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The hallmark of topological insulators and superconductors is the existence of topologically protected zero-
energy surface or edge states, some of which are of Majorana type. The experimental observation of these edge
and surface states in HgTe/(Hg,Ce)Te quantum wells and in BiSb alloys, respectively, has lead to a renewed
interest in topological states of matter. Recently, we haveshown that topologically protected zero-energy states
can also occur at the surface of noncentrosymmetric superconductors [1-3], such as CePt3Si or Li2PdxPt3−xB.
In these remarkable materials, Rashba-type antisymmetricspin-orbit interactions lift the spin degeneracy of
the electronic bands and generate complex spin textures in the electron Bloch functions. In the superconducting
state, the antisymmetric spin-orbit coupling gives rise tothe admixture of even-parity spin-singlet and odd-parity
spin-triplet pairing components and, importantly, allowsa non-trivial topology of the Bogoliubov-quasiparticle
wavefunctions. Akin to topological insulators, this non-trivial wavefunction topology results in various types of
protected zero-energy states at the edge or surface of noncentrosymmetric superconductors [1-3].

For instance, a fully gapped noncentrosymmetric superconductor with nontrivial topology supports linearly dis-
persing helical Majorana modes at its boundary [1]. In three-dimensional systems, the stability of these Majorana
surface states is protected by an integer (Z) topological invariant, i.e., the three-dimensional winding number
[1], whereas in two-dimensional systems a binary (Z2) topological number guarantees the robustness of the edge
modes. Topologically protected zero-energy boundary modes also occur in noncentrosymmetric superconduc-
tors with line nodes. In particular, we have recently shown that dispersionless zero-energy states (i.e., flat bands)
of topological origin generically appear at the surface of three-dimensional nodal noncentrosymmetric super-
conductors [1,2]. These zero-energy flat bands are confined to regions of the two-dimensional surface Brillouin
zone that are bounded by the projections of the nodal lines ofthe bulk gap (see Figs. 1 and 2). Apart from these
two-dimensional surface flat bands, certain nodal noncentrosymmetric superconductors also support zero-energy
boundary states that form one-dimensional open arcs in the surface Brillouin zone, connecting the projection of
two nodal rings [3] [see Figs. 1(a) and 2(a)]. Moreover, we have also shown that Majorana surface states can
occur at time-reversal-invariant momenta of the surface Brillouin zone, even if the superconductor is not fully
gapped in the bulk [1,3].
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Figure 1: Surface bound-state spectra at the (100) face
of a C4v point-group noncentrosymmetric superconductor
as a function of surface momentumk‖ = (ky , kz)
with (a) (s + p)-wave, (b)(dx2−y2 + f)-wave, and (c)
(dxy +p)-wave pairing symmetry. The color scale indicates
the energy: black represents zero energy while yellow
represents the maximum energyEmax. The black (gray)
line shows the extent of the projected negative-helicity
(positive-helicity) Fermi surface. (d) Winding number
W(100), Eq. (2), at the (100) face corresponding to the
same parameters as in panel (c). Black (white) indicates
W(100) = +2 (−2), dark blue (gray) corresponds to
W(100) = +1 (−1), while light blue isW(100) = 0. The red
dashed (green solid) lines represent the nodal lines on the
negative-helicity (positive-helicity) Fermi surface.

The topological protection of these zero-energy states that appear at the surface of nodal noncentrosymmetric
superconductors is linked to the topological characteristics of the nodal gap structure via a bulk-boundary cor-
respondence. In fact, the stability of both the zero-energysurface states and the line nodes of the bulk gap is
ensured by the conservation of the same topological invariants. For example, the stability of the nodal lines is
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Figure 2: Surface bound-state spectra at the (101) face of aC4v point-group noncentrosymmetric superconductor as a
function of surface momentumk‖ with (a) (s+ p)-wave, (c)(dx2−y2 + f)-wave, and (e)(dxy + p)-wave pairing symmetry.
The color scale is the same as in Figs. 1(a)–(c). The black (gray) line shows the extent of the projected negative-helicity
(positive-helicity) Fermi surface. Panels (b), (d), and (f) show the winding numberW(101) at the (101) face corresponding to
the same parameters as in panels (a), (c), and (e), respectively. Dark blue (gray) indicatesW(101) = +1 (−1), while light blue
is W(101) = 0. The red dashed (green solid) lines represent the nodal lines on the negative-helicity (positive-helicity) Fermi
surface.
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where the integral is to be evaluated along the pathL parametrized bykl. Here,ξ±
k

is the dispersion of the
positive-helicity and negative-helicity bands, respectively, and∆±

k
denotes the gaps on the two helicity bands. If

L in Eq. (1) encircles a line node, thenWL determines the topological charge and hence the topological stability
of the nodal line. The stability of the surface flat band is protected by the very same topological number, namely,
by
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where the subscript(lmn) parametrizes the direction perpendicular to the surface plane andk‖ (k⊥) denotes the
momentum parallel (perpendicular) to the surface. At a given surface momentumk‖, there appear zero-energy
surface states wheneverW(lmn)(k‖) 6= 0. The integral (1) can be related to the integral (2) by considering a
suitable deformation of the integration path. By such a construction, one can show that the zero-energy flat bands
are confined to regions of the surface Brillouin zone that arebounded by the projections of the nodal lines of the
bulk gap.

Beside the integer topological charge (1), nodal lines in noncentrosymmetric superconductors can also carry a
binary (Z2) topological charge determined by the so-called two-dimensionalZ2 topological invariant. We have
shown in Ref. [3] that thisZ2 topological charge gives rise to one-dimensional arcs of zero-energy surface states,
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Figure 3:Tunneling conductance spectra for the (100) and (101) interfaces of aC4v noncentrosymmetric superconductor
with (a) (s + p)-wave gap symmetry, (b)(dx2−y2 + f)-wave gap symmetry, and (c)(dxy + p)-wave gap symmetry.

terminating at the projection of the nodal lines onto the surface Brillouin zone. Finally, noncentrosymmetric
superconductors can also support Majorana surface states,whose stability is guaranteed by the so-called one-
dimensionalZ2 topological number [2,3].

In Fig. 1 we illustrate the topologically protected surfacestates for the (100) face of aC4v point-group non-
centrosymmetric superconductor for several different pairing symmetries. In the case of(s + p)-wave pairing
and (dx2−y2 + f)-wave pairing we observe zero-energy arc surface states connecting the projections of two
nodal rings [see Figs. 1(a) and 1(b)]. In contrast, for (dxy + p)-wave pairing we do not find any arc surface
states, but instead there are zero-energy flat bands in several regions bounded by the projected line nodes of the
positive-helicity and negative-helicity gaps [see Fig. 1(c)]. The zero-energy states lying outside the projected
positive-helicity Fermi surface (gray line) are associated with a non-trivial winding numberW(100) = ±1 as
shown in Fig. 1(d). The zero-energy surface states lying inside the projected positive-helicity Fermi surface,
on the other hand, are doubly degenerate and have winding numberW(100) = ±2. The latter states occur in
the region where the gap has predominantly singlet character, and hence are due to the same mechanism as the
zero-energy surface states in a puredxy-wave superconductor.

The bound states at the (101) surface shown in Fig. 2 display amuch more interesting topological character.
For the(s + p)-wave case [Fig. 2(a)] we find that flat zero-energy bands occur within the projected nodes
of the negative-helicity Fermi surface. These zero-energystates are associated with a finite winding number
W(101) = ±1 [see Fig. 2(d)]. Besides the surface flat bands there are alsoarc surface states which connect
the projections of the topologically charged nodal rings. The presence of higher angular-momentum harmonics
[Figs. 2(b) and 2(c)] results in the appearance of additional regions of zero-energy states due to the nodes of
both the positive-helicity and negative-helicity gaps. All of these states correspond to a winding number of
W(101) = ±1, as can be seen by comparing the bound state spectra, Figs. 2(b) and 2(c), with the winding
number calculations, Figs. 2(e) and 2(f), respectively.

Let us now examine the signatures of the arc surface states and of the zero-energy surface flat bands in tunneling-
conductance spectra. In Fig. 3 we present the conductance spectra for tunneling into aC4v point-group noncen-
trosymmetric superconductor through (100) and (101) interfaces for(s + p)-wave, (dx2−y2 + f)-wave, and
(dxy + p)-wave pairing symmetry. Several features of these spectra are noteworthy. For the (100) surface we
observe a broad hump-like feature in the tunneling conductance for the(s + p)-wave and(dx2−y2 + f)-wave
pairing states, which is a signature of the arc surface states. In the(dxy + p)-wave case, in contrast, we find
a zero-bias conductance peak well separated from the bulk density of states. For the (101) surface all pairing
symmetries show a zero-bias conductance peak, which is a keyexperimental signature of the topologically pro-
tected surface flat band. For the cases of(s + p)-wave and(dx2−y2 + f)-wave pairing, however, we note that
the zero-bias conductance peak is superimposed on a hump-like feature. This signals the continued existence of
arc surface states in these systems, in agreement with Fig. 2.

To summarize, the topologically protected surface flat bands manifest themselves in scanning tunneling spec-
troscopy as a zero bias conductance peak, while the arc surface states lead to a broad, hump-like feature centered
around zero bias in the conductance spectra. Both features exhibit a pronounced dependence on surface ori-
entation, which not only provides characteristic fingerprints of the orbital and spin pairing symmetries in these
materials, but also directly evidences the topological properties of the system. Besides the tunneling conduc-
tance, the surface flat bands and arc surface states also profoundly affect other surface and interface properties
of NCSs, such as Josephson tunneling, the nonlinear Meissner effect, and surface thermal transport. The inves-
tigation of these interesting boundary properties are leftfor future work.
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