Nanoscale Science Department

Research efforts in the Department are centered on nanoscale science and technology with a focus on the bottom-up paradigm. The aim of the interdisciplinary research at the interface between physics, chemistry and biology is to gain control of materials at the atomic and molecular level, enabling the design of systems and devices with properties determined by quantum behavior on one hand and approaching functionalities of living matter on the other hand.



Superconducting quantum interference at the atomic scale
Interference requires coherence, which is usually hard to come by in condensed matter environments. However, sometimes even short coherence times are suffcient to reveal most peculiar phenomena such as making it look like a supercurrent reverses its flow, which can be exploited for quantum sensing. An  international collaboration of scientists between the Max Planck Institute for Solid State Research in Stuttgart, Ulm University, the Autonomous University of Madrid, and the University of Uppsala has now used such a supercurrent reversal to detect the ground state of a magnetic impurity coupled to a superconductor. Using a scanning tunneling microscope, they detect the interference in the Josephson current thereby creating a rudimentary phase sensitivity like in a superconducting quantum interference device (SQUID).
An Attosecond Microscope provides unprecedented insights into the dynamics of electrons in molecules
To better understand and possibly control fast chemical reactions, it is necessary to study the behavior of electrons as precisely as possible - at their intrinsic length and time scales. Until now, however, microscopy techniques have only provided sharp images in either space or time. Using a unique combination of tunneling microscopy and attosecond technology, we have managed to overcome these difficulties. Our atomic quantum microscope can visualize the movement of electrons in individual molecules, simultaneously at picometer length and attosecond time scales.
Single molecule holographic imaging of monoclonal antibodies
Molecular imaging at the single-molecule level of large and flexible proteins such as monoclonal IgG antibodies is possible by low-energy electron holography after chemically selective sample preparation by native electrospray ion beam deposition (ES-IBD) from native solution conditions. The single-molecule nature of the measurement with a spatial resolution down to 5 Å allows the mapping of the structural variability of the protein molecules that originates from their intrinsic flexibility and from different adsorption geometries.
Slamming molecules opens new reaction paths
Molecules colliding with surfaces at energies relevant to chemistry (0 – 50 eV) undergo selective conformation changes and mechanochemical reactions. The origin of these phenomena is the compression of the molecules when the fast-approaching molecules are brought to sudden halt upon their impact at the surface. Our novel approach offers a general pathway to explore the conformation space and the mechanochemistry of any molecule that can be electrosprayed.


Go to Editor View