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Numerous correlated electron compounds undergo a quantum phase transition between ground states with differ-
ent symmetries, which can be tuned by a non-thermal control parameter such as doping, pressure, or a magnetic
field. In the vicinity of a continuous transition electronicexcitations are strongly scattered by order parameter
fluctuations. Quantum critical fluctuations near a quantum critical point (QCP) are therefore frequently invoked
as a mechanism for non-Fermi liquid behavior in strongly correlated electron compounds.

Quantum criticality in metallic electron systems is traditionally described by an effective order parameter theory,
which was pioneered by Hertz and Millis. In that approach, anorder parameter fieldφ is introduced via a
decoupling of the electron-electron interaction, and the electronic variables are subsequently integrated out. The
resulting effective actionS[φ] for the order parameter is truncated at quartic order and analyzed by standard
scaling techniques. However, several studies revealed that the Hertz-Millis approach may fail, especially in
low-dimensional systems. Since electronic excitations ina metal are gapless, integrating out the electrons may
lead to singular interactions between the order parameter fluctuations which cannot be approximated by a local
quartic term. A break-down of Hertz-Millis theory is known to occur for an antiferromagnetic quantum phase
transition in two dimensional metals, and for a ferromagnetic transition even in three dimensions.

Here we investigate whether the Hertz-Millis approach is valid for two-dimensional systems exhibiting a quan-
tum phase transition driven byforward scatteringin the charge channel. The most prominent such transition is
the electronicnematic, in which an orientation symmetry is spontaneously broken,while translation and spin-
rotation invariance remain unaffected. The problem of quantum critical points with singular forward scattering
is closely related to the problem of non-relativistic fermions coupled to aU(1) gauge field. Calculations in the
gauge field context suggested that the simple form of the (bosonic) fluctuation propagator obtained in lowest
order (RPA) remains unaffected by higher order terms. In a recent paper Metlitski and Sachdev [1] formulated a
scaling theory of the nematic QCP and related problems, treating the electrons and order parameter fluctuations
on equal footing. No qualitative correction was found for the fluctuation propagator, up to three-loop order. This
is in stark contrast to the case of an antiferromagnetic QCP in two dimensions, where the fluctuation propagator
is substantially renormalized compared to the RPA form. A clarification of the properties of the nematic QCP
beyond three-loop order is still lacking.

The robustness of the fluctuation propagator at the nematic QCP seems to indicate that interactions of the order
parameter fluctuations are irrelevant such that the QCP is Gaussian, in agreement with the expectations from
Hertz-Millis theory. It is therefore worthwhile to analyzethe interaction terms in the effective actionS[φ]
obtained after integrating out the electrons. TheN -point interactions are given by fermionic loops withN
vertices. To obtain the scaling behavior of such loops is non-trivial, because the most naive power-counting is
easily invalidated by cancellations [2]. We have computed the exact scaling behavior of theN -point interactions
for the nematic QCP and related systems, and found that the interactions aremarginal andnon-local for all
N ≥ 3. Hence, replacing them by a localφ4 interaction is not justified [3]. In the following, we sketchthe main
points of the theory.

We consider an interacting electron system which undergoesa continuous quantum phase transition with a scalar
order parameter of the form

O =
X

σ

Z

d2k

(2π)2
d(k)c†σ(k)cσ(k) , (1)

wherec†σ(k) andcσ(k) are the usual fermionic creation and annihilation operators. For a charge nematic, the
form factord(k) has ak-dependence withd-wave symmetry, such asd(k) = cos kx − cos ky. Decoupling the
fermionic interaction by introducing an order parameter field φ via a Hubbard-Stratonovich transformation, and
integrating out the fermionic variables, one obtains an effective actionS[φ]. The effectiveN -point interactions
of the order parameter field are given by symmetrizedN -point loops

ΓN (q1, . . . , qN ) =
1

N !

X

P

ΠN (qP1, . . . , qPN ) , (2)

where the sum collects all permutationsP of 1, . . . , N , and

ΠN(q1, . . . , qN ) =

Z

k

N
Y

j=1

[d(k− pj − qj/2) G0(k − pj)] . (3)
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We use 3-vectors collecting imaginary frequency and two-dimensional momentum variables, for examplek =

(k0,k), and
∫

k
as a short-hand notation for

∫
dk0

2π
d2k

(2π)2 . The variablespj andqj are related byqj = pj+1 − pj

for j = 1, . . . , N − 1, andqN = p1 − pN . Note thatq1 + · · · + qN = 0 due to energy and momentum
conservation. The bare propagator has the formG0(k) = [ik0 − ǫ(k) + µ]

−1, whereǫ(k) is the dispersion
relation of the non-interacting particles.ΠN (q1, . . . , qN ) can be represented graphically as a fermion loop with
N lines corresponding toG0 andN vertices with form factorsd(k), as shown in Fig. 1.
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Figure 1:Graphical representation ofΠN with momentum
variables as in Eq. (3).

The bare fluctuation propagator has the form

D0(q) =
1

χq2 + γ |q0|
|q|

, (4)

whereχ andγ are positive constants.D0(q) diverges in the limitq → 0 andq0/|q| → 0. The two terms in the
denominator ofD0(q) vanish at the same pace forq → 0 if q0 ∝ |q|3. To assess the size of the interaction terms
in S[φ] one thus has to study theN -point loops in a low-energy limit withqj0 ∝ |qj |

3. Naively one may expect
that this corresponds to thestatic limit, whereqj0 → 0 beforeqj → 0:

lim
qj→0

lim
qj0→0

ΠN(q1, . . . , qN ) =
(−1)N−1

(N − 1)!

∂N−2

∂µN−2

Z

d2k

(2π)2
[d(k)]N δ[ǫ(k) − µ] . (5)

Except for special cases where the chemical potential lies at a van Hove singularity, this expression isfinite. Note
that the right hand side of Eq. (5) is independent ofq1, . . . , qN and hence already symmetrized. Approximating
the bosonicN -point interactions by finite local interactions thus seemsadequate. Standard power counting then
implies that all interactions withN ≥ 4 are increasingly (with higherN ) irrelevant. Hence, the Hertz-Millis
truncation seems justified. The static limit of the3-point loop and all otherN -point loops with oddN as given
by Eq. (5) vanishes in the case of a charge nematic, due to the antisymmetry ofd(k) underπ/2 rotations ofk.
One arrives at a similar conclusion for the gauge field problem.

However, there is a flaw in the above argument. Eq. (5) has beenderived by settingqj0 = 0 before the momenta
qj tend to zero. It is not guaranteed that this captures the low-energy limitqj → 0 and qj0/|qj | → 0 in
general. Indeed, a simple estimate indicates that theN -point loop is of orderqj0/|qj |

N−1 for small non-
collinear momentaqj and smallqj0/|qj | [1]. Although this behavior is increasingly singular for larger N ,
the corresponding order parameter interactions remain irrelevant, since the singularity is not strong enough.
However, an even stronger singularity is obtained in a special low-energy limit in which the momentaq1, . . . ,qN

becomecollinear. The crucial role of coupled fluctuations with collinear momenta was highlighted by Metlitski
and Sachdev [1]. In perturbative one-loop calculations of the fermionic self-energyΣ(kF , ω) at a certain point
kF on the Fermi surface, it was found already some time ago that the dominant contributions involve only
fermionic states in the momentum region nearkF and−kF , with momentum transfersq almosttangentialto
the Fermi surface in those points. This remains true for higher order contributions, so that all fermionic momenta
are close tokF and−kF and momentum transfers are almost tangential to the Fermi surface in these points,
which implies that they are mutually almost collinear.

Choosing a coordinate system in momentum space in such a way that the normal vector to the Fermi surface at
kF points inx-direction, the proper scaling limit describing the low-energy behavior is given byk0 7→ λ3k0,
kx 7→ λ2kx, andky 7→ λky with λ → 0, where(kx, ky) is measured relative tokF . For the momentum and
energy transfersqj this implies

qj0 7→ λ3qj0 , qjx 7→ λ2qjx , qjy 7→ λqjy with λ → 0 .
(6)

In this collinear low-energy limitthe momentum transfersqj become increasingly collinear (pointing iny-
direction). We have computed the exact scaling behavior of the effectiveN -point interactions in that limit [3].
The calculation is rather complicated, but the result is very simple:

ΓN ∝ λ6−2N for all N ≥ 3 .
(7)
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The degree of divergence therefore increases rapidly withN . It is not reduced by any cancellations. By stan-
dard power-counting one then finds that allN -point interactions are marginal, that is, they cannot be neglected
in the low-energy limit. Truncating the effective actionS[φ] at quartic order inφ as in the Hertz-Millis ap-
proach is therefore not justified. We have also derived explicit expressions for the full momentum and frequency
dependence ofΓN (q1, . . . , qN ) in the collinear low-energy limit [3].
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