Organische Transistoren

Wahlfach in der Fakultät Informatik, Elektrotechnik und Informationstechnik

Hagen Klauk

Max-Planck-Institut für Festkörperforschung Heisenbergstr. 1, Büro 4 C22 70569 Stuttgart Tel.: (0711) 689-1401 email: H.Klauk@fkf.mpg.de

http://www.fkf.mpg.de/oe/vorlesung

Max-Planck-Institut für Festkörperforschung

Heisenbergstr. 1 Büro 4 C22

Tel.: (0711) 689-1401 H.Klauk@fkf.mpg.de

www.fkf.mpg.de/oe/vorlesung

É iPhone X R

Year

É iPhone X R

Apple A12 microprocessor

7 billion FETs

1 cm

Tri-gate silicon MOSFET

100 nm

intel

f_T (L = 10 nm) ~ <u>1 THz</u>

m) C (carry)

Apple A12 64-bit microprocessor

e st	Te mpe st
J	CP U
e st	Te mpe st
J	CP U

Multi-level interconnects

Annual market share of smartphones with liquid-crystal display **AMOLED** display

100

75

Active-matrix displays require the integration of the electro-optic elements with thin-film transistors (TFTs).

Steffen Höhla, Norbert Frühauf Institut für Großflächige Mikroelektronik, Universität Stuttgart

row access time

$\frac{\text{off-state:}}{I_D} < 1 \text{ pA}$

row access time

~1 MHz ~10 MHz

TFT transit frequency

access x # of rows time

CORNING

Hydrogenated amorphous silicon (a-Si:H) by PECVD:

 SiH_4 (gas) \rightarrow Si:H (solid) + H₂ (gas)

Si atomH atom

Tuttle, *Phys. Rev. B* <u>57</u> 12859 (1998)

Annual market share of smartphones with liquid-crystal display **AMOLED** display

100

75

AMOLED displays (millions)

Ching W. Tang

Steven Van Slyke

Organic electroluminescent diodes

C. W. Tang and S. A. VanSlyke Research Laboratories, Corporate Research Group, Eastman Kodak Company, Rochester, New York 14650

(Received 12 May 1987; accepted for publication 20 July 1987)

k Company, Rochester, New York 14650 987)

> Tang & Van Slyke, *Appl. Phys. Lett.* <u>51</u> 913 (1987)

layer

layer

Chen, Light: Science & Applications <u>7</u> 17168 (2018)

Meerheim, Appl. Phys. Lett. <u>93</u> 043310 (2008)

SAMSUNG Galaxy S10

600 million displays x9 million OLEDs > 10¹⁵ OLEDs

1. Deposition and patterning of TFTs

2. Thin-film encapsulation of TFTs

3. Deposition and patterning of OLEDs

OLEDs

4. Thin-film encapsulation of OLEDs

<u>7</u> 462 (2019)

Hydrogenated amorphous silicon (a-Si:H) by PECVD:

 SiH_4 (gas) \rightarrow Si:H (solid) + H₂ (gas)

Si atomH atom

Tuttle, *Phys. Rev. B* <u>57</u> 12859 (1998)

Laser crystallization of a-Si:H to form polycrystalline silicon

amorphous silicon $\mu \sim 1 \text{ cm}^2/\text{Vs}$

polycrystalline silicon $\mu \sim 100 \text{ cm}^2/\text{Vs}$

NAOS-SIO₂

AI

SiNx

Poly-Si

Glass

Excimer-laser annealing (<u>ELA</u>)

Low-temperature polycrystalline silicon (LTPS)

T ~ <u>450 .. 550 °C</u>

Kubota, IEEE Trans. Electr. Dev. <u>59</u> 385 (2012)

bending radius 500 μm

Open Innovation by IMEC and TNO

Thin-film transistors (TFTs)

OLEDs and encapsulation

Release of polyimide substrate from carrier

Glass carrier

Lee, J. SID <u>26</u> 200 (2018) **Cover Glass**

Circular Polarizer

Transparent Encapsulation

Plastic TFT Backplane with OLED

Heat Sink

Display module built upon a high-performance display-glass carrier 0

Samsung GALAXY **Note** 4

semiconductor	carrier	process	carrier mo
	type	temperature (°C)	(cm²/Vs
single-crystalline Si	n-channel	900	800
(CMOS)	p-channel	900	200
polycrystalline Si	n-channel	500	200
(LTPS)	p-channel	500	100
amorphous Si	n-channel	150	2
(a-Si:H)	p-channel	250	0.1
metal oxides	n-channel	150	20
(ZnO, InGaZnO)	p-channel	200	2
organic	n-channel	120	1
	p-channel	80	5

- [1] Takagi, *IEEE Trans. Electr. Dev.* <u>41</u> 2357 (1994)
- [2] Kubota, *IEEE Trans. Electr. Dev.* <u>59</u> 385 (2012)
- [3] Han, *Appl. Phys. Lett.* <u>96</u> 042111 (2010)
- [4] Han, Appl. Phys. Lett. <u>94</u> 162105 (2009)

- [5] Münzenrieder, IEEE Trans. Electr. Dev. 59 2153 (2012)
- [6] Khan, *Org. Electronics* <u>16</u> 9 (2015)
- [7] Kraft, Adv. Mater. 27 207 (2015)
- [8] Borchert, *Nature Commun.* <u>10</u> 1119 (2019)

[7] [8] *tr. Dev. <u>59</u> 2153 (2012)* 15)

obility s)

reference

[1]

[1]

[2]

[2]

[3]

[4]

[5]

[6]

Kraft, *Adv. Mater.* <u>27</u> 207 (2015) Zschieschang, Org. Electronics 25 340 (2015) Zschieschang, *J. Mater. Chem. C* <u>7</u> 5522 (2019)

~ 1 nm

Cardamone, *Nano Lett.* <u>6</u> 2422 (2006)

Charge transport in organic semiconductors

a = 0.596 nm b = 0.760 nm c = 1.56 nm

Troisi, *J. Phys. Chem. B* <u>109</u> 1849 (2005)

Murakami, *Phys. Rev. Lett.* <u>103</u> 146102 (2009)

Hultell, *Chem. Phys. Lett.* <u>428</u> 446 (2006)

Charge transport in organic semiconductors: Effects of Disorder

Rösner,

<u>15</u> 435 (2014)

Murakami, Phys. Rev. Lett. <u>103</u> 146102 (2009)

mobility edge

Geiger, Phys. Rev. Appl. <u>10</u> 044023 (2018)

p-channel semiconductors

n-channel semiconductors

Wang, Chem. Rev. <u>112</u> 2208 (2012)

Organic TFT device architectures

Gate electrodes:

- vacuum-deposited metals
- printed metal nanoparticle inks
- printed PEDOT:PSS

Gate dielectric:

- PVD, ALD or sol-gel oxides (Al₂O₃, HfO₂, etc.)
- spin-coated or printed polymers

Source and drain contacts:

- vacuum-deposited metals
- printed metal nanoparticle inks
- printed PEDOT:PSS

Organic semiconductor layer:

- vacuum-deposited small-molecule materials
- spin-coated or printed small-molecule materials
- spin-coated or printed semiconducting polymers

Gold, *Org. Electronics* <u>22</u> 140 (2015)

Inkjet printing

gate electrode gate dielectric source and drain contacts

organic semiconductor

Vacuum deposition / stencil lithography

Organic vapor jet printing

Shtein, *Adv. Mater.* <u>16</u> 1615 (2004) Yun, *Adv. Mater.* <u>24</u> 2857 (2012)

Roll-to-roll gravure printing

Kang, *Adv. Mater.* <u>24</u> 3065 (2012) Kang, *Org. Electronics* <u>15</u> 3639 (2014)

Koo, *Sci. Rep.* <u>5</u> 14459 (2015)

Sekitani, *Nature Mater.* <u>9</u> 1015 (2010)

STANFORD UNIVERSITY

Wang, *Nature* <u>555</u> 83 (2018)

Kim, Adv. Mater. <u>31</u> 1900564 (2019)

Organic TFTs

row access x # of rows time

TFT transit frequency

~10 MHz

$$f_{T} = \frac{\mu_{eff} (V_{GS} - V_{th})}{2\pi L \left(\frac{2}{3}L + 2L_{ov}\right)}$$

Schwierz, Solid-State Electronics 51 1079 (2007)

Borchert, Science Adv. <u>6</u> eaaz5156 (2020)