1 # Boltzman constant
T = 0.01 # Temperature
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#############################################################################
################################ Functions ##################################
#############################################################################
def deriv_Fermi_Dirac(E) :

## Numerics friendly analytic expression for
## the derivative of the Fermi−Dirac function .

dF_list = []
for e in E:

dF = 1/(2∗T) ∗( tanh( e /(2∗ kB∗T) ) ) ∗∗2 − 1/(2∗T)
dF_list . append(dF)

return dF_list

def distance (x, y, x_tip , y_tip ) :
## Calculate the distance of a given point on the lattice
## to the tip ’ s position ( real−valued)

L_x1 = abs( x_tip − x)
L_x2 = W_dim − abs(x_tip − x)
L_y1 = abs( y_tip − y)
L_y2 = W_dim − abs(y_tip − y)

L_xmin = minimum(L_x1, L_x2)
L_ymin = minimum(L_y1, L_y2)
r = (L_xmin∗∗2 + L_ymin∗∗2) ∗∗0.5
return r

def E�_pot (x, y, x_tip , y_tip ) :
## Assign the tip ’ s e�ective potential to a given point on the lattice .

U_e� = alpha ∗(1 + ( epsilon0 /r ) ∗ distance (x, y, x_tip , y_tip ) ∗∗2 ) ∗∗(−1)
return U_e�

def H_gate(x_tip , y_tip ) :
## Generate a lattice in real space and assign a gating potential
## to each discrete point .

h_gating = zeros (( W_dim∗W_dim, W_dim∗W_dim))
for I in arange (0, W_dim,1):

for J in arange (0, W_dim,1):
h_gating[( I−1)∗W_dim + J, ( I−1)∗W_dim + J] = E�_pot ( I , J , x_tip , y_tip )

H_upup_tip_block = lib .pad(h_gating , ((0, W_dim∗W_dim),(0, W_dim∗W_dim)), \
’ constant ’ , constant_values =(0) )

H_downdown_tip_block = lib.pad(h_gating, (( W_dim∗W_dim,0),(W_dim∗W_dim,0)),\
’ constant ’ , constant_values =(0) )

return (h_gating , H_upup_tip_block, H_downdown_tip_block)
######################################################################################
######################### Creating blocks of the H_upup ##############################
######################################################################################

######################################################################################
# D1x_upup matrix
######################################################################################
D1x_upup_array = [resize ([−V_AB_upup∗exp(1j∗Theta), −V_AB_upup∗exp(−1j∗Theta)], W_dim−1), \

resize ([E_A, E_B], W_dim), \
resize ([−V_AB_upup∗exp(−1j∗Theta), −V_AB_upup∗exp(1j∗Theta)], W_dim−1)]

o�set_D1x_upup = [1,0,−1]
D1x_upup_matrix = diags(D1x_upup_array, o�set_D1x_upup, dtype=complex).toarray ()
D1x_upup_matrix[0][W_dim−1] = −V_AB_upup∗exp(1j∗Theta) # PBC
D1x_upup_matrix[W_dim−1][0] = −V_AB_upup∗exp(−1j∗Theta) # PBC
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######################################################################################
# D2x_upup matrix
######################################################################################
D2x_upup_array = [resize ([−V_AB_upup∗exp(−1j∗Theta), −V_AB_upup∗exp(1j∗Theta)], W_dim−1 ), \

resize ([E_B, E_A], W_dim), \
resize ([−V_AB_upup∗exp(1j∗Theta), −V_AB_upup∗exp(−1j∗Theta)], W_dim−1)]

o�set_D2x_upup = [1,0,−1]
D2x_upup_matrix = diags(D2x_upup_array, o�set_D2x_upup, dtype=complex).toarray ()
D2x_upup_matrix[0][W_dim−1] = −V_AB_upup∗exp(−1j∗Theta) # PBC
D2x_upup_matrix[W_dim−1][0] = −V_AB_upup∗exp(1j∗Theta) # PBC
######################################################################################
# O1y_upup matrix
######################################################################################
O1y_upup_array = [resize ([−t_1A, 0], W_dim−1), \

resize ([−V_AB_upup∗exp(−1j∗Theta), −V_AB_upup∗exp(1j∗Theta)], W_dim), \
resize ([0, −t_2A], W_dim−1)]

o�set_O1y_upup = [1,0,−1]
O1y_upup_matrix = diags( O1y_upup_array , o�set_O1y_upup, dtype=complex ). toarray ()
O1y_upup_matrix[0][W_dim−1] = −t_2A # PBC
######################################################################################
# O1y_dagger_upup matrix
######################################################################################
O1y_dagger_upup_array = [resize ([0, −t_2A], W_dim−1), \

resize ([−V_AB_upup∗exp(1j∗Theta), −V_AB_upup∗exp(−1j∗Theta)], W_dim), \
resize ([−t_1A, 0], W_dim−1)]

o�set_O1y_dagger_upup = [1,0,−1]
O1y_dagger_upup_matrix = diags(O1y_dagger_upup_array, o�set_O1y_dagger_upup, dtype=complex).toarray()
O1y_dagger_upup_matrix[W_dim−1][0] = −t_2A # PBC
######################################################################################
# O2y_upup matrix
######################################################################################
O2y_upup_array = [resize ([0, −t_1A], W_dim−1), \

resize ([−V_AB_upup∗exp(1j∗Theta), −V_AB_upup∗exp(−1j∗Theta)], W_dim), \
resize ([−t_2A, 0], W_dim−1)]

o�set_O2y_upup = [1,0,−1]
O2y_upup_matrix = diags( O2y_upup_array , o�set_O2y_upup, dtype=complex ). toarray ()
O2y_upup_matrix[W_dim−1][0] = −t_1A # PBC
######################################################################################
# O2y_dagger_upup matrix
######################################################################################
O2y_dagger_upup_array = [resize([−t_2A, 0], W_dim−1), \

resize ([−V_AB_upup∗exp(−1j∗Theta), −V_AB_upup∗exp(1j∗Theta) ], W_dim), \
resize ([0, −t_1A], W_dim−1)]

o�set_O2y_dagger_upup = [1,0,−1]
O2y_dagger_upup_matrix = diags(O2y_dagger_upup_array, o�set_O2y_dagger_upup, dtype=complex).toarray()
O2y_dagger_upup_matrix[0][W_dim−1] = −t_1A # PBC
#####################################################################################
########################## Creating blocks of the H_downdown ########################
#####################################################################################

######################################################################################
# D1x_downdown_matrix
######################################################################################
D1x_downdown_array = [resize([−V_AB_downdown∗exp(−1j∗Theta), −V_AB_downdown∗exp(1j∗Theta)], W_dim−1), \

resize ([E_A, E_B], W_dim), \
resize ([−V_AB_downdown∗exp(1j∗Theta), −V_AB_downdown∗exp(−1j∗Theta)], W_dim−1)]

o�set_D1x_downdown = [1,0,−1]
D1x_downdown_matrix = diags(D1x_downdown_array, o�set_D1x_downdown, dtype=complex).toarray()
D1x_downdown_matrix[0][W_dim−1] = −V_AB_downdown∗exp(−1j∗Theta) # PBC
D1x_downdown_matrix[W_dim−1][0] = −V_AB_downdown∗exp(1j∗Theta) # PBC
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######################################################################################
# D2x_downdown_matrix
######################################################################################
D2x_downdown_array = [resize([−V_AB_downdown∗exp(1j∗Theta), −V_AB_downdown∗exp(−1j∗Theta)], W_dim−1), \

resize ([E_B, E_A], W_dim), \
resize ([−V_AB_downdown∗exp(−1j∗Theta), −V_AB_downdown∗exp(1j∗Theta)], W_dim−1)]

o�set_D2x_downdown = [1,0,−1]
D2x_downdown_matrix = diags(D2x_downdown_array, o�set_D2x_downdown, dtype=complex).toarray()
D2x_downdown_matrix[0][W_dim−1] = −V_AB_downdown∗exp(1j∗Theta) # PBC
D2x_downdown_matrix[W_dim−1][0] = −V_AB_downdown∗exp(−1j∗Theta) # PBC
######################################################################################
# O1y_downdown matrix
######################################################################################
O1y_downdown_array = [resize([−t_1A, 0], W_dim−1), \

resize ([−V_AB_downdown∗exp(1j∗Theta), −V_AB_downdown∗exp(−1j∗Theta)], W_dim), \
resize ([0, −t_2A], W_dim−1)]

o�set_O1y_downdown = [1,0,−1]
O1y_downdown_matrix = diags(O1y_downdown_array, o�set_O1y_downdown, dtype=complex ).toarray()
O1y_downdown_matrix[0][W_dim−1] = −t_2A # PBC
######################################################################################
# O1y_dagger_downdown matrix
######################################################################################
O1y_dagger_downdown_array = [resize( [0, −t_2A ], W_dim−1), \

resize ([−V_AB_downdown∗exp(−1j∗Theta), −V_AB_downdown∗exp(1j∗Theta) ], W_dim), \
resize ([−t_1A, 0], W_dim−1)]

o�set_O1y_dagger_downdown = [1,0,−1]
O1y_dagger_downdown_matrix = diags(O1y_dagger_downdown_array, o�set_O1y_dagger_downdown, dtype=complex).toarray()
O1y_dagger_downdown_matrix[W_dim−1][0] = −t_2A # PBC
######################################################################################
# O2y_downdown matrix
######################################################################################
O2y_downdown_array = [resize([0, −t_1A], W_dim−1), \

resize ([−V_AB_downdown ∗exp(−1j∗Theta), −V_AB_downdown∗exp(1j∗Theta)], W_dim), \
resize ([−t_2A, 0], W_dim−1)]

o�set_O2y_downdown = [1,0,−1]
O2y_downdown_matrix = diags(O2y_downdown_array, o�set_O2y_downdown, dtype=complex).toarray()
O2y_downdown_matrix[W_dim−1][0] = −t_1A # PBC
######################################################################################
# O2y_dagger_downdown matrix
######################################################################################
O2y_dagger_downdown_array = [resize([−t_2A, 0], W_dim−1), \

resize ([−V_AB_downdown ∗exp(1j∗Theta), −V_AB_downdown∗exp(−1j∗Theta) ], W_dim), \
resize ([0, −t_1A ], W_dim−1)]

o�set_O2y_dagger_downdown = [1,0,−1]
O2y_dagger_downdown_matrix = diags(O2y_dagger_downdown_array, o�set_O2y_dagger_downdown, dtype=complex).toarray()
O2y_dagger_downdown_matrix[0][W_dim−1] = −t_1A # PBC
#######################################################################################
#######################################################################################
############ Generating H_upup, H_downdown, H_updown, and H_downup matrices ###########
#######################################################################################
#######################################################################################
H_upup_matrix = zeros((W_dim∗W_dim, W_dim∗W_dim), dtype=complex)
H_downdown_matrix = zeros((W_dim∗W_dim, W_dim∗W_dim), dtype=complex)

for I in range(W_dim):
for J in range(W_dim):

if ( I == J−1) :
if ( I%2==0):

for m in range(W_dim):
for n in range(W_dim):

H_upup_matrix[I∗W_dim+m,J∗W_dim + n]=O1y_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O1y_downdown_matrix[m,n]

130



Python source code

else :
for m in range(W_dim):

for n in range(W_dim):
H_upup_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_downdown_matrix[m,n]

elif ( I == J ) :
if ( I%2==0):

for m in range(W_dim):
for n in range(W_dim):

H_upup_matrix[I∗W_dim+m,J∗W_dim+n]=D1x_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=D1x_downdown_matrix[m,n]

else :
for m in range(W_dim):

for n in range(W_dim):
H_upup_matrix[I∗W_dim + m,J∗W_dim+n]=D2x_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=D2x_downdown_matrix[m,n]

elif ( I == J+1) :
if ( I%2==1):

for m in range(W_dim):
for n in range(W_dim):

H_upup_matrix[I∗W_dim+m,J∗W_dim+n]=O1y_dagger_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O1y_dagger_downdown_matrix[m,n]

else :
for m in range(W_dim):

for n in range(W_dim):
H_upup_matrix[I∗W_dim+m,J∗W_dim + n]=O2y_dagger_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_dagger_downdown_matrix[m,n]

# Ful�ll PBC for the top−right triangle of the upup and downdown blocks:
elif ( I==0 and J == W_dim−1):

for m in range(W_dim):
for n in range(W_dim):

H_upup_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_dagger_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_dagger_downdown_matrix[m,n]

# Ful�ll PBC for the bottom−left triangle of the upup and downdown blocks:
elif ( I==W_dim−1 and J == 0):

for m in range(W_dim):
for n in range(W_dim):

H_upup_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_upup_matrix[m,n]
H_downdown_matrix[I∗W_dim+m,J∗W_dim+n]=O2y_downdown_matrix[m,n]

#######################################################################################
#######################################################################################
######################### Constructing the Full Hamiltonian ###########################
#######################################################################################
#######################################################################################
# Placing each block into its corresponding place in the full Hamiltonian matrix :

H_upup_block = lib .pad(H_upup_matrix, ((0, W_dim∗W_dim),(0, W_dim∗W_dim)), \
’ constant ’ , constant_values =(0) )

H_downdown_block = lib.pad(H_downdown_matrix, (( W_dim∗W_dim,0),( W_dim∗W_dim,0)), \
’ constant ’ , constant_values =(0) )

## NOTE: H_tip has not yet included ! It is added in the main for−loop.
H_full0 = H_upup_block + H_downdown_block
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########################################################################################
#################### Main For−loop: Generating conductance map #########################
########################################################################################
## Within the main loop, the full Hamiltonian is updated and digonalized as the tip
## sweep the lattice . Subsequently, the eigenvalues and eigenstates of the Hamiltonian
## is used to compute the conductance.

tip_x_list = arange (0, W_dim, 0.01) # STM tip sweep line along the x−axis
tip_y_list = arange (0, W_dim, 0.01) # STM tip sweep line along the y−axis
bias_list = [2.7]

conductance1 = zeros (( len ( tip_x_list ) , len ( tip_y_list ) ) )
for bias in bias_list :

for W_x, pos_x in enumerate( tip_x_list ) :
for W_y, pos_y in enumerate( tip_y_list ) :

H_full = H_full0 + bias ∗( H_gate(x_tip = pos_x , y_tip = pos_y)[1] \
+ H_gate( x_tip = pos_x , y_tip = pos_y) [2])

eigenval1 , eigenvec1 = eigh( H_full )
Dn_F1 = deriv_Fermi_Dirac(eigenval1 )
weighted_Dn_F1 = sum(Dn_F1∗eigenvec1)
conductance1[W_x, W_y] = norm(weighted_Dn_F1)

# Saving the simulation data with all parameters stored in a separarate �le as a dictionary :
�lename = "conductance_map" + str ( bias ) + "V"
params_name = "conductance_map"+ str(bias) + "V_Params"
params = { "E_A": E_A, "t_1A": t_1A, "t_2A": t_2A,\

"E_B": E_B, "alpha" : alpha , " epsilon0 " : epsilon0 ,\
"V_AB_upup": V_AB_upup, "V_AB_downdown": V_AB_downdown,
"Theta" : Theta, "W_dim": W_dim, "kB" : kB, "T":T}

save(saving_path + params_name, params)
save(saving_path + �lename , conductance1)

#########################################################################################
################# Main For−loop: Generating conductance line−map #########################
#########################################################################################
## Within the main loop, the full Hamiltonian is updated and digonalized as the tip
## sweep a line along the A−B bond. Subsequently, the eigenvalues and eigenstates of
## the Hamiltonian is used to compute the conductance as a function of the tip e�ective
## potential and tip position .

Bias_range = arange (0.0, 4.5, 0.01)
tip_pos_A_B_range = arange(0, W_dim, 0.01)
conductance2 = zeros (( len (Bias_range) , len (tip_pos_A_B_range)))

for bias_index , bias_val in enumerate(Bias_range [::−1]) :
for W_y, pos_y in enumerate(tip_pos_A_B_range):

H_full = H_full0 + bias_val ∗( H_gate( x_tip = pos_y, y_tip = pos_y ) [1] \
+ H_gate( x_tip = pos_y , y_tip = pos_y ) [2])

eigenval2 , eigenvec2 = eigh( H_full )
Dn_F2 = deriv_Fermi_Dirac(eigenval2 )
weighted_Dn_F2 = sum(Dn_F2∗eigenvec2)
conductance2[ bias_index , W_y ] = norm(weighted_Dn_F2)

# Saving the simulation data with all parameters stored in a dictionary :
�lename = "line_map"
params_name = ’Params_line_map’
params = { "E_A": E_A, "t_1A": t_1A , "t_2A": t_2A ,\

"E_B": E_B, "alpha" : alpha , " epsilon0 " : epsilon0 , \
"V_AB_upup": V_AB_upup, "V_AB_downdown": V_AB_downdown,
"Theta" : Theta, "W_dim": W_dim, "kB": kB , "T":T}

save(saving_path + params_name , params)
save(saving_path + �lename , conductance2)
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The simulation data are saved in the folder you gave the path at the beginning of the code
with a numpy format (".npy"). It can be opened by executing the following snippet

data = load(saving_path + "FILENAME.npy")
�g1 ,ax1 = plt . subplots ()
Conductance_map = ax1.imshow( data, cmap="hot", interpolation =’ nearest ’ )
�g1 . colorbar (Conductance_map)
plt . xticks ([])
plt . yticks ([])
plt . show()
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