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Numerous correlated electron compounds undergo a quaritageransition between ground states with differ-
ent symmetries, which can be tuned by a non-thermal conéir@lmpeter such as doping, pressure, or a magnetic
field. In the vicinity of a continuous transition electromgcitations are strongly scattered by order parameter
fluctuations. Quantum critical fluctuations near a quanttitical point (QCP) are therefore frequently invoked
as a mechanism for non-Fermi liquid behavior in stronglyelated electron compounds.

Quantum criticality in metallic electron systems is traaially described by an effective order parameter theory,
which was pioneered by Hertz and Millis. In that approachpather parameter field is introduced via a
decoupling of the electron-electron interaction, and teeteonic variables are subsequently integrated out. The
resulting effective actiorb[¢] for the order parameter is truncated at quartic order antyzed by standard
scaling techniques. However, several studies revealadhbaHertz-Millis approach may fail, especially in
low-dimensional systems. Since electronic excitations metal are gapless, integrating out the electrons may
lead to singular interactions between the order parameigtutitions which cannot be approximated by a local
quartic term. A break-down of Hertz-Millis theory is knowm dccur for an antiferromagnetic quantum phase
transition in two dimensional metals, and for a ferromaigrteansition even in three dimensions.

Here we investigate whether the Hertz-Millis approach ighMar two-dimensional systems exhibiting a quan-
tum phase transition driven grward scatteringn the charge channel. The most prominent such transition is
the electronimematic in which an orientation symmetry is spontaneously brokerile translation and spin-
rotation invariance remain unaffected. The problem of quarcritical points with singular forward scattering
is closely related to the problem of non-relativistic feoms coupled to &/ (1) gauge field. Calculations in the
gauge field context suggested that the simple form of theoftiokfluctuation propagator obtained in lowest
order (RPA) remains unaffected by higher order terms. Ircanepaper Metlitski and Sachdev [1] formulated a
scaling theory of the nematic QCP and related problemgjiigethe electrons and order parameter fluctuations
on equal footing. No qualitative correction was found fa fluctuation propagator, up to three-loop order. This
is in stark contrast to the case of an antiferromagnetic @G®Ro dimensions, where the fluctuation propagator
is substantially renormalized compared to the RPA form. &ifitation of the properties of the nematic QCP
beyond three-loop order is still lacking.

The robustness of the fluctuation propagator at the nema&tie §ems to indicate that interactions of the order
parameter fluctuations are irrelevant such that the QCP is$an, in agreement with the expectations from
Hertz-Millis theory. It is therefore worthwhile to analyzke interaction terms in the effective actidi¢]
obtained after integrating out the electrons. Tkepoint interactions are given by fermionic loops witf
vertices. To obtain the scaling behavior of such loops is-tnietal, because the most naive power-counting is
easily invalidated by cancellations [2]. We have compuliedexact scaling behavior of thé-point interactions
for the nematic QCP and related systems, and found that teeations arenarginal and non-localfor all

N > 3. Hence, replacing them by a loe#d interaction is not justified [3]. In the following, we skettie main
points of the theory.

We consider an interacting electron system which undergeestinuous quantum phase transition with a scalar
order parameter of the form
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wherec] (k) andc, (k) are the usual fermionic creation and annihilation opegatéor a charge nematic, the
form factord(k) has ak-dependence witd-wave symmetry, such akk) = cos k, — cos k,. Decoupling the
fermionic interaction by introducing an order parametddfigvia a Hubbard-Stratonovich transformation, and
integrating out the fermionic variables, one obtains aadife actionS[¢]. The effectiveN-point interactions
of the order parameter field are given by symmetrizeg@oint loops
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where the sum collects all permutatioA®f 1, ..., N, and
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We use 3-vectors collecting imaginary frequency and twoetisional momentum variables, for example-

(ko, k), and [, as a short-hand notation fgfr”;—’jr“(ng’;z. The variableg; andg; are related by; = pj11 — p;
forj =1,...,N — 1, andgqy = p1 — py. Note thatq; + --- + gy = 0 due to energy and momentum
conservation. The bare propagator has the félpik) = [iko — e(k) + 1] ', wheree(k) is the dispersion
relation of the non-interacting particleHy (¢1, . . ., gv) can be represented graphically as a fermion loop with

N lines corresponding t6/y and N vertices with form factord(k), as shown in Fig. 1.

Figure 1:Graphical representation bfy with momentum
variables as in Eq. (3).

The bare fluctuation propagator has the form
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wherey and~ are positive constantd),(q) diverges in the limiig — 0 andgo/|q| — 0. The two terms in the
denominator ofD,(¢q) vanish at the same pace f@r— 0 if g o< |q|®. To assess the size of the interaction terms
in S[¢] one thus has to study thé-point loops in a low-energy limit witly;o  |q;|>. Naively one may expect
that this corresponds to tistaticlimit, whereg;o — 0 beforeq; — 0:
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Except for special cases where the chemical potentialfi@van Hove singularity, this expressiorirsite. Note
that the right hand side of Eq. (5) is independenjf . . , ¢ and hence already symmetrized. Approximating
the bosonidV-point interactions by finite local interactions thus seamsquate. Standard power counting then
implies that all interactions witlv > 4 are increasingly (with highel) irrelevant. Hence, the Hertz-Millis
truncation seems justified. The static limit of thgoint loop and all otheNV-point loops with oddV as given

by Eq. (5) vanishes in the case of a charge nematic, due totleymmetry ofd(k) underr /2 rotations ofk.
One arrives at a similar conclusion for the gauge field proble

However, there is a flaw in the above argument. Eq. (5) has desved by setting;o = 0 before the momenta
q; tend to zero. It is not guaranteed that this captures theelogrgy limitq; — 0 andg;o/|q;| — 0 in
general. Indeed, a simple estimate indicates thatRpoint loop is of orderg;o/|q;|¥ ! for small non-
collinear momentay; and smallg;o/|q;| [1]. Although this behavior is increasingly singular fordar IV,
the corresponding order parameter interactions remagteirant, since the singularity is not strong enough.
However, an even stronger singularity is obtained in a sphemiv-energy limit in which the momentg,, ..., qn
becomecollinear. The crucial role of coupled fluctuations with collinear mema was highlighted by Metlitski
and Sachdev [1]. In perturbative one-loop calculationdeffermionic self-energ¥(kr,w) at a certain point
kr on the Fermi surface, it was found already some time ago beatdbminant contributions involve only
fermionic states in the momentum region nkarand —kz, with momentum transferg almosttangentialto
the Fermi surface in those points. This remains true fordnginder contributions, so that all fermionic momenta
are close tckr and—kr and momentum transfers are almost tangential to the Femfaicguin these points,
which implies that they are mutually almost collinear.

Choosing a coordinate system in momentum space in such ahatthte normal vector to the Fermi surface at
kr points inz-direction, the proper scaling limit describing the loweegy behavior is given by, — A3k,
ky — A%k, andk, — Ak, with A — 0, where(k,, k,) is measured relative thr. For the momentum and
energy transferg; this implies
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In this collinear low-energy limitthe momentum transferg; become increasingly collinear (pointing i
direction). We have computed the exact scaling behavidnegffectiveN-point interactions in that limit [3].
The calculation is rather complicated, but the result iy wmple:
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The degree of divergence therefore increases rapidly Witht is not reduced by any cancellations. By stan-
dard power-counting one then finds that &Hpoint interactions are marginal, that is, they cannot bewed

in the low-energy limit. Truncating the effective actisii¢] at quartic order inp as in the Hertz-Millis ap-
proach is therefore not justified. We have also derived eit@kpressions for the full momentum and frequency
dependence df y(¢1, - - -, gn) in the collinear low-energy limit [3].
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