Molecular Nanoscience

Header image sans both 1512657257

A key aspect of molecular nanoscience is the design and fabrication of well-defined molecular architectures with atomic scale control of size, shape and composition. The precise engineering of the interplay of intermolecular and interfacial interactions is essential for the organization of molecules and secondary building blocks into functional assemblies. The functionality of the overall architecture is implemented by specifically designed molecular units with tailored physical and chemical properties addressing a wide range of applications ranging from molecular electronics and magnetism through molecular photovoltaics to (bio)molecular recognition.


Charge transport through atomic and molecular constrictions greatly affects the operation and performance of molecular devices. Much of our understanding of the charge injection and extraction processes in these systems relies on our knowledge of the electronic structure at the contact. Despite significant experimental and theoretical advances in studying charge transport in molecular nanosystems, a microscopic understanding at the single atom/molecule level is missing. We probe directly the nanocontact between single atoms and molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum transport and many body phenomena at the atomic and molecular scale.


Tremendous progress is also expected for the development of advanced catalysts inspired by biomolecular systems. In nature enzymes catalyze many chemical processes that are vital for metabolic functions under mild conditions that are otherwise technologically demanding and at high energy and environmental costs. Biomimetic methods engineer key components to create artificial highly efficient functional mimics employing the tools from nanoscience, enabling both the microscopic understanding and industrial scaling of the relevant chemical reactions. The nanoscience approach to biocatalytic processes is essential for the development of sustainable solutions for the production of chemical fuels by direct solar energy conversion.



Responsible Scientists

Dr. Sabine Abb

Dr. Soon Jung Jung

Dr. Rico Gutzler


Team Members


Sabine Abb, Patrick Alexa, Doris Grumelli, Rico Gutzler, Soon Jung Jung, Shai Mangel, Tomasz Michnowicz, Hannah Ochner, Sven Szilagyi, Xu Wu


Key Publications

D. Hötger, P. Abufager, C. Morchutt, P. Alexa, D. Grumelli, J. Dreiser, S. Stepanow, P. Gambardella, H. F. Busnengo, M. Etzkorn, R. Gutzler and K. Kern
On-surface transmetalation of metalloporphyrins
Nanoscale 20, 21116 (2018)

J. Fester, A. Makoveev, D. Grumelli, R. Gutzler, Z. Sun, J. Rodríguez-Fernandez, K. Kern, and J. V. Lauritsen
Structural Evolution of an Atomically Defined Cobalt Oxyhydroxide/Au Catalyst in Electrochemical Water Splitting
Angew. Chem. Int. Ed. 57, 11893 (2018)

N. Vats, S. Rauschenbach, W. Sigle, S. Sen, S. Abb, A. Portz, M. Dürr, M. Burghard, P.A. van Aken, and K. Kern
Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam depostion
Nanoscale 10, 4952 (2018)

Ch. Dette, M. A. Pérez-Osorio, S. Mangel, F. Giustino, S. Jung Jung, and K. Kern
Atomic structure of water monolayer on anatase TiO2(101) surface
J. Phys. Chem. C 122, 11954 (2018)

J.-N. Longchamp, S. Rauschenbach, S. Abb, C. Escher, T. Latychevskaia, K. Kern, and H.-W. Fink
Imaging proteins at the single-molecule level
PNAS 114, 1474 (2017)

C. Dette, M. A. Pérez-Osorio, S. Mangel, F. Giustino, S. J. Jung, and K. Kern
Single-Molecule Vibration Spectroscopy of H2O on Anatase TiO2(101)
J. Phys. Chem. C 121, 1182 (2017)

C. Morchutt, J. Björk, C. Straßer, U. Starke, R. Gutzler, and K. Kern
Interplay of Chemical and Electronic Structure on the Single-Molecule Level in 2D Polymerization
ACS Nano 10, 11511 (2016)

B. Wurster, D. Grumelli, D. Hötger, R. Gutzler, and K. Kern
Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts
J. Am. Chem. Soc. 138, 3623 (2016)

V. Schendel, B. Borca, I. Pentegov, T. Michnowicz, U. Kraft, H. Klauk, P. Wahl, U. Schlickum, and K. Kern
Remotely controlled isomer selective molecular switching
Nano Lett. 16, 93 (2016)

S. Abb, L. Harnau, R. Gutzler, S. Rauschenbach, and K. Kern
Two-Dimensional Honeycomb Network through Sequence-Controlled Self-Assembly of Oligopeptides
Nature Commun. 7, 10335 (2016)

B. Borca, V. Schendel, R. Pétuya, I. Pentegov, T. Michnowicz, U. Kraft, H. Klauk, A. Arnau, P. Wahl, U. Schlickum, and K. Kern
Bipolar Conductance Switching of Single Anthradithiophene Molecules
ACS Nano 9, 12506 (2015)

R. Gutzler, S. Stepanow, D. Grumelli, M. Lingenfelder, and K. Kern
Mimicking Enzymatic Active Sites on Surfaces for Energy Conversion Chemistry
Acc. Chem. Res. 48, 2132 (2015)

C. Dette, M. A. Pérez-Osorio, C. S. Kley, P. Punke, C. E. Patrick, P. Jacobson, F. Giustino, S. J. Jung, and K. Kern
TiO2 anatase with a bandgap in the visible region
Nano Lett. 14, 6533 (2014)

Ch.S. Kley, Ch. Dette, G. Rinke, Ch.E. Patrick, J. Cechal, S.J. Jung, M. Baur, M. Dürr, St. Rauschenbach, F. Giustino, S. Stepanow, and K. Kern 
Atomic-scale observation of multi-conformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase
Nano Lett. 14, 563 (2014)

D. Grumelli, B. Wurster, S. Stepanow, and K. Kern
Nanocatalysts for the oxygen reduction reaction: a novel bio-inspired approach
Nat. Commun. 4, 2904 (2013)

S. Kahle, Z. Deng, N. Malinowski, C. Tonnoir, A. Forment-Aliaga, N. Thontasen, G. Rinke, D. Le, V. Turkowski, T. S. Rahman, S. Rauschenbach, M. Ternes and K. Kern
The Quantum Magnetism of Individual Manganese-12-Acetate Molecular Magnets Anchored at Surfaces
Nano Lett. 12, 518 (2012)

C. S. Kley, J. Cechal, T. Kumagai, F. Schramm, M. Ruben, S. Stepanow, and K. Kern
Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces
J. Am. Chem. Soc. 134, 6072 (2012)

N. Abdurakhmanova, T.-C. Tseng, A. Langner, C. S. Kley, V. Sessi, S. Stepanow, and K. Kern
Superexchange-mediated ferromagnetic coupling in two-dimensional Ni-TCNQ networks on metal surfaces
Phys. Rev. Lett. 110, 027202 (2013)

S. Fabris, S. Stepanow, N. Lin, P. Gambardella, A. Dmitriev, J. Honolka, S. Baroni, and K. Kern,

Oxygen dissociation by concerted action of di-iron centers in metal-organic coordination networks at surfaces: modeling non-heme iron enzymes,
Nano Lett. 11, 5414 (2011)
T.-C. Tseng, C. Urban, Y. Wang, R. Otero, S. L. Tait, M. Alcami, D. Écija, M. Trelka, J. M. Gallego, N. Lin, M. Konuma, U. Starke, A. Nefedov, A. Langner, C. Wöll, M. Ángeles Herranz, F. Martín, N. Martín, K. Kern, and R. Miranda,
Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces,
Nat. Chem. 2, 374 (2010)
L. Vitali, G. Levita, R. Ohmann, A. Comisso, A. de Vita, and K. Kern,
Portrait of the potential barrier at metal-organic nanocontacts,
Nat. Mater. 9, 320 (2010)
P. Gambardella, S. Stepanow, A. Dmitriev, J. Honolka, F. M. F. de Groot, M. Lingenfelder, S. S. Gupta, D. D. Sarma, P. Bencok, S. Stanescu, S. Clair, S. Pons, N. Lin, A. P. Seitsonen, H. Brune, J. V. Barth, and K. Kern,

Supramolecular Control of the Magnetic Anisotropy in Two-Dimensional High-Spin Fe Arrays at a Metal Interface,
Nat. Mater. 8, 189 (2009)
A. Langner, S.L. Tait, N. Lin, C. Rajadurai, M. Ruben, and K. Kern
Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces
PNAS 104, 17927 (2007)

S. Rauschenbach, F. Stadler, E. Lunedei, N. Malinowski, S. Koltsov, G. Costantini, and K. Kern,

Electrospray ion beam deposition of clusters and biomolecules,
Small 2, 540 (2006)

J.V. Barth, G. Costantini, and K. Kern,
Engineering atomic and molecular nanostructures at surfaces,
Nature 437, 671 (2005)

Go to Editor View
loading content