Modelling on phenomenological (finite elements, finite differences, Monte Carlo), semiempirical (e.g. pair potential calculations) and ab-initio (DFT) level is performed for in-depth analysis and detailed mechanistic understanding of defect formation, transport processes and reactions.

Research areas and related projects:

  • Phenomenological modelling of transport processes
    • enhanced diffusion along grain boundaries

      D. Gryaznov, J. Fleig, and J. Maier Finite element simulation of diffusion into polycrystalline materials
      Solid State Sciences 10(6), 754–760 (2008). DOI: 10.1016/j.solidstatesciences.2008.03.030

    • sheet resistance caused by low electronic conductivity in microelectrodes

      A. Wedig, M. E. Lynch, R. Merkle, J. Maier, and M. Liu Sheet Resistance in Thin Film Solid Oxide Fuel Cell Model Cathodes: A Case Study on Circular Bi1-xSrxFeO3-δ Microelectrodes ECS Transactions 45(1), 213–224 (2012). DOI: 10.1149/1.3701311

    • defect chemistry and transport in materials with three carriers

      D. Poetzsch, R. Merkle, and J. Maier Stoichiometry Variation in Materials with Three Mobile Carriers—Thermodynamics and Transport Kinetics Exemplified for Protons, Oxygen Vacancies, and Holes 
      Advanced Functional Materials 25(10), 1542–1557 (2015). DOI:10.1002/adfm.201402212
Go to Editor View
loading content